期刊文献+
共找到87篇文章
< 1 2 5 >
每页显示 20 50 100
Atomistics of superlubricity 被引量:7
1
作者 Motohisa HIRANO 《Friction》 SCIE EI CAS 2014年第2期95-105,共11页
Friction is a phenomenon observed ubiquitously in daily life,yet its nature is complicated.Friction between rough surfaces is considered to arise primarily because of macroscopic roughness.In contrast,interatomic forc... Friction is a phenomenon observed ubiquitously in daily life,yet its nature is complicated.Friction between rough surfaces is considered to arise primarily because of macroscopic roughness.In contrast,interatomic forces dominate between clean and smooth surfaces.“Superlubricity”,where friction effectively becomes zero,occurs when the ratio of lattice parameters in the pair of surfaces becomes an irrational number.Superlubricity has been found to exist in a limited number of systems,but is a very important phenomenon both in industry and in mechanical engineering.New atomistic research on friction is under way,with the aim of refining theoretical models that consider interactions between atoms beyond mean field theory and experiments using ultrahigh vacuum non-contact atomic force microscopy.Such research is expected to help clarify the nature of microscopic friction,reveal the onset conditions of friction and superlubricity as well as the stability of superlubricity,discover new superlubric systems,and lead to new applications. 展开更多
关键词 atomic-level friction atomistics of friction NANOTRIBOLOGY SUPERLUBRICITY
原文传递
Complexions-Dominated Plastic Transmission and Mechanical Response in Cu-Based Nanolayered Composites
2
作者 Zhe Yan Qi An +3 位作者 Lichen Bai Ruifeng Zhang Mingyu Gong Shijian Zheng 《Acta Metallurgica Sinica(English Letters)》 2025年第4期597-613,共17页
Thermodynamically stable and ultra-thin “phase” at the interface, known as complexions, can significantly improve the mechanical properties of nanolayered composites. However, the effect of complexions features (e.g... Thermodynamically stable and ultra-thin “phase” at the interface, known as complexions, can significantly improve the mechanical properties of nanolayered composites. However, the effect of complexions features (e.g., crystalline orientation, crystalline structure and amorphous composition) on the plastic deformation remains inadequately investigated, and the correlation with the plastic transmission and mechanical response has not been fully established. Here, using atomistic simulations, we elucidate the different complexions-dominated plastic transmission and mechanical response. Complexions can alter the preferred slip system of dislocation nucleation, depending on the Schmid factor and interface structure. After nucleation, the dislocation density exhibits an inverse correlation with the stress magnitude, because the number of dislocations influences the initiation of plastic deformation and determines the stress release. For crystalline complexions with different structures and orientations, the ability of dislocation transmission is mainly dependent on the continuity of the slip system. The plastic transmission can easily proceed and exhibits relatively low flow stress when the slip system is well-aligned. In the case of amorphous complexions with different compositions, compositional variations impact the atomic percentage of shear transformation zones after loading, resulting in different magnitudes of plastic deformation. When smaller plastic deformation is produced, less stress can be released contributing to higher flow stress. These findings reveal the role of the complexions on plasticity behavior and provide valuable insights for the design of nanolayered composites. 展开更多
关键词 Atomistic simulations Nanolayered composites Complexions PLASTICITY Mechanical response
原文传递
Second Nearest-Neighbor Modified Embedded Atom Method Interatomic Potential for Cu-Ni-Sn Ternary System
3
作者 Jialiang Dong Xuemao Dong +3 位作者 Zhongxue Feng Caiju Li Jianhong Yi Jun Tan 《Computers, Materials & Continua》 2025年第4期65-77,共13页
To explore atomic-level phenomena in the Cu-Ni-Sn alloy,a second nearest-neighbor modified embedded-atom method(2NN MEAM)potential has been developed for the Cu-Ni-Sn system,building upon the work of other researchers... To explore atomic-level phenomena in the Cu-Ni-Sn alloy,a second nearest-neighbor modified embedded-atom method(2NN MEAM)potential has been developed for the Cu-Ni-Sn system,building upon the work of other researchers.This potential demonstrates remarkable accuracy in predicting the lattice constant,with a relative error of less than 0.5%when compared to density functional theory(DFT)results,and it achieves a 10%relative error in the enthalpy of formation compared to experimental data,marking substantial advancements over prior models.The bulk modulus is predicted with a relative error of 8%compared to DFT.Notably,the potential effectively simulates the processes of melting and solidification of Cu-15Ni-8Sn,with a simulated melting point that closely aligns with the experimental value,within a 7.5%margin.This serves as a foundation for establishing a 2NN MEAM potential for a flawless Cu-Ni-Sn system and its microalloying systems. 展开更多
