Given the limited exposure of active sites and the retarded separation of photogenerated charge carriers in those developed photocata-lysts,photocatalyticCO_(2)splitting into value-added chemicals has suffered from th...Given the limited exposure of active sites and the retarded separation of photogenerated charge carriers in those developed photocata-lysts,photocatalyticCO_(2)splitting into value-added chemicals has suffered from the poor activity and remained in great challenge for real application.Herein,hydrothermally synthesized BiOCl with layered structure(BOC-NSs)was exfoliated into thickness reduced nanosheets(BOCNSs-w)and even atomic layers(BOCNSs-i)via ultrasonication in water and isopro-panol,respectively.In comparison with the pristine BOCNSs,the exfoli-ated BiOCl,especially BOCNSs-i with atomically layered structure,exhibits much improved photocatalytic activity forCO_(2)overall splitting to produce CO andO_(2) at a stoichiometric ratio of 2:1,with CO evolution rate reaching 134.8µmolg^(-1)h^(-1) under simulated solar light(1.7 suns).By surpassing the photocatalytic performances of the state-of-the-artBi_(l)O_(m)X_(n)(X:Cl,Br,I)based photocatalysts,the CO evolution rate is further increased by 99 times,reaching 13.3 mmolg^(-1)h^(-1) under concentrated solar irradiation(34 suns).This excellent photocatalytic performance achieved over BOCNSs-i should be benefited from the shortened transfer distance and the increased built-in electric field intensity,which acceler-ates the migration of photogenerated charge carriers to surface.Moreover,with oxygen vacancies(VO)introduced into the atomic layers,BOCNSs-i is exposed with the electrons enriched Bi active sites that could transfer electrons to activateCO_(2)molecules for highly efficient and selective CO production,by lowering the energy barrier of rate-determining step(RDS),*OH+*CO_(2)-→HCO_(3)-.It is also realized that theH_(2)O vapor supplied during photocatalytic reaction would exchange oxygen atoms withCO_(2),which could alter the reaction path-ways and further reduce the energy barrier of RDS,contributing to the dramatically improved photocatalytic performance forCO_(2)overall splitting to CO andO_(2).展开更多
Engineering an efficient interface is a trustworthy strategy for designing advanced photocatalytic systems for solar energy conversion.Herein,oxygen-deficient Bi_(2)WO_(6)atomic layers without organic residues were su...Engineering an efficient interface is a trustworthy strategy for designing advanced photocatalytic systems for solar energy conversion.Herein,oxygen-deficient Bi_(2)WO_(6)atomic layers without organic residues were successfully fabricated via a facile solvothermal strategy by the multifunctional regulatory mechanism of introduced chloridion.Both DFT calculations and speciation determination revealed that chloridion displayed a more pronounced effect in the controllable synthesis of oxygen-deficient Bi_(2)WO_(6)atomic layers without organic residues:ultrathinning and defect-engineering.This built-in multi-cooperative interface endowed Bi_(2)WO_(6)with intriguing photoelectrochemical properties,O_(2) activation ability,and ultrahigh activity in visible-light powered deep oxidation of NO.A reasonable photocatalytic mechanism was proposed based on in situ infrared spectroscopy analysis and theoretical calculations.We believe that this multi-cooperative interface engineering of oxygen-deficient Bi_(2)WO_(6)atomic layers without organic residues could provide new insights into the design of two-dimensional(2D)layered materials with efficient active sites and pave the way for efficient NO photooxidation systems.展开更多
Elemental doping confined in atomically-thin 2 D semiconductors offers a compelling strategy for constructing high performance photocatalysts.Although impressive progress has been achieved based on co-thermolysis meth...Elemental doping confined in atomically-thin 2 D semiconductors offers a compelling strategy for constructing high performance photocatalysts.Although impressive progress has been achieved based on co-thermolysis method,the choices of dopants as well as semiconductor hosts are still quite limited to yield the elaborate photocatalyst with atomic-layer-confined doping defects,owing to the difficulty in balancing the reaction kinetics of different precursors.This study shows that the cation exchange reaction,which is dictated by the Pearson's hard and soft acids and bases(HSAB)theory and allowed to proceed at mild temperatures,can be developed into a conceptually new protocol for engineering elemental doping confined in semiconductor atomic layers.To this aim,the two atomic layers of a new type of 2 D photocatalyst PdSe0_(3)(PdSe0_(3)2 ALs,1.1 nm)are created by liquid exfoliation and exploited as a proof-of-concept prototype.It is demonstrated that the Mn(Ⅱ)dopants with controlled concentrations can be incorporated into PdSeO_(3)2 ALs via topological Mn^(2+) for-Pd^(2+) cation exchange performed in water/isopropanol solution at 30℃.The resulting Mn-doped PdSeO_(3)2 ALs present enhanced capacity for driving photocatalytic oxidation reactions in comparison with their undoped counterparts.The findings here suggest that the new route mediated by post synthetic cation exchange promises to give access to manifold 2 D confined-doping photocatalysts,with little perturbations on the thickness,morphology,and crystal structure of the atomically-thin semiconductor hosts.展开更多
