Simple power analysis is the most devastating attack on the security of elliptic curve scalar multiplication and can probably retrieve the secret key. In this paper,we analyze the formulas of point doubling and additi...Simple power analysis is the most devastating attack on the security of elliptic curve scalar multiplication and can probably retrieve the secret key. In this paper,we analyze the formulas of point doubling and addition on Jacobi-quartic Curve in projective coordination. In addition,a fast and secure side-channel atomic scalar multiplication algorithm is proposed using the side-channel atomic block. Compared with the previous methods,the new algorithm is more efficient. For 192 bits scalar using NAF recoding,the efficiency of the new algorithm is increased by about 6.7%~23% if S/M=0.8 or 12.7%~33.2% if S/M=0.6.展开更多
Platinum clusters(Pt_(n))are extensively used as electrocatalysts for oxygen reduction reaction(ORR)because they provide excellent performance together with a reduced Pt requirement.However,the precise synthesis and a...Platinum clusters(Pt_(n))are extensively used as electrocatalysts for oxygen reduction reaction(ORR)because they provide excellent performance together with a reduced Pt requirement.However,the precise synthesis and atomic-level insights into the structure-activity relationship of Pt_(n) remain a great challenge.Here,we present a combinatorial synthesis and analysis method to investigate the atomicity-activity relationships of Pt_(n) at the individual level.We employ single nanoparticle collision electrochemistry to facilitate the in-situ electrodeposition of a single precisely tunable Pt_(n) on the graphene quantum dot support,followed by instantaneous measurement of the intrinsic ORR activity of the resulting Pt_(n).By relying on highly sensitive electrochemical measurements,our investigations clarify the atomicity-specific ORR activity of Pt_(n),which is attributed to their distinct geometric and electronic structures at varying cluster sizes.Significantly,Pt_(n) with low atomicity,especially below 20,can reach extraordinarily high ORR activities due to atom-by-atom arrangement.Our work provides a simple and efficient method for investigating the atomicity-activity relationships of other nanoclusters under real reaction conditions,enabling a better design of the electrocatalysts at the atomic level.展开更多
The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alka...The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.展开更多
Exploring efficient microwave absorbing materials(MAMs)has gradually become a hot topic in recent years because it is crucial in both civil and military fields.Metal-organic framework(MOF)has great potential due to it...Exploring efficient microwave absorbing materials(MAMs)has gradually become a hot topic in recent years because it is crucial in both civil and military fields.Metal-organic framework(MOF)has great potential due to its unique composition and bonding mode,which has advantages such as large specific surface area,high porosity,adjustable structure,and designable composition.Herein,MOF-derived MAMs are highlighted based on morphology and structure.The synthesis strategies of MOF-derived MAMs of different dimensions are discussed.On this basis,the structure-activity relationships can be deeply explored through the precise control of material structure and property by atomic engineering.Finally,perspectives are given for the existing problems of MOF-derived MAMs,which will open a new horizon and promote the development of MAMs.展开更多
The T_(1)(Al_(2) CuLi)phase is one of the most effective strengthening nanoscale-precipitate in Al-Cu alloys with Li.However,its formation and evolution still need to be further clarified during aging due to the compl...The T_(1)(Al_(2) CuLi)phase is one of the most effective strengthening nanoscale-precipitate in Al-Cu alloys with Li.However,its formation and evolution still need to be further clarified during aging due to the complex precipitation sequences.Here,a detailed investigation has been carried out on the atomic struc-tural evolution of T_(1) precipitate in an aged Al-Cu-Li-Mg-Ag alloy using state-of-the-art Cs-corrected high-angle annular dark field(HAADF)-coupled with integrated differential phase contrast(iDPC)-scanning transmission electron microscopy(STEM)and energy-dispersive X-ray spectroscopy(EDXS)techniques.An intermediate T_(1)’phase between T_(1p) and T_(1) phase,with a crystal structure and orientation rela-tionship consistent with T_(1),but exhibiting different atomic occupancy and chemical composition was found.We observed the atomic structural transformation from T_(1p) to T_(1)’phase(fcc→hcp),involving only 1/12<112>Al shear component.DFT calculation results validated our proposed structural models and the precipitation sequence.Besides,the distributions of minor solute elements(Ag,Mg,and Zn)in the pre-cipitates exhibited significant differences.These findings may contribute to a further understanding of the nucleation mechanism of T_(1) precipitate.展开更多
Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and wate...Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and waterproof properties of MIM nanocapacitors.However,interfacial atomic diffusion poses a major obstacle,preventing the high-voltage MIM-AECs exploitation and thereby hampering their potential and advantages in high-power and high-energy-density applications.Here,an innovative high-voltage MIM-AECs were fabricated.The AlPO_(4)buffer layer is formed on AlO(OH)/AAO/Al surface by using H_(3)PO_(4)treatment,then a stable van der Waals(vdW)SnO_(2)/AlPO_(4)/AAO/Al multilayer was constructed via atomic layer deposition(ALD)technology.Due to higher diffusion barrier and lower carrier migration of SnO_(2)/AlPO_(4)/AAO interfaces,Sn atom diffusion is inhibited and carrier acceleration by electric field is weakened,guaranteeing high breakdown field strength of dielectric AAO and avoiding local breakdown risks.Through partial etching to hydrated AlO(OH)by H_(3)PO_(4)treatment,the tunnel was further opened up to facilitate subsequent ALD-SnO_(2)entry,thus obtaining a high SnO_(2)coverage.The SnO_(2)/AlPO_(4)/AAO/Al capacitors show a comprehensive performance in high-voltage(260 V),hightemperature(335℃),high-humidity(100%RH)and high-frequency response(100 k Hz),outperforming commercial solid-state AECs,and high-energy density(8.6μWh/cm^(2)),markedly exceeding previously reported MIM capacitors.The work lays the foundation for next-generation capacitors with highvoltage,high-frequency,high-temperature and high-humidity resistance.展开更多
Lithium-sulfur (Li-S) batteries have gained great attention due to the high theoretical energy density and low cost,yet their further commercialization has been obstructed by the notorious shuttle effect and sluggish ...Lithium-sulfur (Li-S) batteries have gained great attention due to the high theoretical energy density and low cost,yet their further commercialization has been obstructed by the notorious shuttle effect and sluggish redox dynamics.Herein,we supply a strategy to optimize the electron structure of Ni_(2)P by concurrently introducing B-doped atoms and P vacancies in Ni_(2)P (Vp-B-Ni_(2)P),thereby enhancing the bidirectional sulfur conversion.The study indicates that the simultaneous introduction of B-doped atoms and P vacancies in Ni_(2)P causes the redistribution of electron around Ni atoms,bringing about the upward shift of d-band center of Ni atoms and effective d-p orbital hybridization between Ni atoms and sulfur species,thus strengthening the chemical anchoring for lithium polysulfides (LiPSs) as well as expediting the bidirectional conversion kinetics of sulfur species.Meanwhile,theoretical calculations reveal that the incorporation of B-doped atoms and P vacancies in Ni_(2)P selectively promotes Li2S dissolution and nucleation processes.Thus,the Li-S batteries with Vp-B-Ni_(2)P-separators present outstanding rate ability of 777 m A h g^(-1)at 5 C and high areal capacity of 8.03 mA h cm^(-2)under E/S of 5μL mg^(-1)and sulfur loading of 7.20 mg cm^(-2).This work elucidates that introducing heteroatom and vacancy in metal phosphide collaboratively regulates the electron structure to accelerate bidirectional sulfur conversion.展开更多
Piezoelectric ceramic materials are important components of piezoelectric buzzers,where the parameter of inverse piezoelectric coefficient(d_(33)^(*))plays a decisive role in the performance of the buzzer.Here,we repo...Piezoelectric ceramic materials are important components of piezoelectric buzzers,where the parameter of inverse piezoelectric coefficient(d_(33)^(*))plays a decisive role in the performance of the buzzer.Here,we report the manufacture and performance of a lead-free ceramic-based(0.96(K_(0.5)Na_(0.5))(Nb_(0.96)Sb_(0.04))O_(3)-0.04(Bi_(0.5)Na_(0.5))ZrO_(3)-1 mol%Al_(2)O_(3),abbreviated as KNNS-BNZ-1 mol%Al_(2)O_(3))piezoelectric buzzer and compare it with commercial(PbZr_(0.5)Ti_(0.5)O_(3),abbreviated as PZT)ceramics.Briefly,KNN-based ceramics have a typical perovskite structure and piezoelectric properties of d_(33)=480 pC/N,k_(p)=0.62 and d_(33)^(*)=830 pm/V,compared to d_(33)=500 pC/N,k_(p)=0.6 and d_(33)^(*)=918 pm/V of the commercial PZT-4 ceramics.Our results show that the KNNS-BNZ-1 mol%Al_(2)O_(3)ceramics have a similar sound pressure level performance over the testing frequency range to commercial PZT ceramics(which is even better in the 3-4 kHz range).These findings highlight the great application potential of KNN-based piezoelectric ceramics.展开更多
