期刊文献+
共找到246篇文章
< 1 2 13 >
每页显示 20 50 100
Automatic Segmentation Method for Cone-Beam Computed Tomography Image of the Bone Graft Region within Maxillary Sinus Based on the Atrous Spatial Pyramid Convolution Network 被引量:1
1
作者 XU Jiangchang HE Shamin +2 位作者 YU Dedong WU Yiqun CHEN Xiaojun 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第3期298-305,共8页
Sinus floor elevation with a lateral window approach requires bone graft(BG)to ensure sufficient bone mass,and it is necessary to measure and analyse the BG region for follow-up of postoperative patients.However,the B... Sinus floor elevation with a lateral window approach requires bone graft(BG)to ensure sufficient bone mass,and it is necessary to measure and analyse the BG region for follow-up of postoperative patients.However,the BG region from cone-beam computed tomography(CBCT)images is connected to the margin of the maxillary sinus,and its boundary is blurred.Common segmentation methods are usually performed manually by experienced doctors,and are complicated by challenges such as low efficiency and low precision.In this study,an auto-segmentation approach was applied to the BG region within the maxillary sinus based on an atrous spatial pyramid convolution(ASPC)network.The ASPC module was adopted using residual connections to compose multiple atrous convolutions,which could extract more features on multiple scales.Subsequently,a segmentation network of the BG region with multiple ASPC modules was established,which effectively improved the segmentation performance.Although the training data were insufficient,our networks still achieved good auto-segmentation results,with a dice coefficient(Dice)of 87.13%,an Intersection over Union(Iou)of 78.01%,and a sensitivity of 95.02%.Compared with other methods,our method achieved a better segmentation effect,and effectively reduced the misjudgement of segmentation.Our method can thus be used to implement automatic segmentation of the BG region and improve doctors’work efficiency,which is of great importance for developing preliminary studies on the measurement of postoperative BG within the maxillary sinus. 展开更多
关键词 atrous spatial pyramid convolution(ASPC) bone graft(BG)region medical image segmentation residual connection