Atomic layer deposition(ALD)has driven significant advancements in photovoltaic technologies by enabling the development of interlayers that improve both the efficiency and stability of devices.This review traces the ...Atomic layer deposition(ALD)has driven significant advancements in photovoltaic technologies by enabling the development of interlayers that improve both the efficiency and stability of devices.This review traces the evolution of ALD interlayers across various photovoltaic technologies,starting with early silicon solar cells and progressing into a variety of thin-film solar cells.We then delve into the role of ALD in state-of-the-art single-junction perovskite solar cells,particularly in optimizing the critical interfaces of perovskites/charge-transporting layers/-electrodes.Apart from that,we screen the functionality of ALD processing,which consists of reducing surface/interfacial defects and thus mitigating energy loss.Particularly,it enables efficient stacking of multiple thin layers,making a variety of tandem solar cells possible(silicon/perovskite,etc.)for higher efficiency.Moreover,the ALDprocessed interlayer prevents the ion migration between metals and perovskites,inhibiting the inter-diffusioninduced degradation of devices.Despite ALD technology extensively elevating the performance of above conventional/emerging solar cells,key challenges such as precursor flammability,cross-contamination during processing,and low deposition pace persist.We go over these challenges and expect our comprehensive overview of ALD techniques could shed light on pushing the envelope of photovoltaic efficiency.展开更多
Sluggish separation and migration kinetics of the photogenerated carriers account for the low-efficiency of CO_(2) photoreduction into CH_(4). Design and construction two-dimensional (2D) in-plane heterostructures dem...Sluggish separation and migration kinetics of the photogenerated carriers account for the low-efficiency of CO_(2) photoreduction into CH_(4). Design and construction two-dimensional (2D) in-plane heterostructures demonstrate to be an appealing approach to address above obstacles. Herein, we fabricate 2D in-plane heterostructured Ag_(2)S-In_(2)S_(3) atomic layers via an ion-exchange strategy. Photoluminescence spectra, time-resolved photoluminescence spectra, and photoelectrochemical measurements firmly affirm the optimized carrier dynamics of the In_(2)S_(3) atomic layers after the introduction of in-plane heterostructure. In-situ Fourier transform infrared spectroscopy spectra and density functional theory (DFT) calculations disclose the in-plane heterostructure contributes to CO_(2) activation and modulates the adsorption strength of CO* intermediates to facilitate the formation of CHO* intermediates, which are further protonated to CH4. In consequence, the in-plane heterostructure achieves the CH_(4) evolution rate of 20 µmol·g^(−1)·h^(−1), about 16.7 times higher than that of the In2S3 atomic layers. In short, this work proves construction of in-plane heterostructures as a promising method for obtaining high-efficiency CO_(2)-to-CH_(4) photoconversion properties.展开更多
Regulating the selectivity of CO2 photoreduction is particularly challenging. Herein, we propose ideal models of atomic layers with/without element doping to investigate the effect of doping engineering to tune the se...Regulating the selectivity of CO2 photoreduction is particularly challenging. Herein, we propose ideal models of atomic layers with/without element doping to investigate the effect of doping engineering to tune the selectivity of CO2 photoreduction. Prototypical ZnCo2O4 atomic layers with/without Ni-doping were first synthesized. Density functional theory calculations reveal that introducing Ni atoms creates several new energy levels and increases the density-of-states at the conduction band minimum. Synchrotron radiation photoemission spectroscopy demonstrates that the band structures are suitable for CO2 photoreduction, while the surface photovoltage spectra demonstrate that Ni doping increases the carrier separation efficiency. In situ diffuse reflectance Fourier transform infrared spectra disclose that the CO2^- radical is the main intermediate, while temperature-programed desorption curves reveal that the ZnCo2O4 atomic layers with/without Ni doping favor the respective CO and CH4 desorption. The Ni-doped ZnCo2O4 atomic layers exhibit a 3.5-time higher CO selectivity than the ZnCo2O4 atomic layers. This work establishes a clear correlation between elemental doping and selectivity regulation for CO2 photoreduction, opening new possibilities for tailoring solar-driven photocatalytic behaviors.展开更多
Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous Si...Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous SiO_(2) refractive index gradient anti-reflective film prepared by atomic layer deposition(ALD).A porous SiO_(2) film with gradual porosity was obtained by phosphoric acid etching of Al_(2)O_(3)/SiO_(2) multilayers with gradient Al2O3 ratios,achieving a gradual decrease in refractive index from the substrate to the surface.The film exhibited an average transmittance as high as 97.8%within the wavelength range from 320 nm to 1200 nm.The environmental adaptability was further enhanced by surface modification using rare earth oxide(REO)La_(2)O_(3),resulting in formation of a lotus leaf-like structure and achieving a water contact angle of 100.0°.These data proved that the modification significantly improved hydrophobic self-cleaning capability while maintaining exceptional transparency of the film.The surface structure of the modified film remained undamaged even after undergoing wipe testing,demonstrating its excellent surface durability.展开更多
The bismuth-telluride-based alloy is the only thermoelectric material commercialized for the applications of refrigeration and energy harvesting,but its low cost-effectiveness severely restricts its large-scale ap-pli...The bismuth-telluride-based alloy is the only thermoelectric material commercialized for the applications of refrigeration and energy harvesting,but its low cost-effectiveness severely restricts its large-scale ap-plication.The introduction of a porous structure in bulk thermoelectric materials has been theoretically proven to effectively reduce thermal conductivity and cost.However,the electrical properties of highly porous materials are considerably suppressed due to the strong carrier scattering at the interface be-tween the matrix and pores,ultimately leading to decreased figure of merit,ZT.Here,we use an atomic layer deposition strategy to introduce some hollow glass bubbles with nano-oxide layers into commercial Bi_(0.5)Sb_(1.5)Te_(3)for preparing high-performance porous thermoelectric materials.Experimental results indi-cate that the nano-oxide layers weaken carrier scattering at the interface between pores and matrix while maintaining high-strength phonon scattering,thereby optimizing carrier/phonon transport behaviors,and effectively increasing the ZT by 23.2%(from 0.99 to 1.22 at 350 K).Besides,our strategy has excellent universality confirmed by its effectiveness in improving the ZT of Bi_(2)Te_(2.7)Se_(0.3),therefore demonstrating great potential for developing low-cost and high-performance thermoelectric materials.展开更多
LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)is an attractive material for high-energy-density Li-ion batteries in electric vehicles.However,it suffers from rapid capacity fading.Previous studies have shown that tuning the ...LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)is an attractive material for high-energy-density Li-ion batteries in electric vehicles.However,it suffers from rapid capacity fading.Previous studies have shown that tuning the positive electrode material via atomic layer deposition(ALD)can enhance the electrochemical performance of the material.In this article,we introduce a novel coating method using gaseous precursors in an ALD reactor,where an AlO_(x)layer is deposited directly on the surface of the NMC811 precursor,followed by lithiation.The AlO_(x)coating is applied to the NMC811 powder substrate by exposing it to gas-phase precursors,using a conventional ALD and simplified ALD(chemical vapor deposition-like)method.It is observed that the novel methods lead to the incorporation of Al as a dopant within the bulk of NMC811,rather than forming a conformal AlO_(x)coating,after the final lithiation step.The optimized procedures result in positive electrode materials with higher capacity and enhanced cycling stability in both half-cell and full-cell configurations.Doping or coating was shown to mitigate transition metal dissolution,reduce side reactions between the active material and electrolyte,and improve structural stability.展开更多
