Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Her...Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.展开更多
Regulating the electronic structure and oxygencontaining intermediates adsorption behavior on Fe-based catalysts is of great significance to cope with the sluggish oxygen reduction reaction(ORR)kinetics,but it still r...Regulating the electronic structure and oxygencontaining intermediates adsorption behavior on Fe-based catalysts is of great significance to cope with the sluggish oxygen reduction reaction(ORR)kinetics,but it still remains a great challenge.In this work,Fe atom clusters(Fe_(AC))modified by high-density Cu single atoms(Cu_(SA))in a N,S-doped porous carbon substrate(Fe_(AC)/Cu_(SA)@NCS)is reported for enhanced ORR electrocatalysis.Fe_(AC)/Cu_(SA)@NCS exhibits excellent ORR performance with a half-wave potential(E_(1/2))of 0.911 V,a high four-electron process selectivity and excellent stability.The ORR performance is also verified in the Fe_(AC)/Cu_(SA)@NCS-based Zn-air battery,which shows a high peak power density of 192.67 mW cm^(-2),a higher specific capacity of 808.3 mAh g^(-1)and impressive charge-discharge cycle stability.Moreover,density functional theory calculations show that Cu single atoms synergistically modulate the electronic structure Fe active atoms in Fe atomic clusters,reducing the energy barrier of the rate-determining step(i.e.,*OH desorption)on Fe_(AC)/Cu_(SA)@NCS.This work provides an effective way to regulate the electronic structure of Fe-based catalysts and optimize their electrocatalytic activity based on the introduction of a second metal source.展开更多
The exploitation of durable and highly active Pt-based electrocatalysts for the oxygen reduction reaction(ORR)is essential for the commercialization of proton exchange membrane fuel cells(PEMFCs).Herein,we designed Pt...The exploitation of durable and highly active Pt-based electrocatalysts for the oxygen reduction reaction(ORR)is essential for the commercialization of proton exchange membrane fuel cells(PEMFCs).Herein,we designed Pt@Pt_(3)Ti core-shell nanoparticles with atomic-controllable shells through precise thermal diffusing Ti into Pt nanoparticles for effective and durable ORR.Combining theoretical and experiment analysis,we found that the lattice strain of Pt_(3)Ti shells can be tailored by precisely controlling the thick-ness of Pt_(3)Ti shell in atomic-scale on account of the lattice constant difference between Pt and Pt_(3)Ti to optimize adsorption properties of Pt_(3)Ti for ORR intermediates,thus enhancing its performance.The Pt@Pt_(3)Ti catalyst with one-atomic Pt_(3)Ti shell(Pt@1L-Pt_(3)Ti/TiO_(2)-C)demonstrates excellent performance with mass activity of 592 mA mgpt-1 and durability nearly 19.5-fold that of commercial Pt/C with negligible decay(2%)after 30,000 potential cycles(0.6-1.0 V vs.RHE).Notably,at higher potential cycles(1.0 V-1.5 V vs.RHE),Pt@1L-Pt_(3)Ti/TiO_(2)-C also showed far superior durability than Pt/C(9.6%decayed while 54.8% for commercial Pt/C).This excellent stability is derived from the intrinsic stability of Pt_(3)Ti alloy and the confinement effect of TiO_(2)-C.The catalyst's enhancement was further confirmed in PEMFC configuration.展开更多
Single atom catalysts(SACs)featuring Fe-N4 active sites anchored on carbon supports exhibit exceptional electrocatalytic performance in oxygen reduction reactions(ORR).Herein,a rigid ligand confined strategy was used ...Single atom catalysts(SACs)featuring Fe-N4 active sites anchored on carbon supports exhibit exceptional electrocatalytic performance in oxygen reduction reactions(ORR).Herein,a rigid ligand confined strategy was used to synthesize edge-anchored Fe-N4 active sites with geometric distortion on mesoporous-dominated carbon spheres(Fe-N-MESs).Furthermore,in situ Fourier transform infrared spectroscopy(FTIR)demonstrates that Fe-N-MESs weaken the O-O band,inhibiting the formation of H2O2.The density functional theory(DFT)calculations reveal that the exceptional ORR activity stems from optimized oxygen intermediate adsorption free energy and reduced OH*desorption energy barrier.Electrochemical measurements verify the remarkable ORR activity of Fe-N-MESs,demonstrating a half-wave potential of 0.90 V and excellent stability,with approximately 94%of the initial current density after 50 h of operation.When used as the air cathode in aqueous Zn-air batteries,Fe-N-MESs display a large open circuit voltage of 1.53 V and an extra-long stability of 1500 h.Moreover,Fe-N-MESs exhibit a remarkable open circuit voltage of 1.50 V and an impressive peak power density up to 260.4 mW·cm^(−2) in quasi-solid-state Zn-air batteries.This work provides valuable insights into the boosted ORR origin,while offering a novel and economical synthesis technique for SACs applicable to other electrocatalytic reactions.展开更多
Designing alloys capable of withstanding irradiation is a crucial aspect of developing materials for nuclear reactors and aerospace applications.Local chemical order(LCO)has recently been recognized as a new microstru...Designing alloys capable of withstanding irradiation is a crucial aspect of developing materials for nuclear reactors and aerospace applications.Local chemical order(LCO)has recently been recognized as a new microstructural parameter to leverage,and its effect on the mechanical properties of body-centered cubic(BCC)multi-principal element alloys(MPEAs)has attracted much attention.However,the impact of LCO on the dynamic evolution of irradiation-induced defects in BCC MPEAs remains much less explored.In this study,we engineered varying degrees of LCO and local lattice distortion in NbZrTi BCC MPEAs by alloying them with different concentrations of interstitial oxygen solutes,and analyzed their effects on the evolution of radiation-induced defects during He irradiation at 673 K to 873 K,with a fluence of 5×10^(16) ions/cm^(2) and a peak dose of approximately 1 DPA.Using first-principles calculations and atomic-scale analysis of microstructures and chemical elements,we discovered that interstitial oxygen atoms enhance LCO and increase local lattice distortion.These heterogeneities increase the formation energy,and localize the diffusion,of vacancies,hence effectively reducing the transport of aggregating helium that causes bubble swelling.The initiation and growth of dislocation loops and precipitates are depressed as well.The manipulation of irradiation defects in BCC MPEAs,through orchestrating interstitial oxygen solutes and the LCO they provoke,adds a practical strategy for designing advanced alloys for nuclear applications.展开更多