原文传递
BurdenNet:先验信息导引的复杂环境下高炉多态料面目标检测网络
2
作者 倪梓明 陈先中 +1 位作者 侯庆文 张洁 《工程科学学报》 北大核心 2026年第1期26-38,共13页
传统的单一状态料面目标检测网络未能考虑高炉冶炼状态的交替变化,在复杂环境下整体准确度较低,针对上述问题,本文提出一种先验信息导引的多态料面目标检测网络BurdenNet.首先,提出基于原始信号距离向精度的图像预分类方法,构建三类典... 传统的单一状态料面目标检测网络未能考虑高炉冶炼状态的交替变化,在复杂环境下整体准确度较低,针对上述问题,本文提出一种先验信息导引的多态料面目标检测网络BurdenNet.首先,提出基于原始信号距离向精度的图像预分类方法,构建三类典型状态的料面图像数据集,并以预分类的状态为先验信息对网络通路进行剪枝.其次,将料面细长低曲率的形状特征与雷达采样信号的稀疏性质作为先验信息,提出空洞垂直偏移卷积(Atrous vertical deformable convolution,AVDC)模块提取多态料面特征.在此基础上,利用机械探尺数据构建先验空间注意力特征图,提出先验聚焦注意力(Prior focusing attention,PFA)模块,使网络优先聚焦于图像中的料面区域.最后对于边界框的回归,提出条带交并比(Band intersection over union,BIOU)损失函数进一步提升目标检测的速度与准确性.在钢铁公司高炉的实测数据上进行实验,结果表明,本文的BurdenNet相较于单一状态目标检测网络,在多态料面数据集上整体精确率提升了13.9%与5.2%,综合性能(F1-Score)提升了8.1%与4.3%,为复杂环境下多态料面图像的目标检测提供更准确的方法. 展开更多
关键词 多态料面 先验信息 空洞垂直偏移卷积 先验聚焦注意力 网络剪枝
在线阅读 下载PDF
Deep Learning Approach for COVID-19 Detection in Computed Tomography Images 被引量:2
3
作者 Mohamad Mahmoud Al Rahhal Yakoub Bazi +2 位作者 Rami M.Jomaa Mansour Zuair Naif Al Ajlan 《Computers, Materials & Continua》 SCIE EI 2021年第5期2093-2110,共18页
With the rapid spread of the coronavirus disease 2019(COVID-19)worldwide,the establishment of an accurate and fast process to diagnose the disease is important.The routine real-time reverse transcription-polymerase ch... With the rapid spread of the coronavirus disease 2019(COVID-19)worldwide,the establishment of an accurate and fast process to diagnose the disease is important.The routine real-time reverse transcription-polymerase chain reaction(rRT-PCR)test that is currently used does not provide such high accuracy or speed in the screening process.Among the good choices for an accurate and fast test to screen COVID-19 are deep learning techniques.In this study,a new convolutional neural network(CNN)framework for COVID-19 detection using computed tomography(CT)images is proposed.The EfficientNet architecture is applied as the backbone structure of the proposed network,in which feature maps with different scales are extracted from the input CT scan images.In addition,atrous convolution at different rates is applied to these multi-scale feature maps to generate denser features,which facilitates in obtaining COVID-19 findings in CT scan images.The proposed framework is also