Normally,a transparent inert film is coated on the surface of TiO_(2) particles to enhance the weatherability of the pigment.Liquid-phase coating process is mainly used in industry,which difficult to get really unifor...Normally,a transparent inert film is coated on the surface of TiO_(2) particles to enhance the weatherability of the pigment.Liquid-phase coating process is mainly used in industry,which difficult to get really uniform films.This work combining nanoparticle fluidization technology with atomic layer deposition(ALD) technology to achieve precise surface modification of a large number of micro-nano particles.First,we explored the fluidization characteristics of TiO_(2) nanoparticles in a home-made atmospheric fluidized bed ALD reactor(FB-ALD) to ensure the uniform fluidization of a large number of nanoparticles.Then TiCl_(4) and H_(2)O were used as precursors to deposit amorphous TiO_(2) films on the surface of TiO_(2) nanoparticles at 80℃ under atmospheric pressure,and the growth per cycle was about 0.109 nm per cycle.After 30 ALD cycles,the film thickness was about 3.1 nm,which could almost fully suppress the photocatalytic activity of TiO_(2).Compared with other traditional coating materials,amorphous TiO_(2) has higher light refractive index,and realizes the suppression of the photocatalytic activity of TiO_(2) without introducing other substances,demonstrating greater application potential in TiO_(2) pigment coating field.The process is a gas-phase coating method,which is efficient,no waste water,and easy to scale up.This work shown the excellent property of interface engineering in improving pigment weatherability and can also provide guidance for the nanoparticle surface modification.展开更多
Novel and promising chloride ion batteries(CIBs)that can operate at room temperature have attracted great attentions,due to the sustainable chloride-containing resources and high theoretical energy density.To achieve ...Novel and promising chloride ion batteries(CIBs)that can operate at room temperature have attracted great attentions,due to the sustainable chloride-containing resources and high theoretical energy density.To achieve the superior electrochemical properties of CIBs,the structure design of electrode materials is essential.Herein,2D NiAl-layered double hydroxide(NiAl-LDH)nanoarrays derived from Al2O3 are in-situ grafted to graphene(G)by atomic layer deposition(ALD)and hydrothermal method.The achieved NiAl-LDH@G hybrids with 2D NiAl-LDH arrays grown perpendicularly on graphene surface,can efficiently prevent the stacking of LDHs and enlarge specific surface area to provide more active sites.The NiAl-LDH@G cathode exhibits a maximum discharge capacity of 223.3 mA h g^(-1)and an excellent reversible capacity of 107 mA h g^(-1)over 500 cycles at 100 mA g^(-1)with a high coulombic efficiency around 96%,whereas pure NiAl-LDH has a discharge capacity of only 48.8 mA h g^(-1)and a coulombic efficiency(CE)of about 78%.More importantly,the NiAl-LDH@G electrode has a stable voltage at 1.9 V and an outstanding discharge capacity of higher than 72 mA h g^(-1)after 120 days.Additionally,XRD,XPS,and EDS have been employed to unveil the electrochemical reaction and Cl-storage mechanism of the NiAlLDH@G cathode in CIBs.This work opens a facile and reasonable way for improving electrochemical performance at anion-type rechargeable batteries in terms of cathode material design and mechanism interpretation.展开更多
Electrocatalysis is a promising approach to clean energy conversion due to its high efficiency and low environmental pollution. Noble metal materials have been studied to show high activity toward electrocatalyltic re...Electrocatalysis is a promising approach to clean energy conversion due to its high efficiency and low environmental pollution. Noble metal materials have been studied to show high activity toward electrocatalyltic reactions, although such applications remain restricted by the high cost and poor durability of the noble metals. By precisely adjusting the catalyst composition, size, and structure, electrocatalysts with excellent performance can be obtained. Atomic layer deposition(ALD) is a technique used to produce ultrathin films and ultrafine nanoparticles at the atomic level. It possesses unique advantages for the controllable design and synthesis of electrocatalysts. Furthermore, the homogenous composition and structure of the electrocatalysts prepared by ALD favor the exploration of structure-reactivity relationships and catalytic mechanisms. In this review, the mechanism, characteristics, and advantages of ALD in fabricating nanostructures are introduced first. Subsequently, the problems associated with existing electrocatalysts and a series of recently developed ALD strategies to enhance the activity and durability of electrocatalysts are presented. For example, the deposition of ultrafine Pt nanoparticles to increase the utilization and activity of Pt, fabrication of core–shell, overcoat, nanotrap, and other novel structures to protect the noble-metal nanoparticles and enhance the catalyst stability. In addition, ALD developments in synthesizing non-noble metallic electrocatalysts are summarized and discussed. Finally, based on the current studies, an outlook for the ALD application in the design and synthesis of electrocatalysts is presented.展开更多