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform...Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion.展开更多
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation...The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts.展开更多
Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous Si...Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous SiO_(2) refractive index gradient anti-reflective film prepared by atomic layer deposition(ALD).A porous SiO_(2) film with gradual porosity was obtained by phosphoric acid etching of Al_(2)O_(3)/SiO_(2) multilayers with gradient Al2O3 ratios,achieving a gradual decrease in refractive index from the substrate to the surface.The film exhibited an average transmittance as high as 97.8%within the wavelength range from 320 nm to 1200 nm.The environmental adaptability was further enhanced by surface modification using rare earth oxide(REO)La_(2)O_(3),resulting in formation of a lotus leaf-like structure and achieving a water contact angle of 100.0°.These data proved that the modification significantly improved hydrophobic self-cleaning capability while maintaining exceptional transparency of the film.The surface structure of the modified film remained undamaged even after undergoing wipe testing,demonstrating its excellent surface durability.展开更多
Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Her...Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.展开更多
A general metal-free photochemcial oxidation of benzylic C—H bonds has been successfully accomplished via a hydrogen atom transfer(HAT)process.A range of high value-added aromatic ketones were facilely synthesized wi...A general metal-free photochemcial oxidation of benzylic C—H bonds has been successfully accomplished via a hydrogen atom transfer(HAT)process.A range of high value-added aromatic ketones were facilely synthesized with high chemoselectivity under mild conditions.Moreover,the mild conditions by using air as the oxidant render the developed proto-col more ecofriendly and environmentally sustainable.展开更多
The regioselective carbon-hydrogen bond functionalization reaction in atom-and step-economy holds significant potential for the late-stage elaboration of complex molecules and natural products.In recent years,the hydr...The regioselective carbon-hydrogen bond functionalization reaction in atom-and step-economy holds significant potential for the late-stage elaboration of complex molecules and natural products.In recent years,the hydrogen atom transfer strategy involving radicals has garnered considerable attention from chemists due to its high chemoselectivity and regioselectivity.However,owing to the marginal differences in bond dissociation energies(BDEs)among C(sp^(3))—H bonds,hydrogen atom transfer reactions mediated by alkyl radicals remain less-developed.A copper-catalyzed sulfone-induced regioselective C(sp^(3))—H bond heteroarylation reaction was reported.This strategy utilizes theα-alkyl radical of sulfone as an intramolecular hydrogen abstraction reagent,enabling the regioselective formation of carbon-nitrogen bonds under copper catalysis.展开更多
This work presents a method for the three-dimensional localization of individual shallow NV center in diamond,leveraging the near-field quenching effect of a gold tip.Our experimental setup involves the use of an atom...This work presents a method for the three-dimensional localization of individual shallow NV center in diamond,leveraging the near-field quenching effect of a gold tip.Our experimental setup involves the use of an atomic force microscope to precisely move the gold tip close to the NV center,while simultaneously employing a home-made confocal microscope to monitor the fluorescence of the NV center.This approach allows for lateral super-resolution,achieving a full width at half maximum(FWHM)of 38.0 nm and a location uncertainty of 0.7 nm.Additionally,we show the potential of this method for determining the depth of the NV centers.We also attempt to determine the depth of the NV centers in combination with finite-difference time-domain(FDTD)simulations.Compared to other depth determination methods,this approach allows for simultaneous lateral and longitudinal localization of individual NV centers,and holds promise for facilitating manipulation of the local environment surrounding the NV center.展开更多
Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This r...Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This review mainly summarized the research reports on short process forming techniques for brazing and soldering materials.Firstly,the traditional process and its shortcomings were presented.Secondly,the latest research of short process forming technologies,such as continuous casting technique,atomization powder technique,solder ball forming technique,and rapid solidification technique,was summarized,and the traditional forming performance of several brazing and soldering materials was introduced.Finally,the current restrictions and research trends of short process forming technique for brazing and solder materials were put forward,providing theoretical guidance and reference for related research and technique development in brazing and soldering field.展开更多
Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have re...Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment.展开更多
Single-atom catalysts(SACs),in which isolated metal atoms such as palladium(Pd)are anchored on solid supports,promise breakthroughs in energy conversion and catalysis.However,balancing their activity(reaction speed)an...Single-atom catalysts(SACs),in which isolated metal atoms such as palladium(Pd)are anchored on solid supports,promise breakthroughs in energy conversion and catalysis.However,balancing their activity(reaction speed)and stability(longevity)remains challenging,as the interplay between metal atoms,supports,and reactants is poorly understood.展开更多
Electrochemical nitrogen reduction reaction(ENRR)is emerging as a favorable option to the power-intensive Haber-Bosch process for ammonia synthesis.However,obstacles such as poor selectivity,low production rates,and c...Electrochemical nitrogen reduction reaction(ENRR)is emerging as a favorable option to the power-intensive Haber-Bosch process for ammonia synthesis.However,obstacles such as poor selectivity,low production rates,and competition against the hydrogen evolution reaction hinder its practical implementation.To address these,the design of highly active catalysts is critical.Single-atom catalysts(SACs)have shown great potential because of their maximized atom utilization,but their limited stability and low metal loading restrict their performances.On the other hand,dual-atom catalysts(DACs)are atomic catalysts with two metal atoms nearby and offer enhanced electrocatalytic performances by aligning with the N≡N bond to enhance N2 reduction efficiency,potentially overcoming the limitations of SAC.This review discusses recent advances in SACs and more importantly DACs for ENRR,highlighting their advantages,limitations,and the need for advanced characterization techniques to better understand catalyst behavior.The review concludes by underscoring the importance of research to optimize these catalysts for efficient and sustainable nitrogen fixation.展开更多
Here we present a highly efficient protocol utilizing nickel-hydride hydrogen atom transfer catalysis for the regio-and enantioselective hydrofluorination of internal alkenes.This method efficiently assembles a wide a...Here we present a highly efficient protocol utilizing nickel-hydride hydrogen atom transfer catalysis for the regio-and enantioselective hydrofluorination of internal alkenes.This method efficiently assembles a wide array of enantioenrichedβ-fluoro amides with excellent regio-and enantioselectivity from internal unactivated alkenes.Mechanistic investigations suggest that this transformation proceeds via a NiHhydrogen atom transfer to alkene,followed by a stereoselective fluorine atom transfer process.The weak coordination effect of the tethered amide group is identified as a crucial factor governing the observed regio-and enantioselectivity.展开更多
基金sponsored and financial supported by National Natural Science Foundation of China (NSFC), grant No.61003121Sichuan Province High Technology Program under No.2009CD00014
文摘Simple power analysis is the most devastating attack on the security of elliptic curve scalar multiplication and can probably retrieve the secret key. In this paper,we analyze the formulas of point doubling and addition on Jacobi-quartic Curve in projective coordination. In addition,a fast and secure side-channel atomic scalar multiplication algorithm is proposed using the side-channel atomic block. Compared with the previous methods,the new algorithm is more efficient. For 192 bits scalar using NAF recoding,the efficiency of the new algorithm is increased by about 6.7%~23% if S/M=0.8 or 12.7%~33.2% if S/M=0.6.