evaluated in this study using a public CT dataset containing 2482 CT scan images from patients of both classes(i.e.,COVID-19 and non-COVID-19).To augment the dataset using additional training examples,adversarial examples generation is performed.The proposed system validates its superiority over the state-of-the-art methods with values exceeding 99.10%in terms of several metrics,such as accuracy,precision,recall,and F1.The proposed system also exhibits good robustness,when it is trained using a small portion of data(20%),with an accuracy of 96.16%. 展开更多
关键词 COVID-19 deep learning computed tomography multi-scale features atrous convolution adversarial examples
在线阅读 下载PDF
2ACS部分并行维特比译码器的实现
4
作者 李瑛 郭梯云 《西安电子科技大学学报》 EI CAS CSCD 北大核心 1990年第1期83-87,共5页
本文介绍一种由2个ACS电路组成(2,1,m)卷积码的部分并行维特比译码器的实现方案,实验结果表明,该方案在硬件实现上比较简单,对(2,1,6)卷积码译码时,译码速率可达147kb/s。
关键词 acS 译码器 维持比
在线阅读 下载PDF
基于FCN-AC-ASPP的手写体去除方法
5
作者 方海泉 邓明明 冶运涛 《高技术通讯》 CAS 2022年第9期972-979,共8页
针对印刷体和手写体分类准确率不够高的问题,本文首先提出了一种印刷体与手写体像素级样本制作方法,并制作了印刷体和手写体数据集。其次提出了一种基于带空洞卷积和空洞空间金字塔池化的全卷积神经网络(FCN-AC-ASPP)模型。经过对FCNAC-... 针对印刷体和手写体分类准确率不够高的问题,本文首先提出了一种印刷体与手写体像素级样本制作方法,并制作了印刷体和手写体数据集。其次提出了一种基于带空洞卷积和空洞空间金字塔池化的全卷积神经网络(FCN-AC-ASPP)模型。经过对FCNAC-ASPP模型的训练和检测,该模型的分类准确率平均交并比(IoU)达到96.10%,优于全卷积神经网络(FCN)、DeeplabV3+、带空洞卷积的全卷积神经网络(FCN-AC)模型。最后对于同时含有印刷体和手写体的新图片,用训练好的FCN-AC-ASPP模型对印刷体和手写体分类,从而把手写体去除。 展开更多
关键词 手写体 印刷体 分类 全卷积神经网络(FCN) 空洞卷积(ac) 空洞空间金字塔池化(ASPP)
在线阅读 下载PDF
Viterbi Decoder ACS单元中路径度量值存储空间的优化
6
作者 郭正伟 赵勇 《现代电子技术》 2007年第17期71-73,共3页
ACS单元的设计及路径度量(PM)值的存储是Viterbi Decoder硬件实现的重要部分之一。介绍了一种码率为1/2的硬判决Viterbi Decoder的ACS部分的硬件实现方法。采用了一种全新的设计与存储方式,即原位运算旋转地址的方式,极大地节省了在ACS... ACS单元的设计及路径度量(PM)值的存储是Viterbi Decoder硬件实现的重要部分之一。介绍了一种码率为1/2的硬判决Viterbi Decoder的ACS部分的硬件实现方法。采用了一种全新的设计与存储方式,即原位运算旋转地址的方式,极大地节省了在ACS运算过程中用以存储路径度量值的RAM空间,大量的实验证明,设计的译码器在资源消耗上有较大优势。 展开更多
关键词 卷积码 VITERBI DECODER acS单元 路径度量 分支度量 幸存路径 回溯
在线阅读 下载PDF
A Lightweight Network with Dual Encoder and Cross Feature Fusion for Cement Pavement Crack Detection
7
作者 Zhong Qu Guoqing Mu Bin Yuan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期255-273,共19页
Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of cr... Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of crack detection in cement pavement improves,the depth and width of the network structure are significantly increased,which necessitates more computing power and storage space.This limitation hampers the practical implementation of crack detection models on various platforms,particularly portable devices like small mobile devices.To solve these problems,we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature information and combines cross-fusion modules and coordinated attention mechanisms formore efficient feature fusion.Firstly,we use small channel convolution to construct shallow feature extractionmodule(SFEM)to extract low-level feature information of cracks in cement pavement images,in order to obtainmore information about cracks in the shallowfeatures of images.In addition,we construct large kernel atrous convolution(LKAC)to enhance crack information,which incorporates coordination attention mechanism for non-crack information filtering,and large kernel atrous convolution with different cores,using different receptive fields to extract more detailed edge and context information.Finally,the three-stage feature map outputs from the shallow feature extraction module is cross-fused with the two-stage feature map outputs from the large kernel atrous convolution module,and the shallow feature and detailed edge feature are fully fused to obtain the final crack prediction map.We evaluate our method on three public crack datasets:DeepCrack,CFD,and Crack500.Experimental results on theDeepCrack dataset demonstrate the effectiveness of our proposed method compared to state-of-the-art crack detection methods,which achieves Precision(P)87.2%,Recall(R)87.7%,and F-score(F1)87.4%.Thanks to our lightweight crack detectionmodel,the parameter count of the model in real-world detection scenarios has been significantly reduced to less than 2M.This advancement also facilitates technical support for portable scene detection. 展开更多
关键词 Shallow feature extraction module large kernel atrous convolution dual encoder lightweight network crack detection
在线阅读 下载PDF
基于UMS-YOLO v7的面向样本不均衡的水下生物多尺度目标检测方法 被引量:3
8
作者 张明华 黄基萍 +2 位作者 宋巍 肖启华 赵丹枫 《农业机械学报》 北大核心 2025年第1期388-396,409,共10页