The oxygen reduction reaction(ORR)could be effectively regulated by adjusting electron configurations and optimizing chemical bonds.Herein,we have achieved the modulation of electron distribution in Fe single atomic(F...The oxygen reduction reaction(ORR)could be effectively regulated by adjusting electron configurations and optimizing chemical bonds.Herein,we have achieved the modulation of electron distribution in Fe single atomic(Fe_(SA))sites through Fe atomic clusters(Fe_(AC))via a confined pyrolysis approach,thereby enhancing their intrinsic ORR activity.X-ray absorption spectroscopy has confirmed that the presence of iron atomic dusters could influence the electron distribution at Fe-N_(4)sites.The Fe_(SA)/Fe_(AC)-NC catalyst exhibits a half-wave potential of 0.88 V,surpassing the individual Fe_(SA)-NC structure.Through electronic structure analysis,it could be seen that iron atom clusters can affect Fe-N_(4)sites through long-range effects,and then effectively lower reaction barriers and enhance the reaction kinetics at Fe-N_(4)sites.The synthetic approach might pave the way for constructing highly active catalysts with tunable atomic structures,representing an effective and universal technique for electron modulation in M-N-C systems.This work provides enlightenment for the exploration of more efficient single-atom electrocatalysts and the optimization of the performance of atomic electrocatalysts.Furthermore,a zinc-air battery assembled using it on their cathode deliver a high peak power density(205.7 mW cm^(-2))and a high-specific capacity of 807.5 mA h g^(-1).This study offers a fresh approach to effectively enhance the synergistic interaction of between Fe single atom and Fe atomic clusters for improving ORR activity and energy storage.展开更多
The development of single atom catalysts(SACs)with asymmetric active sites by defect regulation provides an encourage potential for oxygen reduction reaction(ORR)and hydrogen evolution reaction(HER),but highly challen...The development of single atom catalysts(SACs)with asymmetric active sites by defect regulation provides an encourage potential for oxygen reduction reaction(ORR)and hydrogen evolution reaction(HER),but highly challenging.Herein,N-doped carbon(N-C)anchored atomically dispersed Ni-N_(3)site with proximity defects(Ni-N_(3)D)induced by Te atoms doping is reported.Benefitting from the inductive effect of proximity defect,the Ni-N_(3)D/Te-N-C catalyst performs excellent ORR and HER performance in alkaline and acid condition.Both in situ characterization and theoretical calculation reveal that the existence of proximity defect effect is conducive to lower rate-determining-step energy barrier of ORR and HER,thus accelerating the multielectron reaction kinetics.This work paves a novel strategy for constructing highactivity bifunctional SACs by defect engineering for development of sustainable energy.展开更多
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
The development of redox bifunctional electrocatalysts with high performance,low cost,and long lifetimes is essential for achieving clean energy goals.This study proposed an atom capture strategy for anchoring dual si...The development of redox bifunctional electrocatalysts with high performance,low cost,and long lifetimes is essential for achieving clean energy goals.This study proposed an atom capture strategy for anchoring dual single atoms(DSAs)in a zinc-zeolitic imidazolate framework(Zn-ZIF),followed by calcination under an N_(2) atmosphere to synthesize ruthenium-platinum DSAs supported on a nitrogendoped carbon substrate(RuPt DSAs-NC).Theoretical calculations showed that the degree of Ru 5dxz-~*O 2p_x orbital hybridization was high when^(*)O was adsorbed at the Ru site,indicating enhanced covalent hybridization of metal sites and oxygen ligands,which benefited the adsorption of intermediate species.The presence of the RuPtN_6 active center optimized the absorption-desorption behavior of intermediates,improving the electrocatalytic performance of the oxygen reduction reaction(ORR)and the oxygen evolution reaction(DER),RuPt DSAs-NC exhibited a 0.87 V high half-wave potential and a 268 mV low overpotential at 10 mA cm^(-2)in an alkaline environment.Furthermore,rechargeable zinc-air batteries(ZABs)achieved a peak power density of 171 MW cm^(-2).The RuPt DSAs-NC demonstrated long-term cycling for up to 500 h with superior round-trip efficiency.This study provided an effective structural design strategy to construct DSAs active sites for enhanced electrocata lytic performance.展开更多
Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult...Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery.展开更多
Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air bat...Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air batteries.Although Fe-N-C single atom catalysts(SACs) have been hailed as the most promising candidate due to the optimal binding strength of ORR intermediates on the Fe-N_(4) sites,they suffer from serious mass transport limitations as microporous templates/substrates,i.e.,zeolitic imidazolate frameworks(ZIFs),are usually employed to host the active sites.Motivated by this challenge,we herein develop a hydrogen-bonded organic framework(HOF)-assisted pyrolysis strategy to construct hierarchical micro/mesoporous carbon nanoplates for the deposition of atomically dispersed Fe-N_(4) sites.Such a design is accomplished by employing HOF nanoplates assembled from 2-aminoterephthalic acid(NH_(2)-BDC) and p-phenylenediamine(PDA) as both soft templates and C,N precursors.Benefitting from the structural merits inherited from HOF templates,the optimized catalyst(denoted as Fe-N-C SAC-950) displays outstanding ORR activity with a high half-wave potential of 0.895 V(vs.reversible hydrogen electrode(RHE)) and a small overpotential of 356 mV at 10 mA cm^(-2) for the oxygen evolution reaction(OER).More excitingly,its application potential is further verified by delivering superb rechargeability and cycling stability with a nearly unfading charge-discharge gap of 0.72 V after 160 h.Molecular dynamics(MD) simulations reveal that micro/mesoporous structure is conducive to the rapid mass transfer of O_(2),thus enhancing the ORR performance.In situ Raman results further indicate that the conversion of O_(2) to~*O_(2)-the rate-determining step(RDS) for Fe-N-C SAC-950.This work will provide a versatile strategy to construct single atom catalysts with desirable catalytic properties.展开更多
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform...Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion.展开更多
Advancement of Co-N-C materials for efficient oxygen reduction reaction(ORR)is essential,given their potential as highly attractive alternatives to Pt-based catalysts.Here,we propose a novel strategy for the controlla...Advancement of Co-N-C materials for efficient oxygen reduction reaction(ORR)is essential,given their potential as highly attractive alternatives to Pt-based catalysts.Here,we propose a novel strategy for the controllable evolution of active Co sites via constructing a carbon substrate to fabricate a highperformance Co-N-C catalyst for ORR,which involves initiating a metallic Co phase adjacent to atomic Co sites to modify the electronic structures and promote synergistic effects.The resulting catalyst(CSDB-Co)demonstrates exceptional ORR activity(E_(1/2)=0.95 V vs.RHE)and zinc-air battery capability surpassing the benchmark catalysts in alkaline solutions.As evidenced by density functional theory(DFT)calculations,the remarkable ORR performance of C-SDB-Co originates from the synergy between the two Co phases that effectively regulates the electronic structure and lowers the energy barrier of intermediate adsorption.This study provides a new perspective on enhancing the catalytic activity of Co-N-C materials through innovative carbon substrate design and active site regulation.展开更多
Oxygen vacancies(Ov)within metal oxide electrodes can enhance mass/charge transfer dynamics in energy storage systems.However,construction of surface Ovoften leads to instability in electrode structure and irreversibl...Oxygen vacancies(Ov)within metal oxide electrodes can enhance mass/charge transfer dynamics in energy storage systems.However,construction of surface Ovoften leads to instability in electrode structure and irreversible electrochemical reactions,posing a significant challenge.To overcome these challenges,atomic heterostructures are employed to address the structural instability and enhance the mass/charge transfer dynamics associated with phase conversion mechanism in aqueous electrodes,Herein,we introduce an atomic S-Bi_(2)O_(3)heterostructure(sulfur(S)anchoring on the surface Ovof Bi_(2)O_(3)).The integration of S within Bi_(2)O_(3)lattice matrix triggers a charge imbala nce at the heterointerfaces,ultimately resulting in the creation of a built-in electric field(BEF).Thus,the BEF attracts OH-ions to be adsorbed onto Bi within the regions of high electron cloud overlap in S-Bi_(2)O_(3),facilitating highly efficient charge transfer.Furthermore,the anchored S plays a pivotal role in preserving structural integrity,thus effectively stabilizing the phase conversion reaction of Bi_(2)O_(3).As a result,the S-Bi_(2)O_(3)electrode achieves72.3 mA h g^(-1)at 10 A g^(-1)as well as high-capacity retention of 81.9%after 1600 cycles.Our innovative SBi_(2)O_(3)design presents a groundbreaking approach for fabricating electrodes that exhibit efficient and stable mass and charge transfer capabilities.Furthermore,it enhances our understanding of the underlying reaction mechanism within energy storage electrodes.展开更多
Transition metal-nitrogen-carbon(M-N-C)with 3d transition metals as noble metal-free catalyzing oxygen reduction reaction(ORR)electrocatalysts still face critical challenges in activity and durability due to the Fento...Transition metal-nitrogen-carbon(M-N-C)with 3d transition metals as noble metal-free catalyzing oxygen reduction reaction(ORR)electrocatalysts still face critical challenges in activity and durability due to the Fenton effect associated with these metals in practical application.To tackle the issue,herein,we report Fenton-inactive rare earth metal La-N-C with dual active sites for efficient ORR,which was synthesized by pyrolyzing a mixed complexing compound of 1,10-phenanthroline as ligand with LaCl_(3)and MgCl_(2)as an activation agent.The as-synthesized La-N-C features an abundant microporous structure with atomically dispersed LaN_(4)O moieties as new active sites,exhibiting outstanding ORR performance.Its half-wave potentials are 0.92 and 0.76 V in 0.1 M KOH and 0.5 M H_(2)SO_(4)respectively,and only a 10 mV half-wave potential loss after 50 K cycles in 0.1 M KOH,achieving the highest level of current non-3d M-N-C ORR electrocatalysts.Meanwhile,the ORR activity is further validated by efficient performance with a power density output of 211 and 480 mW cm^(-2)on a single Zn-air battery and proton exchange membrane fuel cell respectively.Furthermore,theoretical calculations confirm that the unique LaN_(4)O moiety adjacent to the microspore vacancy with graphitic N dopant not only presents a negative shift of the La 5d orbitals,significantly lowering the adsorption energy of*OOH in ORR,but also induces the carbon atom near the graphitic N as one more active site for ORR.This work highlights the potential application of La-N-C as an efficient ORR catalyst in green energy conversion devices.展开更多