基金financially supported by the National Natural Science Foundation of China(22272052)the Major Research Project(92061108)the Science and Technology Commission of Shanghai Municipality(24DX1400200)。
文摘Platinum clusters(Pt_(n))are extensively used as electrocatalysts for oxygen reduction reaction(ORR)because they provide excellent performance together with a reduced Pt requirement.However,the precise synthesis and atomic-level insights into the structure-activity relationship of Pt_(n) remain a great challenge.Here,we present a combinatorial synthesis and analysis method to investigate the atomicity-activity relationships of Pt_(n) at the individual level.We employ single nanoparticle collision electrochemistry to facilitate the in-situ electrodeposition of a single precisely tunable Pt_(n) on the graphene quantum dot support,followed by instantaneous measurement of the intrinsic ORR activity of the resulting Pt_(n).By relying on highly sensitive electrochemical measurements,our investigations clarify the atomicity-specific ORR activity of Pt_(n),which is attributed to their distinct geometric and electronic structures at varying cluster sizes.Significantly,Pt_(n) with low atomicity,especially below 20,can reach extraordinarily high ORR activities due to atom-by-atom arrangement.Our work provides a simple and efficient method for investigating the atomicity-activity relationships of other nanoclusters under real reaction conditions,enabling a better design of the electrocatalysts at the atomic level.
基金financially supported by the project of the National Natural Science Foundation of China(52322203)the Key Research and Development Program of Shaanxi Province(2024GHZDXM-21)。
文摘The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.
基金supported by the National Natural Science Foundation of China(Nos.52373280,52177014 and 52273257).
文摘Exploring efficient microwave absorbing materials(MAMs)has gradually become a hot topic in recent years because it is crucial in both civil and military fields.Metal-organic framework(MOF)has great potential due to its unique composition and bonding mode,which has advantages such as large specific surface area,high porosity,adjustable structure,and designable composition.Herein,MOF-derived MAMs are highlighted based on morphology and structure.The synthesis strategies of MOF-derived MAMs of different dimensions are discussed.On this basis,the structure-activity relationships can be deeply explored through the precise control of material structure and property by atomic engineering.Finally,perspectives are given for the existing problems of MOF-derived MAMs,which will open a new horizon and promote the development of MAMs.
基金supported by the Pre-research fund(No.412130024).
文摘The T_(1)(Al_(2) CuLi)phase is one of the most effective strengthening nanoscale-precipitate in Al-Cu alloys with Li.However,its formation and evolution still need to be further clarified during aging due to the complex precipitation sequences.Here,a detailed investigation has been carried out on the atomic struc-tural evolution of T_(1) precipitate in an aged Al-Cu-Li-Mg-Ag alloy using state-of-the-art Cs-corrected high-angle annular dark field(HAADF)-coupled with integrated differential phase contrast(iDPC)-scanning transmission electron microscopy(STEM)and energy-dispersive X-ray spectroscopy(EDXS)techniques.An intermediate T_(1)’phase between T_(1p) and T_(1) phase,with a crystal structure and orientation rela-tionship consistent with T_(1),but exhibiting different atomic occupancy and chemical composition was found.We observed the atomic structural transformation from T_(1p) to T_(1)’phase(fcc→hcp),involving only 1/12<112>Al shear component.DFT calculation results validated our proposed structural models and the precipitation sequence.Besides,the distributions of minor solute elements(Ag,Mg,and Zn)in the pre-cipitates exhibited significant differences.These findings may contribute to a further understanding of the nucleation mechanism of T_(1) precipitate.