关键词 2NN MEAM Cu-Ni-Sn interatomic potential atomistic simulation
在线阅读 下载PDF
Transmutation of zonal twinning dislocations during non-cozone{1011}twin-twin interaction in magnesium
4
作者 Peng Chen Bin Li 《Journal of Magnesium and Alloys》 2025年第2期681-696,共16页
Theoretically,a twinning dislocation must stay on the twinning plane which is the first invariant plane of a twinning mode,because the glide of twinning dislocation linearly transforms the parent lattice to the twin l... Theoretically,a twinning dislocation must stay on the twinning plane which is the first invariant plane of a twinning mode,because the glide of twinning dislocation linearly transforms the parent lattice to the twin lattice.However,recent experimental observations showed that a{1011}{1012}twin variant could cross another variant during twin-twin interaction.It is well known that{1011}twinning is mediated by zonal twinning dislocations.Thus,how the zonal twinning dislocations transmute during twin-twin interaction is of great interest but not well understood.In this work,atomistic simulation is performed to investigate interaction between{1011}twin variants.Our results show that when an incoming twin variant impinges on the other which acts as a barrier,surprisingly,the barrier twin can grow at the expense of the incoming twin.Eventually one variant consumes the other.Structural analysis shows that the twinning dislocations of the barrier variant are able to penetrate the zone of twin-twin intersection,by plowing through the lattice of one variant and transform its lattice into the lattice of the other.Careful lattice correspondence analysis reveals that,the lattice transformation from one variant to the other is close to{1012}{1011}twinning,but the orientation relationship deviates by a minor lattice rotation.This deviation presents a significant energy barrier to the lattice transformation,and thus it is expected such a twin-twin interaction will increase the stress for twin growth. 展开更多
关键词 MAGNESIUM Contraction twinning Atomistic simulation Lattice transformation
在线阅读 下载PDF
Predicting grain boundary segregation in magnesium alloys:An atomistically informed machine learning approach
5
作者 Zhuocheng Xie Achraf Atila +3 位作者 Julien Guénolé Sandra Korte-Kerzel Talal Al-Samman Ulrich Kerzel 《Journal of Magnesium and Alloys》 2025年第6期2636-2650,共15页
Grain boundary(GB)segregation substantially influences the mechanical properties and performance of magnesium(Mg).Atomic-scale modeling,typically using ab-initio or semi-empirical approaches,has mainly focused on GB s... Grain boundary(GB)segregation substantially influences the mechanical properties and performance of magnesium(Mg).Atomic-scale modeling,typically using ab-initio or semi-empirical approaches,has mainly focused on GB segregation at highly symmetric GBs in Mg alloys,often failing to capture the diversity of local atomic environments and segregation energies,resulting in inaccurate structure-property predictions.This study employs atomistic simulations and machine learning models to systematically investigate the segregation behavior of common solute elements in polycrystalline Mg at both 0 K and finite temperatures.The machine learning models accurately predict segregation thermodynamics by incorporating energetic and structural descriptors.We found that segregation energy and vibrational free energy follow skew-normal distributions,with hydrostatic stress,an indicator of excess free volume,emerging as an important factor influencing segregation tendency.The local atomic environment's flexibility,quantified by flexibility volume,is also crucial in predicting GB segregation.Comparing the grain boundary solute concentrations calculated via the Langmuir-Mc Lean isotherm with experimental data,we identified a pronounced segregation tendency for Nd,highlighting its potential for GB engineering in Mg alloys.This work demonstrates the powerful synergy of atomistic simulations and machine learning,paving the way for designing advanced lightweight Mg alloys with tailored properties. 展开更多
关键词 Grain boundary segregation Magnesium alloys Atomistic simulation Machine learning.
