Sinus floor elevation with a lateral window approach requires bone graft(BG)to ensure sufficient bone mass,and it is necessary to measure and analyse the BG region for follow-up of postoperative patients.However,the B...Sinus floor elevation with a lateral window approach requires bone graft(BG)to ensure sufficient bone mass,and it is necessary to measure and analyse the BG region for follow-up of postoperative patients.However,the BG region from cone-beam computed tomography(CBCT)images is connected to the margin of the maxillary sinus,and its boundary is blurred.Common segmentation methods are usually performed manually by experienced doctors,and are complicated by challenges such as low efficiency and low precision.In this study,an auto-segmentation approach was applied to the BG region within the maxillary sinus based on an atrous spatial pyramid convolution(ASPC)network.The ASPC module was adopted using residual connections to compose multiple atrous convolutions,which could extract more features on multiple scales.Subsequently,a segmentation network of the BG region with multiple ASPC modules was established,which effectively improved the segmentation performance.Although the training data were insufficient,our networks still achieved good auto-segmentation results,with a dice coefficient(Dice)of 87.13%,an Intersection over Union(Iou)of 78.01%,and a sensitivity of 95.02%.Compared with other methods,our method achieved a better segmentation effect,and effectively reduced the misjudgement of segmentation.Our method can thus be used to implement automatic segmentation of the BG region and improve doctors’work efficiency,which is of great importance for developing preliminary studies on the measurement of postoperative BG within the maxillary sinus.展开更多
Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially...Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially leading to false positives or missed detections.To solve these problems,the YOLOv8 network is enhanced by adding deformable convolution and atrous spatial pyramid pooling(ASPP),along with the integration of a coordinate attention(CA)mechanism.This allows the network to focus on small targets while expanding the receptive field without losing resolution.At the same time,context information on the target is gathered and feature expression is enhanced by attention modules in different directions.It effectively improves the positioning accuracy and achieves good results on the LUNA16 dataset.Compared with other detection algorithms,it improves the accuracy of pulmonary nodule detection to a certain extent.展开更多
With the rise in drowning accidents in swimming pools,the demand for the precision and speed in artificial intelligence(AI)drowning detection methods has become increasingly crucial.Here,an improved YOLO-based method,...With the rise in drowning accidents in swimming pools,the demand for the precision and speed in artificial intelligence(AI)drowning detection methods has become increasingly crucial.Here,an improved YOLO-based method,named DrownACB-YOLO,for drowning detection in swimming pools is proposed.Since existing methods focus on the drowned state,a transition label is added to the original dataset to provide timely alerts.Following this expanded dataset,two improvements are implemented in the original YOLOv5.Firstly,the spatial pyramid pooling(SPP)module and the default upsampling operator are replaced by the atrous spatial pyramid pooling(ASPP)module and the content-aware reassembly of feature(CARAFE)module,respectively.Secondly,the cross stage partial bottleneck with three convolutions(C3)module at the end of the backbone is replaced with the bottleneck transformer(BotNet)module.The results of comparison experiments demonstrate that DrownACB-YOLO performs better than other models.展开更多
To detect bull’s-eye anomalies in low-frequency seismic inversion models,the study proposed an advanced method using an optimized you only look once version 7(YOLOv7)model.This model is enhanced by integrating advanc...To detect bull’s-eye anomalies in low-frequency seismic inversion models,the study proposed an advanced method using an optimized you only look once version 7(YOLOv7)model.This model is enhanced by integrating advanced modules,including the bidirectional feature pyramid network(BiFPN),weighted intersection-over-union(wise-IoU),efficient channel attention(ECA),and atrous spatial pyramid pooling(ASPP).BiFPN facilitates robust feature extraction by enabling bidirectional information fl ow across network scales,which enhances the ability of the model to capture complex patterns in seismic inversion models.Wise-IoU improves the precision and fineness of reservoir feature localization through its weighted approach to IoU.Meanwhile,ECA optimizes interactions between channels,which promotes eff ective information exchange and enhances the overall response of the model to subtle inversion details.Lastly,the ASPP module strategically addresses spatial dependencies at multiple scales,which further enhances the ability of the model to identify complex reservoir structures.By synergistically integrating these advanced modules,the proposed model not only demonstrates superior performance in detecting bull’s-eye anomalies but also marks a pioneering step in utilizing cutting-edge deep learning technologies to enhance the accuracy and reliability of seismic reservoir prediction in oil and gas exploration.The results meet scientific literature standards and provide new perspectives on methodology,which makes significant contributions to ongoing eff orts to refine accurate and efficient prediction models for oil and gas exploration.展开更多
Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of cr...Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of crack detection in cement pavement improves,the depth and width of the network structure are significantly increased,which necessitates more computing power and storage space.This limitation hampers the practical implementation of crack detection models on various platforms,particularly portable devices like small mobile devices.To solve these problems,we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature information and combines cross-fusion modules and coordinated attention mechanisms formore efficient feature fusion.Firstly,we use small channel convolution to construct shallow feature extractionmodule(SFEM)to extract low-level feature information of cracks in cement pavement images,in order to obtainmore information about cracks in the shallowfeatures of images.In addition,we construct large kernel atrous convolution(LKAC)to enhance crack information,which incorporates coordination attention mechanism for non-crack information filtering,and large kernel atrous convolution with different cores,using different receptive fields to extract more detailed edge and context information.Finally,the three-stage feature map outputs from the shallow feature extraction module is cross-fused with the two-stage feature map outputs from the large kernel atrous convolution module,and the shallow feature and detailed edge feature are fully fused to obtain the final crack prediction map.We evaluate our method on three public crack datasets:DeepCrack,CFD,and Crack500.Experimental results on theDeepCrack dataset demonstrate the effectiveness of our proposed method compared to state-of-the-art crack detection methods,which achieves Precision(P)87.2%,Recall(R)87.7%,and F-score(F1)87.4%.Thanks to our lightweight crack detectionmodel,the parameter count of the model in real-world detection scenarios has been significantly reduced to less than 2M.This advancement also facilitates technical support for portable scene detection.展开更多
In order to solve the problems of artifacts and noise in low-dose computed tomography(CT)images in clinical medical diagnosis,an improved image denoising algorithm under the architecture of generative adversarial netw...In order to solve the problems of artifacts and noise in low-dose computed tomography(CT)images in clinical medical diagnosis,an improved image denoising algorithm under the architecture of generative adversarial network(GAN)was proposed.First,a noise model based on style GAN2 was constructed to estimate the real noise distribution,and the noise information similar to the real noise distribution was generated as the experimental noise data set.Then,a network model with encoder-decoder architecture as the core based on GAN idea was constructed,and the network model was trained with the generated noise data set until it reached the optimal value.Finally,the noise and artifacts in low-dose CT images could be removed by inputting low-dose CT images into the denoising network.The experimental results showed that the constructed network model based on GAN architecture improved the utilization rate of noise feature information and the stability of network training,removed image noise and artifacts,and reconstructed image with rich texture and realistic visual effect.展开更多
基金the National Key Research and Development Program of China(No.2017YFB1302900)the National Natural Science Foundation of China(Nos.81971709,M-0019,and 82011530141)+2 种基金the Foundation of Science and Technology Commission of Shanghai Municipality(Nos.19510712200,and 20490740700)the Shanghai Jiao Tong University Foundation on Medical and Technological Joint Science Research(Nos.ZH2018ZDA15,YG2019ZDA06,and ZH2018QNA23)the 2020 Key Research Project of Xiamen Municipal Government(No.3502Z20201030)。
文摘Sinus floor elevation with a lateral window approach requires bone graft(BG)to ensure sufficient bone mass,and it is necessary to measure and analyse the BG region for follow-up of postoperative patients.However,the BG region from cone-beam computed tomography(CBCT)images is connected to the margin of the maxillary sinus,and its boundary is blurred.Common segmentation methods are usually performed manually by experienced doctors,and are complicated by challenges such as low efficiency and low precision.In this study,an auto-segmentation approach was applied to the BG region within the maxillary sinus based on an atrous spatial pyramid convolution(ASPC)network.The ASPC module was adopted using residual connections to compose multiple atrous convolutions,which could extract more features on multiple scales.Subsequently,a segmentation network of the BG region with multiple ASPC modules was established,which effectively improved the segmentation performance.Although the training data were insufficient,our networks still achieved good auto-segmentation results,with a dice coefficient(Dice)of 87.13%,an Intersection over Union(Iou)of 78.01%,and a sensitivity of 95.02%.Compared with other methods,our method achieved a better segmentation effect,and effectively reduced the misjudgement of segmentation.Our method can thus be used to implement automatic segmentation of the BG region and improve doctors’work efficiency,which is of great importance for developing preliminary studies on the measurement of postoperative BG within the maxillary sinus.
文摘Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially leading to false positives or missed detections.To solve these problems,the YOLOv8 network is enhanced by adding deformable convolution and atrous spatial pyramid pooling(ASPP),along with the integration of a coordinate attention(CA)mechanism.This allows the network to focus on small targets while expanding the receptive field without losing resolution.At the same time,context information on the target is gathered and feature expression is enhanced by attention modules in different directions.It effectively improves the positioning accuracy and achieves good results on the LUNA16 dataset.Compared with other detection algorithms,it improves the accuracy of pulmonary nodule detection to a certain extent.