基金supported by the National Natural Science Foundation of China(52477221,52202296)the Natural Science Foundation of Shaanxi Province(2023KXJ-246,2022JQ-048)。
文摘Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and waterproof properties of MIM nanocapacitors.However,interfacial atomic diffusion poses a major obstacle,preventing the high-voltage MIM-AECs exploitation and thereby hampering their potential and advantages in high-power and high-energy-density applications.Here,an innovative high-voltage MIM-AECs were fabricated.The AlPO_(4)buffer layer is formed on AlO(OH)/AAO/Al surface by using H_(3)PO_(4)treatment,then a stable van der Waals(vdW)SnO_(2)/AlPO_(4)/AAO/Al multilayer was constructed via atomic layer deposition(ALD)technology.Due to higher diffusion barrier and lower carrier migration of SnO_(2)/AlPO_(4)/AAO interfaces,Sn atom diffusion is inhibited and carrier acceleration by electric field is weakened,guaranteeing high breakdown field strength of dielectric AAO and avoiding local breakdown risks.Through partial etching to hydrated AlO(OH)by H_(3)PO_(4)treatment,the tunnel was further opened up to facilitate subsequent ALD-SnO_(2)entry,thus obtaining a high SnO_(2)coverage.The SnO_(2)/AlPO_(4)/AAO/Al capacitors show a comprehensive performance in high-voltage(260 V),hightemperature(335℃),high-humidity(100%RH)and high-frequency response(100 k Hz),outperforming commercial solid-state AECs,and high-energy density(8.6μWh/cm^(2)),markedly exceeding previously reported MIM capacitors.The work lays the foundation for next-generation capacitors with highvoltage,high-frequency,high-temperature and high-humidity resistance.
基金Institute of Technology Research Fund Program for Young Scholars21C Innovation Laboratory Contemporary Amperex Technology Co.,Limited,Ninde, 352100, China (21C–OP-202314)。
文摘Lithium-sulfur (Li-S) batteries have gained great attention due to the high theoretical energy density and low cost,yet their further commercialization has been obstructed by the notorious shuttle effect and sluggish redox dynamics.Herein,we supply a strategy to optimize the electron structure of Ni_(2)P by concurrently introducing B-doped atoms and P vacancies in Ni_(2)P (Vp-B-Ni_(2)P),thereby enhancing the bidirectional sulfur conversion.The study indicates that the simultaneous introduction of B-doped atoms and P vacancies in Ni_(2)P causes the redistribution of electron around Ni atoms,bringing about the upward shift of d-band center of Ni atoms and effective d-p orbital hybridization between Ni atoms and sulfur species,thus strengthening the chemical anchoring for lithium polysulfides (LiPSs) as well as expediting the bidirectional conversion kinetics of sulfur species.Meanwhile,theoretical calculations reveal that the incorporation of B-doped atoms and P vacancies in Ni_(2)P selectively promotes Li2S dissolution and nucleation processes.Thus,the Li-S batteries with Vp-B-Ni_(2)P-separators present outstanding rate ability of 777 m A h g^(-1)at 5 C and high areal capacity of 8.03 mA h cm^(-2)under E/S of 5μL mg^(-1)and sulfur loading of 7.20 mg cm^(-2).This work elucidates that introducing heteroatom and vacancy in metal phosphide collaboratively regulates the electron structure to accelerate bidirectional sulfur conversion.
基金Project supported by the Key Research and Develop Projects in Gansu Province(Grant No.23YFGA0002)the project funding of Audiowell Electronics(Guangdong)Co.,Ltd.