在线阅读 下载PDF
Atomistic simulation of the dislocation interactions with the Al_(2)Ca Laves phase in Mg–Al–Ca alloy
6
作者 Ruixue Liu Leyun Wang +1 位作者 Mingyu Gong Xiaoqin Zeng 《Journal of Magnesium and Alloys》 2025年第7期3096-3103,共8页
The mechanical properties of Mg–Al–Ca alloys are significantly affected by their Laves phases,including the Al_(2)Ca phase.Laves phases are generally considered to be brittle and have a detrimental effect on the duc... The mechanical properties of Mg–Al–Ca alloys are significantly affected by their Laves phases,including the Al_(2)Ca phase.Laves phases are generally considered to be brittle and have a detrimental effect on the ductility of Mg.Recently,the Al_(2)Ca phase was shown to undergo plastic deformation in a dilute Mg-Al-Ca alloy to increase the ductility and work hardening of the alloy.In the present study,we investigated the extent to which the deformation of Al_(2)Ca is driven by dislocations in the Mg matrix by simulating the interactions between the basal edge dislocations and Al_(2)Ca particles.In particular,the effects of the interparticle spacing,particle orientation,and particle size were considered.Shearing of small particles and dislocation cross-slips near large particles were observed.Both events contribute to strengthening,and accommodate to plasticity.The shear resistance of the dislocation to bypass the particles increased as the particle size increased.The critical resolved shear stress(CRSS)for activating dislocations and stacking faults was easier to reach for small Al_(2)Ca particles owing to the higher local shear stress,which is consistent with the experimental observations.Overall,this work elucidates the driving force for Al_(2)Ca particles in Mg–Al–Ca alloys to undergo plastic deformation. 展开更多
关键词 Mg-Al-Ca alloy Al_(2)Ca Laves phase Precipitation strengthening DISLOCATION Atomistic simulation
在线阅读 下载PDF
Anisotropic concurrent coupled atomistic and discrete dislocation for partial dislocations in FCC materials
7
作者 S.FORGHANI N.KHAJI 《Applied Mathematics and Mechanics(English Edition)》 2025年第7期1365-1382,I0028-I0032,共23页
Spurious forces are a significant challenge for multi-scale methods,e.g.,the coupled atomistic/discrete dislocation(CADD)method.The assumption of isotropic matter in the continuum domain is a critical factor leading t... Spurious forces are a significant challenge for multi-scale methods,e.g.,the coupled atomistic/discrete dislocation(CADD)method.The assumption of isotropic matter in the continuum domain is a critical factor leading to such forces.This study aims to minimize spurious forces,ensuring that atomic dislocations experience more precise forces from the continuum domain.The authors have already implemented this idea using a simplified and unrealistic slipping system.To create a comprehensive and realistic model,this paper considers all possible slip systems in the face center cubic(FCC)lattice structure,and derives the required relationships for the displacement fields.An anisotropic version of the three-dimensional CADD(CADD3D)method is presented,which generates the anisotropic displacement fields for the partial dislocations in all the twelve slip systems of the FCC lattice structure.These displacement fields are tested for the most probable slip systems of aluminum,nickel,and copper with different anisotropic levels.Implementing these anisotropic displacement fields significantly reduces the spurious forces on the slip systems of FCC materials.This improvement is particularly pronounced at greater distances from the interface and in more anisotropic materials.Furthermore,the anisotropic CADD3D method enhances the spurious stress difference between the slip systems,particularly for materials with higher anisotropy. 展开更多
关键词 multi-scale method anisotropic coupled atomistic/discrete dislocation(CADD) spurious force partial dislocation face center cubic(FCC)material
在线阅读 下载PDF
Propagation Properties of Shock Waves in Polyurethane Foam based on Atomistic Simulations 被引量:2
8
作者 Zhiqiang Hu Jianli Shao +2 位作者 Shiyu Jia Weidong Song Cheng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期117-129,共13页
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros... Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock. 展开更多
关键词 Polyurethane foam Shock wave ATTENUATION Atomistic simulation
在线阅读 下载PDF
MicroMagnetic.jl:A Julia package for micromagnetic and atomistic simulations with GPU support 被引量:1
9
作者 Weiwei Wang Boyao Lyu +2 位作者 Lingyao Kong Hans Fangohr Haifeng Du 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期70-79,共10页
MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations.Using the features of the Julia programming language,MicroMagnetic.jl supports CPU and various GPU platforms,including NVIDI... MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations.Using the features of the Julia programming language,MicroMagnetic.jl supports CPU and various GPU platforms,including NVIDIA,AMD,Intel,and Apple GPUs.Moreover,MicroMagnetic.jl supports Monte Carlo simulations for atomistic models and implements the nudged-elastic-band method for energy barrier computations.With built-in support for double and single precision modes and a design allowing easy extensibility to add new features,MicroMagnetic.jl provides a versatile toolset for researchers in micromagnetics and atomistic simulations. 展开更多