文摘With the rise in drowning accidents in swimming pools,the demand for the precision and speed in artificial intelligence(AI)drowning detection methods has become increasingly crucial.Here,an improved YOLO-based method,named DrownACB-YOLO,for drowning detection in swimming pools is proposed.Since existing methods focus on the drowned state,a transition label is added to the original dataset to provide timely alerts.Following this expanded dataset,two improvements are implemented in the original YOLOv5.Firstly,the spatial pyramid pooling(SPP)module and the default upsampling operator are replaced by the atrous spatial pyramid pooling(ASPP)module and the content-aware reassembly of feature(CARAFE)module,respectively.Secondly,the cross stage partial bottleneck with three convolutions(C3)module at the end of the backbone is replaced with the bottleneck transformer(BotNet)module.The results of comparison experiments demonstrate that DrownACB-YOLO performs better than other models.
文摘To detect bull’s-eye anomalies in low-frequency seismic inversion models,the study proposed an advanced method using an optimized you only look once version 7(YOLOv7)model.This model is enhanced by integrating advanced modules,including the bidirectional feature pyramid network(BiFPN),weighted intersection-over-union(wise-IoU),efficient channel attention(ECA),and atrous spatial pyramid pooling(ASPP).BiFPN facilitates robust feature extraction by enabling bidirectional information fl ow across network scales,which enhances the ability of the model to capture complex patterns in seismic inversion models.Wise-IoU improves the precision and fineness of reservoir feature localization through its weighted approach to IoU.Meanwhile,ECA optimizes interactions between channels,which promotes eff ective information exchange and enhances the overall response of the model to subtle inversion details.Lastly,the ASPP module strategically addresses spatial dependencies at multiple scales,which further enhances the ability of the model to identify complex reservoir structures.By synergistically integrating these advanced modules,the proposed model not only demonstrates superior performance in detecting bull’s-eye anomalies but also marks a pioneering step in utilizing cutting-edge deep learning technologies to enhance the accuracy and reliability of seismic reservoir prediction in oil and gas exploration.The results meet scientific literature standards and provide new perspectives on methodology,which makes significant contributions to ongoing eff orts to refine accurate and efficient prediction models for oil and gas exploration.
基金supported by the National Natural Science Foundation of China(No.62176034)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-M202300604)the Natural Science Foundation of Chongqing(Nos.cstc2021jcyj-msxmX0518,2023NSCQ-MSX1781).
文摘Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of crack detection in cement pavement improves,the depth and width of the network structure are significantly increased,which necessitates more computing power and storage space.This limitation hampers the practical implementation of crack detection models on various platforms,particularly portable devices like small mobile devices.To solve these problems,we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature information and combines cross-fusion modules and coordinated attention mechanisms formore efficient feature fusion.Firstly,we use small channel convolution to construct shallow feature extractionmodule(SFEM)to extract low-level feature information of cracks in cement pavement images,in order to obtainmore information about cracks in the shallowfeatures of images.In addition,we construct large kernel atrous convolution(LKAC)to enhance crack information,which incorporates coordination attention mechanism for non-crack information filtering,and large kernel atrous convolution with different cores,using different receptive fields to extract more detailed edge and context information.Finally,the three-stage feature map outputs from the shallow feature extraction module is cross-fused with the two-stage feature map outputs from the large kernel atrous convolution module,and the shallow feature and detailed edge feature are fully fused to obtain the final crack prediction map.We evaluate our method on three public crack datasets:DeepCrack,CFD,and Crack500.Experimental results on theDeepCrack dataset demonstrate the effectiveness of our proposed method compared to state-of-the-art crack detection methods,which achieves Precision(P)87.2%,Recall(R)87.7%,and F-score(F1)87.4%.Thanks to our lightweight crack detectionmodel,the parameter count of the model in real-world detection scenarios has been significantly reduced to less than 2M.This advancement also facilitates technical support for portable scene detection.
基金supported by National Natural Science Foundation of China(No.11802272)China Postdoctoral Science Foundation(No.2019M651085)。
文摘In order to solve the problems of artifacts and noise in low-dose computed tomography(CT)images in clinical medical diagnosis,an improved image denoising algorithm under the architecture of generative adversarial network(GAN)was proposed.First,a noise model based on style GAN2 was constructed to estimate the real noise distribution,and the noise information similar to the real noise distribution was generated as the experimental noise data set.Then,a network model with encoder-decoder architecture as the core based on GAN idea was constructed,and the network model was trained with the generated noise data set until it reached the optimal value.Finally,the noise and artifacts in low-dose CT images could be removed by inputting low-dose CT images into the denoising network.The experimental results showed that the constructed network model based on GAN architecture improved the utilization rate of noise feature information and the stability of network training,removed image noise and artifacts,and reconstructed image with rich texture and realistic visual effect.