Developing highly efficient magnetic microwave absorb-ers(MAs)is crucial,and yet challenging for anti-corrosion properties in extremely humid and salt-induced foggy environments.Herein,a dual-oxide shell of ZnO/Al_(2)...Developing highly efficient magnetic microwave absorb-ers(MAs)is crucial,and yet challenging for anti-corrosion properties in extremely humid and salt-induced foggy environments.Herein,a dual-oxide shell of ZnO/Al_(2)O_(3) as a robust barrier to FeSiAl core is introduced to mitigate corrosion resistance.The FeSiAl@ZnO@Al_(2)O_(3) layer by layer hybrid structure is realized with atomic-scale precision through the atomic layer deposition technique.Owing to the unique hybrid structure,the FeSiAl@ZnO@Al_(2)O_(3) exhibits record-high micro-wave absorbing performance in low-frequency bands covering L and S bands with a minimum reflection loss(RLmin)of-50.6 dB at 3.4 GHz.Compared with pure FeSiAl(RLmin of-13.5 dB,a bandwidth of 0.5 GHz),the RLmin value and effective bandwidth of this designed novel absorber increased up to~3.7 and~3 times,respectively.Fur-thermore,the inert ceramic dual-shells have improved 9.0 times the anti-corrosion property of FeSiAl core by multistage barriers towards corrosive medium and obstruction of the electric circuit.This is attributed to the large charge transfer resistance,increased impedance modulus|Z|0.01 Hz,and frequency time constant of FeSiAl@ZnO@Al_(2)O_(3).The research demonstrates a promising platform toward the design of next-generation MAs with improved anti-corrosion properties.展开更多
Atomic layer deposition(ALD)attracts great attention nowadays due to its ability for designing and modifying catalytic systems at the molecular level.There are several reported review papers published recently discuss...Atomic layer deposition(ALD)attracts great attention nowadays due to its ability for designing and modifying catalytic systems at the molecular level.There are several reported review papers published recently discussing this technique in catalysis.However,the mechanism on how the deposited materials improve the catalyst stability and tune the reaction selectivity is still unclear.Herein,catalytic systems created via ALD on stepwise preparation and/or modification under self-limiting reaction conditions are summarized.The effects of deposited materials in terms of electronic/geometry modification over the catalytic nanoparticles(NPs)are discussed.These effects explain the mechanism of the catalytic stability improvement and the selectivity modification.The unique properties of ALD for designing new catalytic systems are further investigated for building up photocatalytic reaction nanobowls,tandem catalyst and bi-active-component metallic catalytic systems.展开更多
Noble single‐atom catalysts have rapidly been attracting attention due to their unique catalytic properties and maximized utilization.Atomic layer deposition(ALD)is an emerging powerful technique for large‐scale syn...Noble single‐atom catalysts have rapidly been attracting attention due to their unique catalytic properties and maximized utilization.Atomic layer deposition(ALD)is an emerging powerful technique for large‐scale synthesis of stable single atom.In this review,we summarize recent developments of single atom synthesized by ALD as well as explore future research direction and trends.展开更多
Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facil...Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facile solvothermal process. The as-prepared photoanodes show dramatically enhanced performance for photoelectrochemical(PEC) water splitting, compared to single semiconductor counterparts. The optical and PEC properties of In_2S_3/ZnO NSAs have been optimized by modulating the thickness of the Zn O overlayer. After pairing with ZnO, the NSAs exhibit a broadened absorption range and an increased light absorptance over a wide wavelength region of 250–850 nm. The optimized sample of In_2S_3/ZnO-50 NSAs shows a photocurrent density of 1.642 m A cm^(-2)(1.5 V vs. RHE) and an incident photonto-current efficiency of 27.64% at 380 nm(1.23 V vs.RHE), which are 70 and 116 times higher than those of the pristine In_2S_3 NSAs, respectively. A detailed energy band edge analysis reveals the type-II band alignment of the In_2S_3/ZnO heterojunction, which enables efficient separation and collection of photogenerated carriers,especially with the assistance of positive bias potential, and then results in the significantly increased PEC activity.展开更多
Atomic layer deposition(ALD)has become an indispensable thin-film technology in the contemporary microelectronics industry.The unique self-limited layer-by-layer growth feature of ALD has outstood this technology to d...Atomic layer deposition(ALD)has become an indispensable thin-film technology in the contemporary microelectronics industry.The unique self-limited layer-by-layer growth feature of ALD has outstood this technology to deposit highly uniform conformal pinhole-free thin films with angstrom-level thickness control,particularly on 3D topologies.Over the years,the ALD technology has enabled not only the successful downscaling of the microelectronic devices but also numerous novel 3D device structures.As ALD is essentially a variant of chemical vapor deposition,a comprehensive understanding of the involved chemistry is of crucial importance to further develop and utilize this technology.To this end,we,in this review,focus on the surface chemistry and precursor chemistry aspects of ALD.We first review the surface chemistry of the gas–solid ALD reactions and elaborately discuss the associated mechanisms for the film growth;then,we review the ALD precursor chemistry by comparatively discussing the precursors that have been commonly used in the ALD processes;and finally,we selectively present a few newly-emerged applications of ALD in microelectronics,followed by our perspective on the future of the ALD technology.展开更多