关键词 micromagnetic simulations atomistic simulations graphics processing units
原文传递
Hydrogen trapping and diffusion in polycrystalline nickel:The spectrum of grain boundary segregation
10
作者 Yu Ding Haiyang Yu +4 位作者 Meichao Lin Michael Ortiz Senbo Xiao Jianying He Zhiliang Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第6期225-236,共12页
Hydrogen as an interstitial solute at grain boundaries(GBs)can have a catastrophic impact on the mechanical properties of many metals.Despite the global research effort,the underlying hydrogen-GB interactions in polyc... Hydrogen as an interstitial solute at grain boundaries(GBs)can have a catastrophic impact on the mechanical properties of many metals.Despite the global research effort,the underlying hydrogen-GB interactions in polycrystals remain inadequately understood.In this study,using Voronoi tessellations and atomistic simulations,we elucidate the hydrogen segregation energy spectrum at the GBs of polycrystalline nickel by exploring all the topologically favorable segregation sites.Three distinct peaks in the energy spectrum are identified,corresponding to different structural fingerprints.The first peak(-0.205 eV)represents the most favorable segregation sites at GB core,while the second and third peaks account for the sites at GB surface.By incorporating a thermodynamic model,the spectrum enables the determination of the equilibrium hydrogen concentrations at GBs,unveiling a remarkable two to three orders of magnitude increase compared to the bulk hydrogen concentration reported in experimental studies.The identified structures from the GB spectrum exhibit vastly different behaviors in hydrogen segregation and diffusion,with the low-barrier channels inside GB core contributing to short-circuit diffusion,while the high energy gaps between GB and neighboring lattice serving as on-plane diffusion barriers.Mean square displacement analysis further confirms the findings,and shows that the calculated GB diffusion coefficient is three orders of magnitude greater than that of lattice.The present study has a significant implication for practical applications since it offers a tool to bridge the gap between atomic-scale interactions and macroscopic behaviors in engineering materials. 展开更多
关键词 Hydrogen embrittlement Grain boundaries Impurity segregation POLYCRYSTAL Atomistic simulations
原文传递
Atomistic evaluation of tension–compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy
11
作者 邢润龙 刘雪鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期613-622,共10页
The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In... The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires. 展开更多
关键词 high-entropy alloys body-centered-cubic NANOWIRE tension–compression asymmetry atomistic simulations
原文传递
Strengthening-softening transition and maximum strength in Schwarz nanocrystals
12
作者 Hanzheng Xing Jiaxi Jiang +2 位作者 Yujia Wang Yongpan Zeng Xiaoyan Li 《Nano Materials Science》 EI CAS CSCD 2024年第3期320-328,共9页
Recently,a Schwarz crystal structure with curved grain boundaries(GBs)constrained by twin-boundary(TB)networks was discovered in nanocrystalline Cu through experiments and atomistic simulations.Nanocrystalline Cu with... Recently,a Schwarz crystal structure with curved grain boundaries(GBs)constrained by twin-boundary(TB)networks was discovered in nanocrystalline Cu through experiments and atomistic simulations.Nanocrystalline Cu with nanosized Schwarz crystals exhibited high strength and excellent thermal stability.However,the grainsize effect and associated deformation mechanisms of Schwarz nanocrystals remain unknown.Here,we performed large-scale atomistic simulations to investigate the deformation behaviors and grain-size effect of nanocrystalline Cu with Schwarz crystals.Our simulations showed that similar to regular nanocrystals,Schwarz nanocrystals exhibit a strengthening-softening transition with decreasing grain size.The critical grain size in Schwarz nanocrystals is smaller than that in regular nanocrystals,leading to a maximum strength higher than that of regular nanocrystals.Our simulations revealed that the softening in Schwarz nanocrystals mainly originates from TB migration(or detwinning)and annihilation of GBs,rather than GB-mediated processes(including GB migration,sliding and diffusion)dominating the softening in regular nanocrystals.Quantitative analyses of simulation data further showed that compared with those in regular nanocrystals,the GB-mediated processes in Schwarz nanocrystals are suppressed,which is related to the low volume fraction of amorphous-like GBs and constraints of TB networks.The smaller critical grain size arises from the suppression of GB-mediated processes. 展开更多