The advancement of efficient,cheap,and durable catalysts for oxygen reduction reaction(ORR)to substitute Pt/C in metal-air batteries is of paramount importance.However,traditional solvent-based methods fall short in t...The advancement of efficient,cheap,and durable catalysts for oxygen reduction reaction(ORR)to substitute Pt/C in metal-air batteries is of paramount importance.However,traditional solvent-based methods fall short in terms of environmental benign and scalability.Herein,a solvent-free organic-inorganic selfassembly approach is explored to construct cobalt single atom and cobalt nanocluster decorated nitrogendoped porous carbon spheres(Co-SA/NC@NCS).The solvent-free synthesis demonstrates an impressively high yield(282 g/L)and the resultant Co-SA/NC@NCS possesses a high N content(6.9 wt%).Density functional theory calculations disclose that the Co-SAs and Co-NCs are able to optimize the surface oxygen adsorption capability and enhance the conductivity of the NCS,thereby facilitating the ORR performance.The sol vent-free synthesis is also feasible for the synthesis of other non-noble metal element(Fe,Ni,and Zn)decorated nitrogen-doped porous carbon spheres.展开更多
In this paper,hierarchical ultra-thin core/shell Ni_(3)S_(2)@MoS_(2)nano-arrays with Mo atomic site grown on nickel foam(Ni_(3)S_(2)@MoS_(2)-NF)were designed and synthesized through the hydrothermal method.When they a...In this paper,hierarchical ultra-thin core/shell Ni_(3)S_(2)@MoS_(2)nano-arrays with Mo atomic site grown on nickel foam(Ni_(3)S_(2)@MoS_(2)-NF)were designed and synthesized through the hydrothermal method.When they are tested as photoelectric catalysis electrodes to anti-bacteria,the Ni_(3)S_(2)@MoS_(2)within core/shell structure exhibits about several times higher rate capability and outstanding cycling stability than traditional photocatalysts.After reacting with water and oxygen,large numbers of extracellular reactive oxygen species on the surface of Ni_(3)S_(2)@MoS_(2)are observed.These reactive oxygen species can penetrate bacterial cells,resulting in a rapid rise of intracellular reactive oxygen species in a short time.The integrity of the bacterial cell membrane is also destroyed,which can be observed in both scanning and transmission images.The synthetic primer was used to specifically label the gene fragment with antibiotic resistance,which was oxidized and eliminated after the photoelectron catalysis(PEC)reaction,proving that this material for PEC antibacterial can not only kill bacteria.Successful elimination of antibiotic-resistance gene fragments can also be achieved.展开更多
Concurrent activation of lattice oxygen(O_L)and molecular oxygen(O_(2))is crucial for the efficient catalytic oxidation of biomass-derived molecules over metal oxides.Herein,we report that the introduction of ultralow...Concurrent activation of lattice oxygen(O_L)and molecular oxygen(O_(2))is crucial for the efficient catalytic oxidation of biomass-derived molecules over metal oxides.Herein,we report that the introduction of ultralow-loading of Ru single atoms(0.42 wt%)into Mn_(2)O_(3)matrix(0.4%Ru-Mn_(2)O_(3))greatly boosts its catalytic activity for the aerobic oxidation of 5-hydroxymethylfurfural(HMF)to 2,5-furandicarboxylic acid(FDCA).The FDCA productivity over the 0.4%Ru-Mn_(2)O_(3)(5.4 mmol_(FDCA)g_(cat)h^(-1))is 4.9 times higher than the Mn_(2)O_(3).Especially,this FDCAproductivity is also significantly higher than that of existing Ru and Mn-based catalysts.Experimental and theoretical investigations discovered that the Ru single atom facilitated the formation of oxygen vacancy(O_(v))in the catalyst,which synergistically weakened the Mn-O bond and promoted the activation of O_L.The co-presence of Ru single atoms and O_(v)also promote the adsorption and activation of both O_(2)and HMF.Consequently,the dehydrogenation reaction energy barrier of the rate-determining step was reduced via both the O_L and chemisorbed O_(2)dehydrogenation pathways,thus boosting the catalytic oxidation reactions.展开更多
Single-metal sites anchored in nitrogen-doped nanocarbons are recognized as potent electrocatalysts for applications in energy conversion and storage.Here,an innovative inorganic salt-mediated secondary calcination st...Single-metal sites anchored in nitrogen-doped nanocarbons are recognized as potent electrocatalysts for applications in energy conversion and storage.Here,an innovative inorganic salt-mediated secondary calcination strategy was developed to construct robust Pt single-atom catalysts on nitrogen-and oxygen-doped graphene nanosheets(Pt-N/O-GNs),thereby significantly enhancing the efficiency of the electrocatalytic oxygen reduction reaction(ORR).The ultrathin N/O-GNs,obtained by stripping Zn-ZIF with auxiliaries of KCl and LiCl,provide stable anchoring sites for highly exposed Pt-N_(3)O active structures.The Pt-N/O-GNs catalyst,featuring a low Pt loading of 0.44 wt%,demonstrates exceptional mass activity in the ORR process.It attains an impressive onset potential of 0.99 V and a half-wave potential of 0.88 V.The zinc-air battery driven by the Pt-N/O-GNs displays superior power density and cycle stability.Theoretical computational studies reveal that the structure of heteroatoms doped in few-layer graphene facilitates the stable anchoring of single-atom configurations.The findings provide new perspectives for the tailored design and fabrication of single-metal-site electrocatalysts.展开更多
基金supported by National Natural Science Foundation of China(No.523B2070,No.52225606).
文摘Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.
