Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially...Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially leading to false positives or missed detections.To solve these problems,the YOLOv8 network is enhanced by adding deformable convolution and atrous spatial pyramid pooling(ASPP),along with the integration of a coordinate attention(CA)mechanism.This allows the network to focus on small targets while expanding the receptive field without losing resolution.At the same time,context information on the target is gathered and feature expression is enhanced by attention modules in different directions.It effectively improves the positioning accuracy and achieves good results on the LUNA16 dataset.Compared with other detection algorithms,it improves the accuracy of pulmonary nodule detection to a certain extent.展开更多
With the rise in drowning accidents in swimming pools,the demand for the precision and speed in artificial intelligence(AI)drowning detection methods has become increasingly crucial.Here,an improved YOLO-based method,...With the rise in drowning accidents in swimming pools,the demand for the precision and speed in artificial intelligence(AI)drowning detection methods has become increasingly crucial.Here,an improved YOLO-based method,named DrownACB-YOLO,for drowning detection in swimming pools is proposed.Since existing methods focus on the drowned state,a transition label is added to the original dataset to provide timely alerts.Following this expanded dataset,two improvements are implemented in the original YOLOv5.Firstly,the spatial pyramid pooling(SPP)module and the default upsampling operator are replaced by the atrous spatial pyramid pooling(ASPP)module and the content-aware reassembly of feature(CARAFE)module,respectively.Secondly,the cross stage partial bottleneck with three convolutions(C3)module at the end of the backbone is replaced with the bottleneck transformer(BotNet)module.The results of comparison experiments demonstrate that DrownACB-YOLO performs better than other models.展开更多
To detect bull’s-eye anomalies in low-frequency seismic inversion models,the study proposed an advanced method using an optimized you only look once version 7(YOLOv7)model.This model is enhanced by integrating advanc...To detect bull’s-eye anomalies in low-frequency seismic inversion models,the study proposed an advanced method using an optimized you only look once version 7(YOLOv7)model.This model is enhanced by integrating advanced modules,including the bidirectional feature pyramid network(BiFPN),weighted intersection-over-union(wise-IoU),efficient channel attention(ECA),and atrous spatial pyramid pooling(ASPP).BiFPN facilitates robust feature extraction by enabling bidirectional information fl ow across network scales,which enhances the ability of the model to capture complex patterns in seismic inversion models.Wise-IoU improves the precision and fineness of reservoir feature localization through its weighted approach to IoU.Meanwhile,ECA optimizes interactions between channels,which promotes eff ective information exchange and enhances the overall response of the model to subtle inversion details.Lastly,the ASPP module strategically addresses spatial dependencies at multiple scales,which further enhances the ability of the model to identify complex reservoir structures.By synergistically integrating these advanced modules,the proposed model not only demonstrates superior performance in detecting bull’s-eye anomalies but also marks a pioneering step in utilizing cutting-edge deep learning technologies to enhance the accuracy and reliability of seismic reservoir prediction in oil and gas exploration.The results meet scientific literature standards and provide new perspectives on methodology,which makes significant contributions to ongoing eff orts to refine accurate and efficient prediction models for oil and gas exploration.展开更多
In order to solve the problems of artifacts and noise in low-dose computed tomography(CT)images in clinical medical diagnosis,an improved image denoising algorithm under the architecture of generative adversarial netw...In order to solve the problems of artifacts and noise in low-dose computed tomography(CT)images in clinical medical diagnosis,an improved image denoising algorithm under the architecture of generative adversarial network(GAN)was proposed.First,a noise model based on style GAN2 was constructed to estimate the real noise distribution,and the noise information similar to the real noise distribution was generated as the experimental noise data set.Then,a network model with encoder-decoder architecture as the core based on GAN idea was constructed,and the network model was trained with the generated noise data set until it reached the optimal value.Finally,the noise and artifacts in low-dose CT images could be removed by inputting low-dose CT images into the denoising network.The experimental results showed that the constructed network model based on GAN architecture improved the utilization rate of noise feature information and the stability of network training,removed image noise and artifacts,and reconstructed image with rich texture and realistic visual effect.展开更多