针对水下目标检测面临着生物尺度变化大以及样本不均衡的问题,本文提出一种水下生物多尺度目标检测方法(Underwater multi-scale-YOLO v7,UMS-YOLO v7)。首先,设计一种由可切换空洞卷积组成的特征提取模块,该模块可在不同大小的感受野... 针对水下目标检测面临着生物尺度变化大以及样本不均衡的问题,本文提出一种水下生物多尺度目标检测方法(Underwater multi-scale-YOLO v7,UMS-YOLO v7)。首先,设计一种由可切换空洞卷积组成的特征提取模块,该模块可在不同大小的感受野上捕获多尺度目标特征,使得提取的特征信息更加全面;其次,使用轻量级的上采样算子融合上下文信息,提高模型对目标的特征学习能力;最后,通过结合Wise-IoU和归一化Wasserstein距离两种相似性度量,提高了不同尺度目标的定位精度,同时降低了多尺度样本分布不均衡对模型的影响。实验结果表明,该模型相较于当前其他模型在检测精度方面表现出明显的提升,在RUOD和DUO数据集上平均精度均值分别达到64.5%和68.9%。与YOLO v7模型相比,UMS-YOLO v7提高了多种尺度目标检测精度,在DUO数据集上,针对大、中、小3种尺度目标平均精度均值分别提升8.3、4.8、12.5个百分点,其中小目标提升效果最为显著。与现有的其他模型相比,改进的模型具有更高的检测精度,更适用于水下生物多尺度目标检测任务,并且针对不同数据分布的样本具有泛化性和鲁棒性。 展开更多
关键词 水下生物 多尺度目标检测 YOLO v7 空洞卷积 上采样算子 相似性度量
在线阅读 下载PDF
Robust Cultivated Land Extraction Using Encoder-Decoder
9
作者 Aziguli Wulamu Jingyue Sang +1 位作者 Dezheng Zhang and Zuxian Shi 《Journal of New Media》 2020年第4期149-155,共7页
Cultivated land extraction is essential for sustainable development and agriculture.In this paper,the network we propose is based on the encoder-decoder structure,which extracts the semantic segmentation neural networ... Cultivated land extraction is essential for sustainable development and agriculture.In this paper,the network we propose is based on the encoder-decoder structure,which extracts the semantic segmentation neural network of cultivated land from satellite images and uses it for agricultural automation solutions.The encoder consists of two part:the first is the modified Xception,it can used as the feature extraction network,and the second is the atrous convolution,it can used to expand the receptive field and the context information to extract richer feature information.The decoder part uses the conventional upsampling operation to restore the original resolution.In addition,we use the combination of BCE and Loves-hinge as a loss function to optimize the Intersection over Union(IoU).Experimental results show that the proposed network structure can solve the problem of cultivated land extraction in Yinchuan City. 展开更多
关键词 Semantic segmentation encoder-decoder cultivated land extraction atrous convolution
在线阅读 下载PDF
一种基于ASPPUnet的道路裂缝检测模型 被引量:1
10
作者 曹一冰 张江水 +1 位作者 张政 赵鑫科 《测绘科学技术学报》 2025年第1期49-56,共8页