基金financially supported by the National Natural Science Foundation of China(No.22278042)the National Natural Science Foundation of Jiangsu Province(No.BK20240567)+2 种基金the Introduction and Cultivation of Leading Innovative Talents Foundation of Changzhou,Jiangsu Province(No.CQ20220093)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.24KJD530001)the Open Project Program of Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science(No.M2024-7),MOE
文摘Regulating the electronic structure and oxygencontaining intermediates adsorption behavior on Fe-based catalysts is of great significance to cope with the sluggish oxygen reduction reaction(ORR)kinetics,but it still remains a great challenge.In this work,Fe atom clusters(Fe_(AC))modified by high-density Cu single atoms(Cu_(SA))in a N,S-doped porous carbon substrate(Fe_(AC)/Cu_(SA)@NCS)is reported for enhanced ORR electrocatalysis.Fe_(AC)/Cu_(SA)@NCS exhibits excellent ORR performance with a half-wave potential(E_(1/2))of 0.911 V,a high four-electron process selectivity and excellent stability.The ORR performance is also verified in the Fe_(AC)/Cu_(SA)@NCS-based Zn-air battery,which shows a high peak power density of 192.67 mW cm^(-2),a higher specific capacity of 808.3 mAh g^(-1)and impressive charge-discharge cycle stability.Moreover,density functional theory calculations show that Cu single atoms synergistically modulate the electronic structure Fe active atoms in Fe atomic clusters,reducing the energy barrier of the rate-determining step(i.e.,*OH desorption)on Fe_(AC)/Cu_(SA)@NCS.This work provides an effective way to regulate the electronic structure of Fe-based catalysts and optimize their electrocatalytic activity based on the introduction of a second metal source.
基金supported by the National Natural Science Foundation of China(No.21875039)the Project on the Integration of Industry-Education-Research of Fujian Province(No.2021H6020)the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology).
文摘The exploitation of durable and highly active Pt-based electrocatalysts for the oxygen reduction reaction(ORR)is essential for the commercialization of proton exchange membrane fuel cells(PEMFCs).Herein,we designed Pt@Pt_(3)Ti core-shell nanoparticles with atomic-controllable shells through precise thermal diffusing Ti into Pt nanoparticles for effective and durable ORR.Combining theoretical and experiment analysis,we found that the lattice strain of Pt_(3)Ti shells can be tailored by precisely controlling the thick-ness of Pt_(3)Ti shell in atomic-scale on account of the lattice constant difference between Pt and Pt_(3)Ti to optimize adsorption properties of Pt_(3)Ti for ORR intermediates,thus enhancing its performance.The Pt@Pt_(3)Ti catalyst with one-atomic Pt_(3)Ti shell(Pt@1L-Pt_(3)Ti/TiO_(2)-C)demonstrates excellent performance with mass activity of 592 mA mgpt-1 and durability nearly 19.5-fold that of commercial Pt/C with negligible decay(2%)after 30,000 potential cycles(0.6-1.0 V vs.RHE).Notably,at higher potential cycles(1.0 V-1.5 V vs.RHE),Pt@1L-Pt_(3)Ti/TiO_(2)-C also showed far superior durability than Pt/C(9.6%decayed while 54.8% for commercial Pt/C).This excellent stability is derived from the intrinsic stability of Pt_(3)Ti alloy and the confinement effect of TiO_(2)-C.The catalyst's enhancement was further confirmed in PEMFC configuration.
基金supported financially by the National Natural Science Foundation of China(No.52172208)Taishan Scholar Young Talent Program(No.tsqn202306216).XAS beamlines at the Australian Synchrotron in Melbourne are gratefully acknowledged.
文摘Single atom catalysts(SACs)featuring Fe-N4 active sites anchored on carbon supports exhibit exceptional electrocatalytic performance in oxygen reduction reactions(ORR).Herein,a rigid ligand confined strategy was used to synthesize edge-anchored Fe-N4 active sites with geometric distortion on mesoporous-dominated carbon spheres(Fe-N-MESs).Furthermore,in situ Fourier transform infrared spectroscopy(FTIR)demonstrates that Fe-N-MESs weaken the O-O band,inhibiting the formation of H2O2.The density functional theory(DFT)calculations reveal that the exceptional ORR activity stems from optimized oxygen intermediate adsorption free energy and reduced OH*desorption energy barrier.Electrochemical measurements verify the remarkable ORR activity of Fe-N-MESs,demonstrating a half-wave potential of 0.90 V and excellent stability,with approximately 94%of the initial current density after 50 h of operation.When used as the air cathode in aqueous Zn-air batteries,Fe-N-MESs display a large open circuit voltage of 1.53 V and an extra-long stability of 1500 h.Moreover,Fe-N-MESs exhibit a remarkable open circuit voltage of 1.50 V and an impressive peak power density up to 260.4 mW·cm^(−2) in quasi-solid-state Zn-air batteries.This work provides valuable insights into the boosted ORR origin,while offering a novel and economical synthesis technique for SACs applicable to other electrocatalytic reactions.
基金financially supported by the National Key Research and Development Program of China(No.2019YFA0209900)the National Natural Science Foundation of China(Nos.12305290,12075179,52231001,and 12105219)+1 种基金the Postdoctoral Fellowship Program of CPSF(No.GZC20232089)the Innovative Scientific Program of China National Nuclear Corporation,and the Fundamental Research Funds for the Central Universities.
文摘Designing alloys capable of withstanding irradiation is a crucial aspect of developing materials for nuclear reactors and aerospace applications.Local chemical order(LCO)has recently been recognized as a new microstructural parameter to leverage,and its effect on the mechanical properties of body-centered cubic(BCC)multi-principal element alloys(MPEAs)has attracted much attention.However,the impact of LCO on the dynamic evolution of irradiation-induced defects in BCC MPEAs remains much less explored.In this study,we engineered varying degrees of LCO and local lattice distortion in NbZrTi BCC MPEAs by alloying them with different concentrations of interstitial oxygen solutes,and analyzed their effects on the evolution of radiation-induced defects during He irradiation at 673 K to 873 K,with a fluence of 5×10^(16) ions/cm^(2) and a peak dose of approximately 1 DPA.Using first-principles calculations and atomic-scale analysis of microstructures and chemical elements,we discovered that interstitial oxygen atoms enhance LCO and increase local lattice distortion.These heterogeneities increase the formation energy,and localize the diffusion,of vacancies,hence effectively reducing the transport of aggregating helium that causes bubble swelling.The initiation and growth of dislocation loops and precipitates are depressed as well.The manipulation of irradiation defects in BCC MPEAs,through orchestrating interstitial oxygen solutes and the LCO they provoke,adds a practical strategy for designing advanced alloys for nuclear applications.