文摘Piezoelectric ceramic materials are important components of piezoelectric buzzers,where the parameter of inverse piezoelectric coefficient(d_(33)^(*))plays a decisive role in the performance of the buzzer.Here,we report the manufacture and performance of a lead-free ceramic-based(0.96(K_(0.5)Na_(0.5))(Nb_(0.96)Sb_(0.04))O_(3)-0.04(Bi_(0.5)Na_(0.5))ZrO_(3)-1 mol%Al_(2)O_(3),abbreviated as KNNS-BNZ-1 mol%Al_(2)O_(3))piezoelectric buzzer and compare it with commercial(PbZr_(0.5)Ti_(0.5)O_(3),abbreviated as PZT)ceramics.Briefly,KNN-based ceramics have a typical perovskite structure and piezoelectric properties of d_(33)=480 pC/N,k_(p)=0.62 and d_(33)^(*)=830 pm/V,compared to d_(33)=500 pC/N,k_(p)=0.6 and d_(33)^(*)=918 pm/V of the commercial PZT-4 ceramics.Our results show that the KNNS-BNZ-1 mol%Al_(2)O_(3)ceramics have a similar sound pressure level performance over the testing frequency range to commercial PZT ceramics(which is even better in the 3-4 kHz range).These findings highlight the great application potential of KNN-based piezoelectric ceramics.
基金supported by the National Natural Science Foundation of China(No.21571062)the Program for Professor of Special Appointment(Eastern Scholar)at the Shanghai Institutions of Higher Learning to JGL,and the Fundamental Research Funds for the Central Universities(No.222201717003)。
文摘Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion.
基金the Canadian NRCan OERD Energy Innovation Programthe Natural Sciences and Engineering Research Council of Canada,and the Carbon Solution Program for their financial support.
文摘The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts.
文摘Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous SiO_(2) refractive index gradient anti-reflective film prepared by atomic layer deposition(ALD).A porous SiO_(2) film with gradual porosity was obtained by phosphoric acid etching of Al_(2)O_(3)/SiO_(2) multilayers with gradient Al2O3 ratios,achieving a gradual decrease in refractive index from the substrate to the surface.The film exhibited an average transmittance as high as 97.8%within the wavelength range from 320 nm to 1200 nm.The environmental adaptability was further enhanced by surface modification using rare earth oxide(REO)La_(2)O_(3),resulting in formation of a lotus leaf-like structure and achieving a water contact angle of 100.0°.These data proved that the modification significantly improved hydrophobic self-cleaning capability while maintaining exceptional transparency of the film.The surface structure of the modified film remained undamaged even after undergoing wipe testing,demonstrating its excellent surface durability.
基金supported by National Natural Science Foundation of China(No.523B2070,No.52225606).
文摘Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.
文摘A general metal-free photochemcial oxidation of benzylic C—H bonds has been successfully accomplished via a hydrogen atom transfer(HAT)process.A range of high value-added aromatic ketones were facilely synthesized with high chemoselectivity under mild conditions.Moreover,the mild conditions by using air as the oxidant render the developed proto-col more ecofriendly and environmentally sustainable.
文摘The regioselective carbon-hydrogen bond functionalization reaction in atom-and step-economy holds significant potential for the late-stage elaboration of complex molecules and natural products.In recent years,the hydrogen atom transfer strategy involving radicals has garnered considerable attention from chemists due to its high chemoselectivity and regioselectivity.However,owing to the marginal differences in bond dissociation energies(BDEs)among C(sp^(3))—H bonds,hydrogen atom transfer reactions mediated by alkyl radicals remain less-developed.A copper-catalyzed sulfone-induced regioselective C(sp^(3))—H bond heteroarylation reaction was reported.This strategy utilizes theα-alkyl radical of sulfone as an intramolecular hydrogen abstraction reagent,enabling the regioselective formation of carbon-nitrogen bonds under copper catalysis.