为了更加精确高效地对道路裂缝进行分割提取,提出一种基于多尺度特征与上下文信息融合的ASPPUnet道路裂缝检测模型。ASPPUnet通过U形编码解码器进行多尺度特征的提取,通过引入ASPP模块进行不同范围上下文信息的融合;同时模型还引入了深... 为了更加精确高效地对道路裂缝进行分割提取,提出一种基于多尺度特征与上下文信息融合的ASPPUnet道路裂缝检测模型。ASPPUnet通过U形编码解码器进行多尺度特征的提取,通过引入ASPP模块进行不同范围上下文信息的融合;同时模型还引入了深度可分离卷积模块,用以实现模型的轻量化;采用融合Dice和交叉熵的损失函数,均衡模型的查全率和查准率;采用动态数据集增广方法,使得模型在小数据集上也能实现良好的检测效果。通过与Unet等模型的实验对比可以看出,ASPPUnet拥有更好的检测效果和可塑性,具有较好的应用价值。 展开更多
关键词 裂缝检测 图像分割 深度可分离卷积 损失函数 ASPP模块 Unet模型
在线阅读 下载PDF
基于形状流和多尺度特征融合的腺体分割
11
作者 林嘉雯 陈苏苏 +2 位作者 林智明 李笠 翁谦 《中国生物医学工程学报》 北大核心 2025年第1期52-65,共14页
睑板腺成像技术广泛应用于干眼症的分型诊断、管理与个性化治疗中,但仅靠眼科医生进行直接观察和定性评估,评价主观且可重复性低。为提高眼科医生的诊断效率,研究者们提出了一系列基于U-Net的红外睑板腺图像腺体分割方法,但在图像边缘... 睑板腺成像技术广泛应用于干眼症的分型诊断、管理与个性化治疗中,但仅靠眼科医生进行直接观察和定性评估,评价主观且可重复性低。为提高眼科医生的诊断效率,研究者们提出了一系列基于U-Net的红外睑板腺图像腺体分割方法,但在图像边缘、出现反光点以及腺体密集区域,分割结果仍不理想。考虑到红外睑板腺图像成像与腺体分布的特点,提出基于形状流和多尺度特征融合的腺体分割模型SS-UNet,引入空洞卷积模块以增强模型的特征提取能力,设计形状流辅助分支以充分学习腺体的形状信息,采用多尺度特征融合模块以获得粗细各异腺体的特征表示。为验证模型的有效性,使用由福州大学附属省立医院眼科收集的包含203幅红外睑板腺图像的全标注数据集在同等实验环境下与其他先进分割模型开展对比实验,并进行模块消融分析,同时展示了可视化结果。实验表明,SS-UNet的Acc、Dice、IoU等指标分别达到了94.62%、80.94%和68.17%,相较于基准网络U-Net分别提升了0.36%、1.41%和1.95%。研究表明,SS-UNet能够充分运用腺体的形状与尺度等信息,解决腺体粘连、漏检等错误分割问题,有效提高分割精度,为辅助临床诊断提供客观依据。 展开更多
关键词 睑板腺功能障碍 腺体分割 空洞卷积 形状流 多尺度特征融合
暂未订购
基于多模态融合的抗噪声故障诊断方法
12
作者 宋庆军 孙世荣 +3 位作者 宋庆辉 陆丽娜 陈俊龙 姜海燕 《机电工程》 北大核心 2025年第11期2129-2140,共12页
随着工业设备运行环境日益复杂,在噪声环境下的故障诊断中,单一模态的数据往往无法提供全面且准确的故障信息,为此,提出了基于多模态融合的抗噪声故障诊断方法(MMFD),旨在提高噪声干扰环境下的故障诊断性能。首先,分别使用了改进型GAF角... 随着工业设备运行环境日益复杂,在噪声环境下的故障诊断中,单一模态的数据往往无法提供全面且准确的故障信息,为此,提出了基于多模态融合的抗噪声故障诊断方法(MMFD),旨在提高噪声干扰环境下的故障诊断性能。首先,分别使用了改进型GAF角场(GAGM)转换方法和变分模态分解(VMD)对振动信号进行了预处理;然后,时序信号通过双向门控循环单元(BIGRU)与多头注意力机制(MA)协同捕获动态时序特征;接着,将振动信号编码为二维图谱,并设计了多尺度卷积网络(MCNN)集成空洞空间金字塔池化(ASPP)和卷积注意力模块(CBAM),以提取空间深层特征;为强化跨模态特征融合,设计了特征交互网络(FIN)实现时频特征的深度交互,并构建了门控多模态单元(GMU)动态加权多源特征,挖掘了多模态数据间的互补信息;最后,采用了凯斯西储大学轴承故障数据集进行了多组鲁棒性实验。研究结果表明:在强噪声环境(信噪比为-6 dB)下,MMFD相比于其他故障诊断方法,诊断准确率提升超过10%;此外,MMFD在不同信噪比下均能保持80%以上的准确率。该研究为复杂噪声环境中的智能故障诊断提供了一种新的思路。 展开更多
关键词 格拉姆角场 空洞空间金字塔池化模块 多头注意力机制 双向门控循环单元 卷积注意力模块 特征交互网络 门控多模态单元
在线阅读 下载PDF
基于深度学习的目标检测算法研究
13
作者 李淑霞 杨俊成 《计算机与数字工程》 2025年第10期2688-2692,共5页
论文根据生成对抗网络GAN的工作原理和A-Fast-RCNN模型特点,对GAN网络的生成模型Generator和判别模型Discriminator进行改进;结合辅助分类生成对抗网络AC-GAN添加标签约束的思想和深度卷积生成对抗网络DC-GAN在生成器和判别器中使用卷... 论文根据生成对抗网络GAN的工作原理和A-Fast-RCNN模型特点,对GAN网络的生成模型Generator和判别模型Discriminator进行改进;结合辅助分类生成对抗网络AC-GAN添加标签约束的思想和深度卷积生成对抗网络DC-GAN在生成器和判别器中使用卷积神经网络CNN来替代GAN中多层感知机特点,论文提出多分类有条件的深度卷积生成对抗网络AC-DCGAN模型,该模型在生成模型和判别模型中加入多分类和条件辅助选项、添加批量归一化操作;使用卷积和反卷积代替池化层、使用全局池化层代替全连接层,分别在COCO数据集、PASCAL VOC 2007数据集和PASCAL VOC 2012数据集上测试,都取得了很好的效果。 展开更多