关键词 Schwarz nanocrystal Curved grain boundary Atomistic simulation Grain size effect Maximum strength
在线阅读 下载PDF
Atomistic simulation of thermal effects and defect structures during nanomachining of copper 被引量:5
13
作者 郭永博 梁迎春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2762-2770,共9页
Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature dis... Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality. 展开更多
关键词 monocrystalline copper atomistic simulation thermal effects molecular dynamics simulation nanomachining temperature distribution defect structures dislocations VACANCIES
在线阅读 下载PDF
Modified embedded-atom interatomic potential for Co-W and Al-W systems 被引量:1
14
作者 董卫平 陈铮 Byeong-Joo LEE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期907-914,共8页
A semi-empirical interatomic potential formalism,the second-nearest-neighbor modified embedded-atom method(2NN MEAM),has been applied to obtaining interatomic potentials for the Co-W and Al-W binary system using previ... A semi-empirical interatomic potential formalism,the second-nearest-neighbor modified embedded-atom method(2NN MEAM),has been applied to obtaining interatomic potentials for the Co-W and Al-W binary system using previously developed MEAM potentials of Co,Al and W.The potential parameters were determined by fitting the experimental data on the enthalpy of formation,lattice parameter,melting point and elastic constants.The present potentials generally reproduce the fundamental physical properties of the Co-W and Al-W systems accurately.The lattice parameters,the enthalpy of formation,the thermal stability and the elastic constants match well with experiment and the first-principles results.The enthalpy of mixing and the enthalpy of formation and mixing of liquid are in good agreement with CALPHAD calculations.The potentials can be easily combined with already-developed MEAM potentials for binary cobalt systems and can be used to describe Co-Al-W-based multicomponent alloys,especially for interfacial properties. 展开更多
关键词 modified embedded-atom method Co-W system Al-W system atomistic simulation
在线阅读 下载PDF
New Overview of the Energy Classification of Underlays 被引量:1
15
作者 Souleymane Balde Ousmane Barry Aboubacar Safie Sylla 《Journal of Applied Mathematics and Physics》 2022年第3期828-836,共9页
This article focuses on a new insight into the energy classification of sublayers. In this article, the study brings out very interesting and enriching information, knowledge and knowledge in atomistics. An affine fun... This article focuses on a new insight into the energy classification of sublayers. In this article, the study brings out very interesting and enriching information, knowledge and knowledge in atomistics. An affine function is represented in an orthonormal frame while assimilating a point to a sublayer. This made it possible to draw up a graph integrating each of the diagrams of the known energy levels. Our results are conclusive. We can then confirm that the research hypothesis is verified. 展开更多
关键词 atomistics Affine Equation ELEMENT Quantum Numbers Energy Level PERIOD Order
在线阅读 下载PDF
Primary and secondary modes of deformation twinning in HCP Mg based on atomistic simulations 被引量:3
16
作者 徐泓鹭 苏小明 +1 位作者 袁广银 金朝晖 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3804-3809,共6页
Deformation twinning, i.e., twin nucleation and twin growth (or twin boundary migration, TBM) activated by impinged basal slip at a symmetrical tilt grain boundary in HCP Mg, was examined with molecular dynamics (M... Deformation twinning, i.e., twin nucleation and twin growth (or twin boundary migration, TBM) activated by impinged basal slip at a symmetrical tilt grain boundary in HCP Mg, was examined with molecular dynamics (MD) simulations. The results show that the {1^-1^-21}-type twinning acts as the most preferential mode of twinning. Once such twins are formed, they are almost ready to grow. The TBM of such twins is led by pure atomic shuffling events. A secondary mode of twinning can also occur in our simulations. The {112^-2} twinning is observed at 10 K as the secondary twin. This secondary mode of twinning shows different energy barriers for nucleation as well as for growth compared with the {1^-1^-21}-type twining. In particular, TBMs in this case is triggered intrinsically by pyramidal slip at its twin boundary. 展开更多
关键词 MAGNESIUM atomistic simulation deformation twinning twin boundary migration dislocation-grain boundary interaction
在线阅读 下载PDF
ATOMISTIC/CONTINUUM SIMULATION OF INTERFACIAL FRACTURE PART Ⅱ:ATOMISTIC/DISLOCATION/CONTINUUM SIMULATION 被引量:8
17
作者 谭鸿来 杨卫 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1994年第3期237-249,共13页