基金supported by the National Natural Science Foundations of China(Nos:22271018,22309012 and 22302013)the NSF of Guangdong Province(Nos:2023A1515010554 and 2024A1515010307)。
文摘The oxygen reduction reaction(ORR)could be effectively regulated by adjusting electron configurations and optimizing chemical bonds.Herein,we have achieved the modulation of electron distribution in Fe single atomic(Fe_(SA))sites through Fe atomic clusters(Fe_(AC))via a confined pyrolysis approach,thereby enhancing their intrinsic ORR activity.X-ray absorption spectroscopy has confirmed that the presence of iron atomic dusters could influence the electron distribution at Fe-N_(4)sites.The Fe_(SA)/Fe_(AC)-NC catalyst exhibits a half-wave potential of 0.88 V,surpassing the individual Fe_(SA)-NC structure.Through electronic structure analysis,it could be seen that iron atom clusters can affect Fe-N_(4)sites through long-range effects,and then effectively lower reaction barriers and enhance the reaction kinetics at Fe-N_(4)sites.The synthetic approach might pave the way for constructing highly active catalysts with tunable atomic structures,representing an effective and universal technique for electron modulation in M-N-C systems.This work provides enlightenment for the exploration of more efficient single-atom electrocatalysts and the optimization of the performance of atomic electrocatalysts.Furthermore,a zinc-air battery assembled using it on their cathode deliver a high peak power density(205.7 mW cm^(-2))and a high-specific capacity of 807.5 mA h g^(-1).This study offers a fresh approach to effectively enhance the synergistic interaction of between Fe single atom and Fe atomic clusters for improving ORR activity and energy storage.
基金financially supported by the National Natural Science Foundation of China(22478432,22108306,22178388)Taishan Scholars Program of Shandong Province(tsqn201909065)+2 种基金Shandong Provincial Natural Science Foundation(ZR2024JQ004)Innovation Fund Project for Graduate Student of China University of Petroleum(East China)the Fundamental Research Funds for the Central Universities(No.25CX04020A)。
文摘The development of single atom catalysts(SACs)with asymmetric active sites by defect regulation provides an encourage potential for oxygen reduction reaction(ORR)and hydrogen evolution reaction(HER),but highly challenging.Herein,N-doped carbon(N-C)anchored atomically dispersed Ni-N_(3)site with proximity defects(Ni-N_(3)D)induced by Te atoms doping is reported.Benefitting from the inductive effect of proximity defect,the Ni-N_(3)D/Te-N-C catalyst performs excellent ORR and HER performance in alkaline and acid condition.Both in situ characterization and theoretical calculation reveal that the existence of proximity defect effect is conducive to lower rate-determining-step energy barrier of ORR and HER,thus accelerating the multielectron reaction kinetics.This work paves a novel strategy for constructing highactivity bifunctional SACs by defect engineering for development of sustainable energy.
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.
基金supported by the National Natural Science Foundation of China (No.22309023,22179014)the project of Natural Science Foundation of Chongqing (Grant No.CSTB2022NSCQMSX0270)+3 种基金the China Postdoctoral Science Foundation (No.2022M720593)the youth project of science and technology research program of Chongqing Municipal Education Commission of China (Grant No.KJQN202201127)the Scientific Research Foundation of Chongqing University of Technology (2022ZDZ011,2022PYZ026)the special funding for research projects of Chongqing Human Resources and Social Security Bureau (Grant No.2022CQBSHTB1023)。
文摘The development of redox bifunctional electrocatalysts with high performance,low cost,and long lifetimes is essential for achieving clean energy goals.This study proposed an atom capture strategy for anchoring dual single atoms(DSAs)in a zinc-zeolitic imidazolate framework(Zn-ZIF),followed by calcination under an N_(2) atmosphere to synthesize ruthenium-platinum DSAs supported on a nitrogendoped carbon substrate(RuPt DSAs-NC).Theoretical calculations showed that the degree of Ru 5dxz-~*O 2p_x orbital hybridization was high when^(*)O was adsorbed at the Ru site,indicating enhanced covalent hybridization of metal sites and oxygen ligands,which benefited the adsorption of intermediate species.The presence of the RuPtN_6 active center optimized the absorption-desorption behavior of intermediates,improving the electrocatalytic performance of the oxygen reduction reaction(ORR)and the oxygen evolution reaction(DER),RuPt DSAs-NC exhibited a 0.87 V high half-wave potential and a 268 mV low overpotential at 10 mA cm^(-2)in an alkaline environment.Furthermore,rechargeable zinc-air batteries(ZABs)achieved a peak power density of 171 MW cm^(-2).The RuPt DSAs-NC demonstrated long-term cycling for up to 500 h with superior round-trip efficiency.This study provided an effective structural design strategy to construct DSAs active sites for enhanced electrocata lytic performance.
基金This work was supported by National Key R&D Program of China(2021YFF0500503)National Natural Science Foundation of China(21925202,U22B2071)International Joint Mission on Climate Change and Carbon Neutrality.
文摘Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery.