关键词 生成对抗网络 卷积神经网络 ac-GAN DC-GAN ac-DCGAN
在线阅读 下载PDF
基于改进SN-RetinaNet的车辆目标检测方法
14
作者 陈鑫影 吕硕 胡明捷 《大连交通大学学报》 2025年第4期147-154,共8页
针对复杂交通场景下密集车辆检测存在的目标遮挡、尺度变化大等难题,提出一种基于改进RetinaNet的车辆检测算法SN-RetinaNet。该方法首先在特征提取网络中引入可切换空洞卷积模块,通过动态调整感受野增强多尺度特征提取能力;其次结合神... 针对复杂交通场景下密集车辆检测存在的目标遮挡、尺度变化大等难题,提出一种基于改进RetinaNet的车辆检测算法SN-RetinaNet。该方法首先在特征提取网络中引入可切换空洞卷积模块,通过动态调整感受野增强多尺度特征提取能力;其次结合神经架构搜索技术优化特征金字塔网络结构,提升算法对不同尺度目标的适应性;最后提出一种基于统计先验的锚框比例优化策略。在SODA10M数据集上的试验结果表明,此方法平均检测精度(mAP)达到48.7%,较基准方法提升3.7个百分点。研究结果为智能交通系统中的车辆检测任务提供了有效的解决方案。 展开更多
关键词 目标检测 可切换空洞卷积 特征金字塔网络 神经架构搜索
在线阅读 下载PDF
基于多尺度注意力U-Net的医学肝脏计算机断层扫描图片分割算法 被引量:4
15
作者 金涛 王震 李昭蒂 《哈尔滨工程大学学报》 北大核心 2025年第3期529-539,共11页
针对传统肝脏分割方法十分依赖医生的经验,并且分割过程耗时,易出错的现象,本文提出适用于临床情景中医学肝脏计算机断层扫描的分割方法。基于多尺度残差混合注意力U-Net将多尺度注意力机制模块引入U-Net网络。该模块可以抑制不相关的区... 针对传统肝脏分割方法十分依赖医生的经验,并且分割过程耗时,易出错的现象,本文提出适用于临床情景中医学肝脏计算机断层扫描的分割方法。基于多尺度残差混合注意力U-Net将多尺度注意力机制模块引入U-Net网络。该模块可以抑制不相关的区域,从多个角度提取图像特征,并突出显示分割任务;在标准卷积层中添加残差结构可以有效地避免梯度爆炸并增加网络深度;使用混合空洞注意力常规层来替换“U”形网络的底部,以获得上下文信息,避免空间信息的丢失。试验结果表明:在LiTS17和SLiver07数据集上与其他方法相比,本文方法具有更好的性能和最高的分割精度。 展开更多
关键词 神经网络 深度学习 语义分割 肝脏分割 医学图像 注意力机制 空洞卷积
在线阅读 下载PDF
基于扩张重参数化和空洞卷积架构的步态识别方法 被引量:3
16
作者 霍丽娜 薛乐仁 +3 位作者 戴钰俊 赵新宇 王世行 王威 《计算机应用》 北大核心 2025年第4期1285-1292,共8页
步态识别旨在通过人们的步行姿态进行身份识别。针对步态识别中有效感受野(ERF)与人体轮廓区域匹配不佳的问题,提出一种基于空洞卷积的步态识别方法DilatedGait。首先,采用空洞卷积扩大神经元感受野,缓解下采样和模型深度增加导致的分... 步态识别旨在通过人们的步行姿态进行身份识别。针对步态识别中有效感受野(ERF)与人体轮廓区域匹配不佳的问题,提出一种基于空洞卷积的步态识别方法DilatedGait。首先,采用空洞卷积扩大神经元感受野,缓解下采样和模型深度增加导致的分辨率下降,以提高轮廓结构的辨识度;其次,提出扩张重参数化模块(DRM),通过重参数化方法融合多尺度卷积核参数,优化ERF聚焦范围,使模型捕获更多的全局上下文信息;最后,通过特征映射提取判别性步态特征。在户外数据集Gait3D和GREW上的实验结果表明,对比目前的先进方法GaitBase,DilatedGait在Gait3D的Rank-1和平均逆负惩罚(mINP)上分别提升了9.0和14.2个百分点,在GREW的Rank-1和Rank-5上分别提升了11.6和8.8个百分点。可见,DilatedGait消除了复杂协变量带来的不利影响,能进一步提升户外场景下步态识别的准确率。 展开更多
关键词 步态识别 有效感受野 重参数化 空洞卷积 步态轮廓序列
在线阅读 下载PDF
一种高效的无人机航拍小目标检测算法 被引量:1
17
作者 高卫峰 易宇轩 +3 位作者 黄玲玲 李龙跃 李宏 谢晋 《控制与决策》 北大核心 2025年第8期2525-2533,共9页
无人机航拍图像具有尺度差异大、背景干扰和目标模糊等特点,给小目标检测带来诸多挑战.针对这些问题,提出一种高效的无人机航拍小目标检测算法.首先利用空洞卷积增大感受野、保持细节分辨率的特点,设计并行空洞卷积模块;其次设计注意力... 无人机航拍图像具有尺度差异大、背景干扰和目标模糊等特点,给小目标检测带来诸多挑战.针对这些问题,提出一种高效的无人机航拍小目标检测算法.首先利用空洞卷积增大感受野、保持细节分辨率的特点,设计并行空洞卷积模块;其次设计注意力上下采样分支模块,利用闸门机制对提取到的特征进行选择,强化特征表达;最后结合小目标检测头设计并行空洞卷积注意力金字塔网络,对多尺度特征进行特征融合.在VisDrone2023数据集和DOTA数据集上,所提出算法在小目标检测的平均准确率均值均优于其他主流算法,相较于基线方法在平均准确率均值上提升7.3%,参数量减少0.58 M,FPS提升11.2,达到43.5,验证了所提算法的高效性.在复杂场景ExDark数据集上,所提出算法在平均准确率均值上优于其他低光增强模型和暗检测器,相较于PE-YOLO在平均准确率均值上提升2.4%,验证了所提算法的鲁棒性和实用性. 展开更多