X-ray ptychographic tomography is a nondestructive method for three dimensional(3D)imaging with nanometer-sized resolvable features.The size of the volume that can be imaged is almost arbitrary,limited only by the pen...X-ray ptychographic tomography is a nondestructive method for three dimensional(3D)imaging with nanometer-sized resolvable features.The size of the volume that can be imaged is almost arbitrary,limited only by the penetration depth and the available scanning time.Here we present a method that rapidly accelerates the imaging operation over a given volume through acquiring a limited set of data via large angular reduction and compensating for the resulting ill-posedness through deeply learned priors.The proposed 3D reconstruction method“RAPID”relies initially on a subset of the object measured with the nominal number of required illumination angles and treats the reconstructions from the conventional two-step approach as ground truth.It is then trained to reproduce equal fidelity from much fewer angles.After training,it performs with similar fidelity on the hitherto unexamined portions of the object,previously not shown during training,with a limited set of acquisitions.In our experimental demonstration,the nominal number of angles was 349 and the reduced number of angles was 21,resulting in a×140 aggregate speedup over a volume of 4.48×93.18×3.92μm^(3) and with(14 nm)^(3) feature size,i.e.-10^(8) voxels.RAPID’s key distinguishing feature over earlier attempts is the incorporation of atrous spatial pyramid pooling modules into the deep neural network framework in an anisotropic way.We found that adjusting the atrous rate improves reconstruction fidelity because it expands the convolutional kernels’range to match the physics of multi-slice ptychography without significantly increasing the number of parameters.展开更多
Automatic segmentation of pulmonary vessels is a fundamental and essential task for the diagnosis of various pulmonary vessels diseases.The accuracy of segmentation is suffering from the complex vascular structure.In ...Automatic segmentation of pulmonary vessels is a fundamental and essential task for the diagnosis of various pulmonary vessels diseases.The accuracy of segmentation is suffering from the complex vascular structure.In this paper,an Improved Residual Attention U-Net(IRAU-Net)aiming to segment pulmonary vessel in 3D is proposed.To extract more vessel structure information,the Squeeze and Excitation(SE)block is embedded in the down sampling stage.And in the up sampling stage,the global attention module(GAM)is used to capture target features in both high and low levels.These two stages are connected by Atrous Spatial Pyramid Pooling(ASPP)which can sample in various receptive fields with a low computational cost.By the evaluation experiment,the better performance of IRAU-Net on the segmentation of terminal vessel is indicated.It is expected to provide robust support for clinical diagnosis and treatment.展开更多
文摘Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially leading to false positives or missed detections.To solve these problems,the YOLOv8 network is enhanced by adding deformable convolution and atrous spatial pyramid pooling(ASPP),along with the integration of a coordinate attention(CA)mechanism.This allows the network to focus on small targets while expanding the receptive field without losing resolution.At the same time,context information on the target is gathered and feature expression is enhanced by attention modules in different directions.It effectively improves the positioning accuracy and achieves good results on the LUNA16 dataset.Compared with other detection algorithms,it improves the accuracy of pulmonary nodule detection to a certain extent.
文摘With the rise in drowning accidents in swimming pools,the demand for the precision and speed in artificial intelligence(AI)drowning detection methods has become increasingly crucial.Here,an improved YOLO-based method,named DrownACB-YOLO,for drowning detection in swimming pools is proposed.Since existing methods focus on the drowned state,a transition label is added to the original dataset to provide timely alerts.Following this expanded dataset,two improvements are implemented in the original YOLOv5.Firstly,the spatial pyramid pooling(SPP)module and the default upsampling operator are replaced by the atrous spatial pyramid pooling(ASPP)module and the content-aware reassembly of feature(CARAFE)module,respectively.Secondly,the cross stage partial bottleneck with three convolutions(C3)module at the end of the backbone is replaced with the bottleneck transformer(BotNet)module.The results of comparison experiments demonstrate that DrownACB-YOLO performs better than other models.