基金financially supported by the National Key R&D Program of China(2022YFB4004100)the National Natural Science Foundation of China(22272161)+6 种基金the Jilin Province Science and Technology Development Program(20230101367JC)financially supported by the National Natural Science Foundation of China(22073094)the Science and Technology Development Program of Jilin Province(20210402059GH)the Science and Technology Plan Projects of Yunnan Province(202101BC070001–007)the Major Science and Technology Projects for Independent Innovation of China FAW Group Co.,Ltd(20220301018GX)the essential support of the Network and Computing Center,CIAC,CASthe Computing Center of Jilin Province。
文摘Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air batteries.Although Fe-N-C single atom catalysts(SACs) have been hailed as the most promising candidate due to the optimal binding strength of ORR intermediates on the Fe-N_(4) sites,they suffer from serious mass transport limitations as microporous templates/substrates,i.e.,zeolitic imidazolate frameworks(ZIFs),are usually employed to host the active sites.Motivated by this challenge,we herein develop a hydrogen-bonded organic framework(HOF)-assisted pyrolysis strategy to construct hierarchical micro/mesoporous carbon nanoplates for the deposition of atomically dispersed Fe-N_(4) sites.Such a design is accomplished by employing HOF nanoplates assembled from 2-aminoterephthalic acid(NH_(2)-BDC) and p-phenylenediamine(PDA) as both soft templates and C,N precursors.Benefitting from the structural merits inherited from HOF templates,the optimized catalyst(denoted as Fe-N-C SAC-950) displays outstanding ORR activity with a high half-wave potential of 0.895 V(vs.reversible hydrogen electrode(RHE)) and a small overpotential of 356 mV at 10 mA cm^(-2) for the oxygen evolution reaction(OER).More excitingly,its application potential is further verified by delivering superb rechargeability and cycling stability with a nearly unfading charge-discharge gap of 0.72 V after 160 h.Molecular dynamics(MD) simulations reveal that micro/mesoporous structure is conducive to the rapid mass transfer of O_(2),thus enhancing the ORR performance.In situ Raman results further indicate that the conversion of O_(2) to~*O_(2)-the rate-determining step(RDS) for Fe-N-C SAC-950.This work will provide a versatile strategy to construct single atom catalysts with desirable catalytic properties.
基金supported by the National Natural Science Foundation of China(No.21571062)the Program for Professor of Special Appointment(Eastern Scholar)at the Shanghai Institutions of Higher Learning to JGL,and the Fundamental Research Funds for the Central Universities(No.222201717003)。
文摘Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion.
基金finacially supported by National Natural Sci-ence Foundation of China(Nos.22275210,22171288)Natural Sci-ence Foundation of Shandong Province(No.ZR2022MB009)+1 种基金Out-standing Youth Science Fund Projects of Shandong Province(No.ZR2022YQ15)Fundamental Research Funds for the Central Universities(No.YCX2021142).
文摘Advancement of Co-N-C materials for efficient oxygen reduction reaction(ORR)is essential,given their potential as highly attractive alternatives to Pt-based catalysts.Here,we propose a novel strategy for the controllable evolution of active Co sites via constructing a carbon substrate to fabricate a highperformance Co-N-C catalyst for ORR,which involves initiating a metallic Co phase adjacent to atomic Co sites to modify the electronic structures and promote synergistic effects.The resulting catalyst(CSDB-Co)demonstrates exceptional ORR activity(E_(1/2)=0.95 V vs.RHE)and zinc-air battery capability surpassing the benchmark catalysts in alkaline solutions.As evidenced by density functional theory(DFT)calculations,the remarkable ORR performance of C-SDB-Co originates from the synergy between the two Co phases that effectively regulates the electronic structure and lowers the energy barrier of intermediate adsorption.This study provides a new perspective on enhancing the catalytic activity of Co-N-C materials through innovative carbon substrate design and active site regulation.
基金supported by the Research Program of Jilin Province Development and Reform Commission(2024C018-6).
文摘Oxygen vacancies(Ov)within metal oxide electrodes can enhance mass/charge transfer dynamics in energy storage systems.However,construction of surface Ovoften leads to instability in electrode structure and irreversible electrochemical reactions,posing a significant challenge.To overcome these challenges,atomic heterostructures are employed to address the structural instability and enhance the mass/charge transfer dynamics associated with phase conversion mechanism in aqueous electrodes,Herein,we introduce an atomic S-Bi_(2)O_(3)heterostructure(sulfur(S)anchoring on the surface Ovof Bi_(2)O_(3)).The integration of S within Bi_(2)O_(3)lattice matrix triggers a charge imbala nce at the heterointerfaces,ultimately resulting in the creation of a built-in electric field(BEF).Thus,the BEF attracts OH-ions to be adsorbed onto Bi within the regions of high electron cloud overlap in S-Bi_(2)O_(3),facilitating highly efficient charge transfer.Furthermore,the anchored S plays a pivotal role in preserving structural integrity,thus effectively stabilizing the phase conversion reaction of Bi_(2)O_(3).As a result,the S-Bi_(2)O_(3)electrode achieves72.3 mA h g^(-1)at 10 A g^(-1)as well as high-capacity retention of 81.9%after 1600 cycles.Our innovative SBi_(2)O_(3)design presents a groundbreaking approach for fabricating electrodes that exhibit efficient and stable mass and charge transfer capabilities.Furthermore,it enhances our understanding of the underlying reaction mechanism within energy storage electrodes.
基金financially supported by the National Natural Science Foundation of China(22075055)the Guangxi Science and Technology Project(AB16380030)。
文摘Transition metal-nitrogen-carbon(M-N-C)with 3d transition metals as noble metal-free catalyzing oxygen reduction reaction(ORR)electrocatalysts still face critical challenges in activity and durability due to the Fenton effect associated with these metals in practical application.To tackle the issue,herein,we report Fenton-inactive rare earth metal La-N-C with dual active sites for efficient ORR,which was synthesized by pyrolyzing a mixed complexing compound of 1,10-phenanthroline as ligand with LaCl_(3)and MgCl_(2)as an activation agent.The as-synthesized La-N-C features an abundant microporous structure with atomically dispersed LaN_(4)O moieties as new active sites,exhibiting outstanding ORR performance.Its half-wave potentials are 0.92 and 0.76 V in 0.1 M KOH and 0.5 M H_(2)SO_(4)respectively,and only a 10 mV half-wave potential loss after 50 K cycles in 0.1 M KOH,achieving the highest level of current non-3d M-N-C ORR electrocatalysts.Meanwhile,the ORR activity is further validated by efficient performance with a power density output of 211 and 480 mW cm^(-2)on a single Zn-air battery and proton exchange membrane fuel cell respectively.Furthermore,theoretical calculations confirm that the unique LaN_(4)O moiety adjacent to the microspore vacancy with graphitic N dopant not only presents a negative shift of the La 5d orbitals,significantly lowering the adsorption energy of*OOH in ORR,but also induces the carbon atom near the graphitic N as one more active site for ORR.This work highlights the potential application of La-N-C as an efficient ORR catalyst in green energy conversion devices.