基金supported by the National Natural Science Foundation of China(T2325023,92265204,12104447)the National Key R&D Program of China(2023YFF0718400)+1 种基金the Innovation Program for Quantum Science and Technology(2021ZD0302200)the Fundamental Research Funds for the Central Universities。
文摘This work presents a method for the three-dimensional localization of individual shallow NV center in diamond,leveraging the near-field quenching effect of a gold tip.Our experimental setup involves the use of an atomic force microscope to precisely move the gold tip close to the NV center,while simultaneously employing a home-made confocal microscope to monitor the fluorescence of the NV center.This approach allows for lateral super-resolution,achieving a full width at half maximum(FWHM)of 38.0 nm and a location uncertainty of 0.7 nm.Additionally,we show the potential of this method for determining the depth of the NV centers.We also attempt to determine the depth of the NV centers in combination with finite-difference time-domain(FDTD)simulations.Compared to other depth determination methods,this approach allows for simultaneous lateral and longitudinal localization of individual NV centers,and holds promise for facilitating manipulation of the local environment surrounding the NV center.
基金National Key Research and Development Program(2021YFB3401101)。
文摘Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This review mainly summarized the research reports on short process forming techniques for brazing and soldering materials.Firstly,the traditional process and its shortcomings were presented.Secondly,the latest research of short process forming technologies,such as continuous casting technique,atomization powder technique,solder ball forming technique,and rapid solidification technique,was summarized,and the traditional forming performance of several brazing and soldering materials was introduced.Finally,the current restrictions and research trends of short process forming technique for brazing and solder materials were put forward,providing theoretical guidance and reference for related research and technique development in brazing and soldering field.
基金supported by the National Key R&D Program of China(2024YFB4106400)National Natural Science Foundation of China(22209200,52302331)。
文摘Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment.
文摘Single-atom catalysts(SACs),in which isolated metal atoms such as palladium(Pd)are anchored on solid supports,promise breakthroughs in energy conversion and catalysis.However,balancing their activity(reaction speed)and stability(longevity)remains challenging,as the interplay between metal atoms,supports,and reactants is poorly understood.
基金supported by the National Research Foundation of Korea(2022R1C1C2005786,RS-2023-00256106,RS-2023-00207831,RS-2024-00346153).
文摘Electrochemical nitrogen reduction reaction(ENRR)is emerging as a favorable option to the power-intensive Haber-Bosch process for ammonia synthesis.However,obstacles such as poor selectivity,low production rates,and competition against the hydrogen evolution reaction hinder its practical implementation.To address these,the design of highly active catalysts is critical.Single-atom catalysts(SACs)have shown great potential because of their maximized atom utilization,but their limited stability and low metal loading restrict their performances.On the other hand,dual-atom catalysts(DACs)are atomic catalysts with two metal atoms nearby and offer enhanced electrocatalytic performances by aligning with the N≡N bond to enhance N2 reduction efficiency,potentially overcoming the limitations of SAC.This review discusses recent advances in SACs and more importantly DACs for ENRR,highlighting their advantages,limitations,and the need for advanced characterization techniques to better understand catalyst behavior.The review concludes by underscoring the importance of research to optimize these catalysts for efficient and sustainable nitrogen fixation.
基金This research was made possible as a result of a generous grant from the Fundamental Research Funds for the Central Universities(Nos.2232024Y-01,2232024A-03)the National Science Fund for Excellent Young Scholars(No.22122101).
文摘Here we present a highly efficient protocol utilizing nickel-hydride hydrogen atom transfer catalysis for the regio-and enantioselective hydrofluorination of internal alkenes.This method efficiently assembles a wide array of enantioenrichedβ-fluoro amides with excellent regio-and enantioselectivity from internal unactivated alkenes.Mechanistic investigations suggest that this transformation proceeds via a NiHhydrogen atom transfer to alkene,followed by a stereoselective fluorine atom transfer process.The weak coordination effect of the tethered amide group is identified as a crucial factor governing the observed regio-and enantioselectivity.