文摘To detect bull’s-eye anomalies in low-frequency seismic inversion models,the study proposed an advanced method using an optimized you only look once version 7(YOLOv7)model.This model is enhanced by integrating advanced modules,including the bidirectional feature pyramid network(BiFPN),weighted intersection-over-union(wise-IoU),efficient channel attention(ECA),and atrous spatial pyramid pooling(ASPP).BiFPN facilitates robust feature extraction by enabling bidirectional information fl ow across network scales,which enhances the ability of the model to capture complex patterns in seismic inversion models.Wise-IoU improves the precision and fineness of reservoir feature localization through its weighted approach to IoU.Meanwhile,ECA optimizes interactions between channels,which promotes eff ective information exchange and enhances the overall response of the model to subtle inversion details.Lastly,the ASPP module strategically addresses spatial dependencies at multiple scales,which further enhances the ability of the model to identify complex reservoir structures.By synergistically integrating these advanced modules,the proposed model not only demonstrates superior performance in detecting bull’s-eye anomalies but also marks a pioneering step in utilizing cutting-edge deep learning technologies to enhance the accuracy and reliability of seismic reservoir prediction in oil and gas exploration.The results meet scientific literature standards and provide new perspectives on methodology,which makes significant contributions to ongoing eff orts to refine accurate and efficient prediction models for oil and gas exploration.
基金supported by National Natural Science Foundation of China(No.11802272)China Postdoctoral Science Foundation(No.2019M651085)。
文摘In order to solve the problems of artifacts and noise in low-dose computed tomography(CT)images in clinical medical diagnosis,an improved image denoising algorithm under the architecture of generative adversarial network(GAN)was proposed.First,a noise model based on style GAN2 was constructed to estimate the real noise distribution,and the noise information similar to the real noise distribution was generated as the experimental noise data set.Then,a network model with encoder-decoder architecture as the core based on GAN idea was constructed,and the network model was trained with the generated noise data set until it reached the optimal value.Finally,the noise and artifacts in low-dose CT images could be removed by inputting low-dose CT images into the denoising network.The experimental results showed that the constructed network model based on GAN architecture improved the utilization rate of noise feature information and the stability of network training,removed image noise and artifacts,and reconstructed image with rich texture and realistic visual effect.
基金funded by the Intelligence Advanced Research Projects Activity,Office of the Director of National Intelligence(IARPA-ODNI)under contract FA8650-17-C-9113.
文摘X-ray ptychographic tomography is a nondestructive method for three dimensional(3D)imaging with nanometer-sized resolvable features.The size of the volume that can be imaged is almost arbitrary,limited only by the penetration depth and the available scanning time.Here we present a method that rapidly accelerates the imaging operation over a given volume through acquiring a limited set of data via large angular reduction and compensating for the resulting ill-posedness through deeply learned priors.The proposed 3D reconstruction method“RAPID”relies initially on a subset of the object measured with the nominal number of required illumination angles and treats the reconstructions from the conventional two-step approach as ground truth.It is then trained to reproduce equal fidelity from much fewer angles.After training,it performs with similar fidelity on the hitherto unexamined portions of the object,previously not shown during training,with a limited set of acquisitions.In our experimental demonstration,the nominal number of angles was 349 and the reduced number of angles was 21,resulting in a×140 aggregate speedup over a volume of 4.48×93.18×3.92μm^(3) and with(14 nm)^(3) feature size,i.e.-10^(8) voxels.RAPID’s key distinguishing feature over earlier attempts is the incorporation of atrous spatial pyramid pooling modules into the deep neural network framework in an anisotropic way.We found that adjusting the atrous rate improves reconstruction fidelity because it expands the convolutional kernels’range to match the physics of multi-slice ptychography without significantly increasing the number of parameters.
文摘Automatic segmentation of pulmonary vessels is a fundamental and essential task for the diagnosis of various pulmonary vessels diseases.The accuracy of segmentation is suffering from the complex vascular structure.In this paper,an Improved Residual Attention U-Net(IRAU-Net)aiming to segment pulmonary vessel in 3D is proposed.To extract more vessel structure information,the Squeeze and Excitation(SE)block is embedded in the down sampling stage.And in the up sampling stage,the global attention module(GAM)is used to capture target features in both high and low levels.These two stages are connected by Atrous Spatial Pyramid Pooling(ASPP)which can sample in various receptive fields with a low computational cost.By the evaluation experiment,the better performance of IRAU-Net on the segmentation of terminal vessel is indicated.It is expected to provide robust support for clinical diagnosis and treatment.