Since the first report of amorphous In–Ga–Zn–O based thin film transistors,interest in oxide semiconductors has grown.They offer high mobility,low off-current,low process temperature,and wide flexibility for compos...Since the first report of amorphous In–Ga–Zn–O based thin film transistors,interest in oxide semiconductors has grown.They offer high mobility,low off-current,low process temperature,and wide flexibility for compositions and processes.Unfortunately,depositing oxide semiconductors using conventional processes like physical vapor deposition leads to problematic issues,especially for high-resolution displays and highly integrated memory devices.Conventional approaches have limited process flexibility and poor conformality on structured surfaces.Atomic layer deposition(ALD)is an advanced technique which can provide conformal,thickness-controlled,and high-quality thin film deposition.Accordingly,studies on ALD based oxide semiconductors have dramatically increased recently.Even so,the relationships between the film properties of ALD-oxide semiconductors and the main variables associated with deposition are still poorly understood,as are many issues related to applications.In this review,to introduce ALD-oxide semiconductors,we provide:(a)a brief summary of the history and importance of ALD-based oxide semiconductors in industry,(b)a discussion of the benefits of ALD for oxide semiconductor deposition(in-situ composition control in vertical distribution/vertical structure engineering/chemical reaction and film properties/insulator and interface engineering),and(c)an explanation of the challenging issues of scaling oxide semiconductors and ALD for industrial applications.This review provides valuable perspectives for researchers who have interest in semiconductor materials and electronic device applications,and the reasons ALD is important to applications of oxide semiconductors.展开更多
Chromium(Cr)is a common heavy metal that has severe impacts on the ecosystem and human health.Capacitive deionization(CDI)is an environment-friendly and energy-efficient electrochemical purification technology to remo...Chromium(Cr)is a common heavy metal that has severe impacts on the ecosystem and human health.Capacitive deionization(CDI)is an environment-friendly and energy-efficient electrochemical purification technology to remove Cr from polluted water.The performance of CDI systems relies primarily on the properties of electrodes.Carbon-nanotubes(CNTs)membranes are promising candidates in creating advanced CDI electrodes and processes.However,the low electrosorption capacity and high hydrophobicity of CNTs greatly impede their applications in water systems.In this study,we employ atomic layer deposition(ALD)to deposit TiO_(2) nanoparticulates on CNTs membranes for preparing electrodes with hydrophilicity.The TiO_(2)-deposited CNTs membranes display preferable electrosorption performance and reusability in CDI processes after only 20 ALD cycles deposition.The total Cr and Cr(VI)removal efficiencies are significantly improved to 92.1%and 93.3%,respectively.This work demonstrates that ALD is a highly controllable and simple method to produce advanced CDI electrodes,and broadens the application of metal oxide/carbon composites in the electrochemical processes.展开更多
Atomic layer deposition(ALD) is a versatile technique to deposit metals and metal oxide sensing materials at the atomic scale to achieve improved sensor functions. This article reviews metals and metal oxide semicondu...Atomic layer deposition(ALD) is a versatile technique to deposit metals and metal oxide sensing materials at the atomic scale to achieve improved sensor functions. This article reviews metals and metal oxide semiconductor(MOS) heterostructures for gas sensing applications in which at least one of the preparation steps is carried out by ALD. In particular, three types of MOS-based heterostructures synthesized by ALD are discussed, including ALD of metal catalysts on MOS, ALD of metal oxides on MOS and MOS core–shell(C–S) heterostructures.The gas sensing performances of these heterostructures are carefully analyzed and discussed.Finally, the further developments required and the challenges faced by ALD for the synthesis of MOS gas sensing materials are discussed.展开更多
基金the financial support from the National Key R&D Program of China(2024YFF0506100)the National Natural Science Foundation of China(52225606 and 52488201).