Coupled atomistic/dislocation/continuum simulation of interfacial fracture is performed in this paper.The model consists of a nanoscopic core made by atomistic assembly and a surrounding elastic continuum with discret... Coupled atomistic/dislocation/continuum simulation of interfacial fracture is performed in this paper.The model consists of a nanoscopic core made by atomistic assembly and a surrounding elastic continuum with discrete dislocations. Atomistic dislocations nucleate from the crack tip and move to the continuum layer where they glide according to the dislocation dynamics curve.An atoms/continuum overlapping belt is devised to facilitate the transition between the two scales.The continuum constraint on the atomic assembly is imposed through the mechanics at- mosphere along the overlapping belt.Transmissions of mechanics parameters such as displacements,stresses,masses and momenta across the belt are realized.The present model allows us to explore interfacial fracture processes under different mode mixity.The effect of atomistic zigzag interface on the fracture process is revealed:it hinders dislocation emission from the crack tip,especially under high mode mixity. 展开更多
关键词 interfacial fracture atomistic/continuum simulation mechanics atmosphere
在线阅读 下载PDF
ATOMISTIC/CONTINUUM SIMULATION OF INTERFACIAL FRACTURE——PART Ⅰ: ATOMISTIC SIMULATION 被引量:5
18
作者 谭鸿来 杨卫 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1994年第2期150-161,共12页
The phenomenon of interfacial fracture, as manifested by atom- istic cleavage, debonding and dislocation emission, provides a challenge for combined atomistic-continuum analysis. As a precursor for fully coupled atomi... The phenomenon of interfacial fracture, as manifested by atom- istic cleavage, debonding and dislocation emission, provides a challenge for combined atomistic-continuum analysis. As a precursor for fully coupled atomistic-continuum simulation of interfacial fracture, we focus here on the atomistic behavior within a nanoscopic core surrounding the crack tip. The inter-atomic potential under Em- bedded Atom Method is recapitulated to form an essential framework of atomistic simulation. The calculations are performed for a side-cracked disc configuration un- der a remote K field loading. It is revealed that a critical loading rate defines the brittle-to-ductile transition of homogeneous materials. We further observe that the near tip mode mixity dictates the nanoscopic profile near an interfacial crack tip. A zigzag interface structure is simulated which plays a significant role in the dislocation emission from an interfacial crack tip, as will be explored in the second part of this investigation. 展开更多
关键词 interfacial fracture atomistic simulation mode mixity loading rate zigzag interface
在线阅读 下载PDF
Modified embedded-atom method interatomic potentials for Mg-Al-Ca and Mg-Al-Zn ternary systems 被引量:5
19
作者 Hyo-Sun Jang Donghyuk Seol Byeong-Joo Lee 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期317-335,共19页
Al,Ca,and Zn are representative commercial alloying elements for Mg alloys.To investigate the effects of these elements on the deformation and recrystallization behaviors of Mg alloys,we develop interatomic potentials... Al,Ca,and Zn are representative commercial alloying elements for Mg alloys.To investigate the effects of these elements on the deformation and recrystallization behaviors of Mg alloys,we develop interatomic potentials for the Al-Ca,Al-Zn,Mg-Al-Ca and Mg-Al-Zn systems based on the second nearest-neighbor modified embedded-atom method formalism.The developed potentials describe structural,elastic,and thermodynamic properties of compounds and solutions of associated alloy systems in reasonable agreement with experimental data and higher-level calculations.The applicability of these potentials to the present investigation is confirmed by calculating the generalized stacking fault energy for various slip systems and the segregation energy on twin boundaries of the Mg-Al-Ca and Mg-Al-Zn alloys,accompanied with the thermal expansion coefficient and crystal structure maintenance of stable compounds in those alloys. 展开更多
关键词 2NN MEAM Interatomic potential MG-AL-CA MG-AL-ZN Atomistic simulation
在线阅读 下载PDF
INVESTIGATION ON APPLICABILITY OF VARIOUS STRESS DEFINITIONS IN ATOMISTIC SIMULATION 被引量:5
20
作者 Ran Xu Bin Liu 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第6期644-649,共6页
How to correctly extract Cauchy stress from the atomistic simulations is a crucial issue in studying the mechanical behaviours of atomic systems, but is still in controversy. In this paper, three typical atomistic sim... How to correctly extract Cauchy stress from the atomistic simulations is a crucial issue in studying the mechanical behaviours of atomic systems, but is still in controversy. In this paper, three typical atomistic simulation examples are used to validate various existing stress definitions. It is found that the classical virial stress fails in predicting the stresses in these examples, because the velocity depends on the choice of the local average volume or the reference frame velocity and other factors. In contrast, the Lagrangian cross-section stress and Lagrangian virial stress are validated by these examples, and the instantaneous Lagrangian atomic stress definition is also proposed for dynamical problems. 展开更多
关键词 atomic stress virial stress atomistic simulation
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部