基金supported by the National Natural Science Foundation of China(No.52072283)the program of China Scholarship Council(No.202306950008)。
文摘The advancement of efficient,cheap,and durable catalysts for oxygen reduction reaction(ORR)to substitute Pt/C in metal-air batteries is of paramount importance.However,traditional solvent-based methods fall short in terms of environmental benign and scalability.Herein,a solvent-free organic-inorganic selfassembly approach is explored to construct cobalt single atom and cobalt nanocluster decorated nitrogendoped porous carbon spheres(Co-SA/NC@NCS).The solvent-free synthesis demonstrates an impressively high yield(282 g/L)and the resultant Co-SA/NC@NCS possesses a high N content(6.9 wt%).Density functional theory calculations disclose that the Co-SAs and Co-NCs are able to optimize the surface oxygen adsorption capability and enhance the conductivity of the NCS,thereby facilitating the ORR performance.The sol vent-free synthesis is also feasible for the synthesis of other non-noble metal element(Fe,Ni,and Zn)decorated nitrogen-doped porous carbon spheres.
基金supported by the Fund of AHBMC-AHU Joint Laboratory of Biomedical Material(No.2022340102000659)the 512 Talent Cultivation Plan of Bengbu Medical College(No.51201313)+1 种基金the Young Scientist Fund of Bengbu Medical College(No.2021byyfyyq02)the Scientific Research Fund of Anhui Provincial Education Department(No.2023AH040290).
文摘In this paper,hierarchical ultra-thin core/shell Ni_(3)S_(2)@MoS_(2)nano-arrays with Mo atomic site grown on nickel foam(Ni_(3)S_(2)@MoS_(2)-NF)were designed and synthesized through the hydrothermal method.When they are tested as photoelectric catalysis electrodes to anti-bacteria,the Ni_(3)S_(2)@MoS_(2)within core/shell structure exhibits about several times higher rate capability and outstanding cycling stability than traditional photocatalysts.After reacting with water and oxygen,large numbers of extracellular reactive oxygen species on the surface of Ni_(3)S_(2)@MoS_(2)are observed.These reactive oxygen species can penetrate bacterial cells,resulting in a rapid rise of intracellular reactive oxygen species in a short time.The integrity of the bacterial cell membrane is also destroyed,which can be observed in both scanning and transmission images.The synthetic primer was used to specifically label the gene fragment with antibiotic resistance,which was oxidized and eliminated after the photoelectron catalysis(PEC)reaction,proving that this material for PEC antibacterial can not only kill bacteria.Successful elimination of antibiotic-resistance gene fragments can also be achieved.
基金financially supported by National Natural Science Foundation of China(22208137 and 22068022)Yunnan Fundamental Research Projects(202101BE070001-033,202401AT070825,202201BE070001007 and 202301AV070005)。
文摘Concurrent activation of lattice oxygen(O_L)and molecular oxygen(O_(2))is crucial for the efficient catalytic oxidation of biomass-derived molecules over metal oxides.Herein,we report that the introduction of ultralow-loading of Ru single atoms(0.42 wt%)into Mn_(2)O_(3)matrix(0.4%Ru-Mn_(2)O_(3))greatly boosts its catalytic activity for the aerobic oxidation of 5-hydroxymethylfurfural(HMF)to 2,5-furandicarboxylic acid(FDCA).The FDCA productivity over the 0.4%Ru-Mn_(2)O_(3)(5.4 mmol_(FDCA)g_(cat)h^(-1))is 4.9 times higher than the Mn_(2)O_(3).Especially,this FDCAproductivity is also significantly higher than that of existing Ru and Mn-based catalysts.Experimental and theoretical investigations discovered that the Ru single atom facilitated the formation of oxygen vacancy(O_(v))in the catalyst,which synergistically weakened the Mn-O bond and promoted the activation of O_L.The co-presence of Ru single atoms and O_(v)also promote the adsorption and activation of both O_(2)and HMF.Consequently,the dehydrogenation reaction energy barrier of the rate-determining step was reduced via both the O_L and chemisorbed O_(2)dehydrogenation pathways,thus boosting the catalytic oxidation reactions.
文摘Single-metal sites anchored in nitrogen-doped nanocarbons are recognized as potent electrocatalysts for applications in energy conversion and storage.Here,an innovative inorganic salt-mediated secondary calcination strategy was developed to construct robust Pt single-atom catalysts on nitrogen-and oxygen-doped graphene nanosheets(Pt-N/O-GNs),thereby significantly enhancing the efficiency of the electrocatalytic oxygen reduction reaction(ORR).The ultrathin N/O-GNs,obtained by stripping Zn-ZIF with auxiliaries of KCl and LiCl,provide stable anchoring sites for highly exposed Pt-N_(3)O active structures.The Pt-N/O-GNs catalyst,featuring a low Pt loading of 0.44 wt%,demonstrates exceptional mass activity in the ORR process.It attains an impressive onset potential of 0.99 V and a half-wave potential of 0.88 V.The zinc-air battery driven by the Pt-N/O-GNs displays superior power density and cycle stability.Theoretical computational studies reveal that the structure of heteroatoms doped in few-layer graphene facilitates the stable anchoring of single-atom configurations.The findings provide new perspectives for the tailored design and fabrication of single-metal-site electrocatalysts.