关键词 无人机航拍图像 小目标检测 空洞卷积 注意力机制 金字塔网络 多尺度特征融合
原文传递
基于多尺度空洞卷积神经网络的滚动轴承故障识别方法
18
作者 汪小虎 赵荣珍 +1 位作者 邓林峰 郑玉巧 《兰州理工大学学报》 北大核心 2025年第3期55-63,共9页
针对现有卷积神经网络模型参数偏多导致滚动轴承智能诊断效率低和识别准确率受限于训练样本数量的问题,提出了基于多尺度空洞卷积神经网络的滚动轴承故障识别方法.该方法首先在模型的输入层采用大尺寸的空洞卷积核和标准卷积核提取一维... 针对现有卷积神经网络模型参数偏多导致滚动轴承智能诊断效率低和识别准确率受限于训练样本数量的问题,提出了基于多尺度空洞卷积神经网络的滚动轴承故障识别方法.该方法首先在模型的输入层采用大尺寸的空洞卷积核和标准卷积核提取一维振动信号的多尺度敏感特征,然后使用尺寸为1×1和3×1的小卷积核以及2×1的最大池化操作对输入层所提取敏感特征进一步提取深层抽象特征,最后用全局平均池化层代替传统卷积神经网络的全连接层.同时,分别采用西储大学轴承故障数据和实验室轴承故障数据进行实验验证.结果表明,该方法泛化性能良好,并且能够在训练样本较少的情况下出色地完成故障识别任务,即使在一定噪声干扰下也能够对轴承微弱故障准确识别. 展开更多
关键词 多尺度空洞卷积神经网络 滚动轴承 故障识别 小样本 微弱故障
在线阅读 下载PDF
PMM-YOLO:多尺度特征融合的交通标志检测算法 被引量:3
19
作者 赵磊 李栋 《计算机工程与应用》 北大核心 2025年第4期262-271,共10页
交通标志在智能驾驶领域有着重要的作用,面对交通标志尺寸小,易受遮挡,在复杂环境下容易出现漏检、错检等问题,提出了一种基于YOLOv5改进的PMM-YOLO交通标志检测算法。为了能够有效提取多尺度信息,并增强模型对特征信息的表达能力,提出... 交通标志在智能驾驶领域有着重要的作用,面对交通标志尺寸小,易受遮挡,在复杂环境下容易出现漏检、错检等问题,提出了一种基于YOLOv5改进的PMM-YOLO交通标志检测算法。为了能够有效提取多尺度信息,并增强模型对特征信息的表达能力,提出了一种结合注意力机制的并行空洞卷积模块(adaptive parallel atrous convo-lution,APA),使用具有不同膨胀率的并行空洞卷积,能够有效地提取不同尺度的特征,并通过gate机制突出关键目标的特征表示,提高检测的准确性;设计了一种多分支的自适应采样(multi-branch adaptive sampling,MBAS),多分支的采样可为网络提供多条特征提取途径,丰富特征表达的多样性,并通过不同位置的权重筛选重要特征进行强化,抑制冗余特征;设计了多尺度特征融合(multi-scale feature fusion,MSFF)模块,对不同大小尺度的特征图进行拼接,充分利用多尺度信息,将多个尺度的特征图融合,以获取更全面的目标特征,提升对目标的检测效果。构建了输出重组(output reorganization,ORO)模块,增加小目标检测层并去除大目标检测层,提升对小目标的检测效果,并相应减少模型复杂度。实验结果表明,PMM-YOLO算法在TT100Ke数据集上的mAP@0.5达到了86.4%,较原YOLOv5提升了5.9个百分点,且FPS较改进前提升了4.4%,能够快速准确地对交通标志进行检测。 展开更多
关键词 交通标志检测 YOLOv5 多分支采样 特征融合 空洞卷积 注意力机制
在线阅读 下载PDF
抗锯齿无锚框目标检测模型 被引量:1
20
作者 冉梦影 杨文柱 尹群杰 《计算机应用与软件》 北大核心 2025年第1期116-123,176,共9页
为了提升无锚框目标检测模型对物体多尺度检测性能,并实现检测速度与精度的最佳折中,提出一种具有抗锯齿能力的无锚框目标检测模型。下采样操作中,使用分组自适应低通滤波器解决网络中存在的锯齿问题;并联不同空洞率的空洞卷积进行多尺... 为了提升无锚框目标检测模型对物体多尺度检测性能,并实现检测速度与精度的最佳折中,提出一种具有抗锯齿能力的无锚框目标检测模型。下采样操作中,使用分组自适应低通滤波器解决网络中存在的锯齿问题;并联不同空洞率的空洞卷积进行多尺度特征融合,扩大神经元感受野范围。防止在模型训练过程中破坏网络参数,对损失函数进行实验讨论,替换为smooth L1 Loss函数。实验结果表明,在PASCAL VOC数据集上mAP指标达到了82.1%,FPS达到了32,与CenterNet-ResNet101相比,mAP提升了4.3%,FPS提升了18.5%。 展开更多
关键词 目标检测 无锚框 锯齿问题 空洞卷积 损失函数
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部