文摘Given the limited exposure of active sites and the retarded separation of photogenerated charge carriers in those developed photocata-lysts,photocatalyticCO_(2)splitting into value-added chemicals has suffered from the poor activity and remained in great challenge for real application.Herein,hydrothermally synthesized BiOCl with layered structure(BOC-NSs)was exfoliated into thickness reduced nanosheets(BOCNSs-w)and even atomic layers(BOCNSs-i)via ultrasonication in water and isopro-panol,respectively.In comparison with the pristine BOCNSs,the exfoli-ated BiOCl,especially BOCNSs-i with atomically layered structure,exhibits much improved photocatalytic activity forCO_(2)overall splitting to produce CO andO_(2) at a stoichiometric ratio of 2:1,with CO evolution rate reaching 134.8µmolg^(-1)h^(-1) under simulated solar light(1.7 suns).By surpassing the photocatalytic performances of the state-of-the-artBi_(l)O_(m)X_(n)(X:Cl,Br,I)based photocatalysts,the CO evolution rate is further increased by 99 times,reaching 13.3 mmolg^(-1)h^(-1) under concentrated solar irradiation(34 suns).This excellent photocatalytic performance achieved over BOCNSs-i should be benefited from the shortened transfer distance and the increased built-in electric field intensity,which acceler-ates the migration of photogenerated charge carriers to surface.Moreover,with oxygen vacancies(VO)introduced into the atomic layers,BOCNSs-i is exposed with the electrons enriched Bi active sites that could transfer electrons to activateCO_(2)molecules for highly efficient and selective CO production,by lowering the energy barrier of rate-determining step(RDS),*OH+*CO_(2)-→HCO_(3)-.It is also realized that theH_(2)O vapor supplied during photocatalytic reaction would exchange oxygen atoms withCO_(2),which could alter the reaction path-ways and further reduce the energy barrier of RDS,contributing to the dramatically improved photocatalytic performance forCO_(2)overall splitting to CO andO_(2).
文摘Engineering an efficient interface is a trustworthy strategy for designing advanced photocatalytic systems for solar energy conversion.Herein,oxygen-deficient Bi_(2)WO_(6)atomic layers without organic residues were successfully fabricated via a facile solvothermal strategy by the multifunctional regulatory mechanism of introduced chloridion.Both DFT calculations and speciation determination revealed that chloridion displayed a more pronounced effect in the controllable synthesis of oxygen-deficient Bi_(2)WO_(6)atomic layers without organic residues:ultrathinning and defect-engineering.This built-in multi-cooperative interface endowed Bi_(2)WO_(6)with intriguing photoelectrochemical properties,O_(2) activation ability,and ultrahigh activity in visible-light powered deep oxidation of NO.A reasonable photocatalytic mechanism was proposed based on in situ infrared spectroscopy analysis and theoretical calculations.We believe that this multi-cooperative interface engineering of oxygen-deficient Bi_(2)WO_(6)atomic layers without organic residues could provide new insights into the design of two-dimensional(2D)layered materials with efficient active sites and pave the way for efficient NO photooxidation systems.
基金supported by the National Natural Science Foundation of China(Nos.52072035,51631001,21801015,51702016,51902023,51872030)Joint R&D Plan of Hongkong+3 种基金MacaoTaiwan and Beijing(No.Z191100001619002)the Fundamental Research Funds for the Central Universities(No.2017CX01003)the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘Elemental doping confined in atomically-thin 2 D semiconductors offers a compelling strategy for constructing high performance photocatalysts.Although impressive progress has been achieved based on co-thermolysis method,the choices of dopants as well as semiconductor hosts are still quite limited to yield the elaborate photocatalyst with atomic-layer-confined doping defects,owing to the difficulty in balancing the reaction kinetics of different precursors.This study shows that the cation exchange reaction,which is dictated by the Pearson's hard and soft acids and bases(HSAB)theory and allowed to proceed at mild temperatures,can be developed into a conceptually new protocol for engineering elemental doping confined in semiconductor atomic layers.To this aim,the two atomic layers of a new type of 2 D photocatalyst PdSe0_(3)(PdSe0_(3)2 ALs,1.1 nm)are created by liquid exfoliation and exploited as a proof-of-concept prototype.It is demonstrated that the Mn(Ⅱ)dopants with controlled concentrations can be incorporated into PdSeO_(3)2 ALs via topological Mn^(2+) for-Pd^(2+) cation exchange performed in water/isopropanol solution at 30℃.The resulting Mn-doped PdSeO_(3)2 ALs present enhanced capacity for driving photocatalytic oxidation reactions in comparison with their undoped counterparts.The findings here suggest that the new route mediated by post synthetic cation exchange promises to give access to manifold 2 D confined-doping photocatalysts,with little perturbations on the thickness,morphology,and crystal structure of the atomically-thin semiconductor hosts.
基金supported by the Natural Science Foundation of Ningbo,China(2022J149)the Natural Science Foundation of Zhejiang Province,China(LY22E020010,LTGS24B030002)+1 种基金the Ningbo Science and Technology Project,China(2022-DST-004,2022A-230G,2024Z242)the National Key Research and Development Program of China,China(2021YFF0500501)。
文摘Atomic layer deposition(ALD)has driven significant advancements in photovoltaic technologies by enabling the development of interlayers that improve both the efficiency and stability of devices.This review traces the evolution of ALD interlayers across various photovoltaic technologies,starting with early silicon solar cells and progressing into a variety of thin-film solar cells.We then delve into the role of ALD in state-of-the-art single-junction perovskite solar cells,particularly in optimizing the critical interfaces of perovskites/charge-transporting layers/-electrodes.Apart from that,we screen the functionality of ALD processing,which consists of reducing surface/interfacial defects and thus mitigating energy loss.Particularly,it enables efficient stacking of multiple thin layers,making a variety of tandem solar cells possible(silicon/perovskite,etc.)for higher efficiency.Moreover,the ALDprocessed interlayer prevents the ion migration between metals and perovskites,inhibiting the inter-diffusioninduced degradation of devices.Despite ALD technology extensively elevating the performance of above conventional/emerging solar cells,key challenges such as precursor flammability,cross-contamination during processing,and low deposition pace persist.We go over these challenges and expect our comprehensive overview of ALD techniques could shed light on pushing the envelope of photovoltaic efficiency.
基金This work was financially supported by the National Key R&D Program of China(Nos.2019YFA0210004,2017YFA0207301,and 2017YFA0303500)the National Natural Science Foundation of China(Nos.21975242,U2032212,21890754,and 21805267)+7 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000)Youth Innovation Promotion Association of CAS(No.CX2340007003)Major Program of Development Foundation of Hefei Center for Physical Science and Technology(No.2020HSC-CIP003)Key Research Program of Frontier Sciences of CAS(No.QYZDY-SSW-SLH011)the Fok Ying-Tong Education Foundation(No.161012)the University Synergy Innovation Program of Anhui Province(GXXT-2020-001)Users with Excellence Program of Hefei Science Center CAS(2020HSC-UE001)Supercomputing USTC and National Supercomputing Center in Shenzhen are acknowledged for computational support.
文摘Sluggish separation and migration kinetics of the photogenerated carriers account for the low-efficiency of CO_(2) photoreduction into CH_(4). Design and construction two-dimensional (2D) in-plane heterostructures demonstrate to be an appealing approach to address above obstacles. Herein, we fabricate 2D in-plane heterostructured Ag_(2)S-In_(2)S_(3) atomic layers via an ion-exchange strategy. Photoluminescence spectra, time-resolved photoluminescence spectra, and photoelectrochemical measurements firmly affirm the optimized carrier dynamics of the In_(2)S_(3) atomic layers after the introduction of in-plane heterostructure. In-situ Fourier transform infrared spectroscopy spectra and density functional theory (DFT) calculations disclose the in-plane heterostructure contributes to CO_(2) activation and modulates the adsorption strength of CO* intermediates to facilitate the formation of CHO* intermediates, which are further protonated to CH4. In consequence, the in-plane heterostructure achieves the CH_(4) evolution rate of 20 µmol·g^(−1)·h^(−1), about 16.7 times higher than that of the In2S3 atomic layers. In short, this work proves construction of in-plane heterostructures as a promising method for obtaining high-efficiency CO_(2)-to-CH_(4) photoconversion properties.
文摘Regulating the selectivity of CO2 photoreduction is particularly challenging. Herein, we propose ideal models of atomic layers with/without element doping to investigate the effect of doping engineering to tune the selectivity of CO2 photoreduction. Prototypical ZnCo2O4 atomic layers with/without Ni-doping were first synthesized. Density functional theory calculations reveal that introducing Ni atoms creates several new energy levels and increases the density-of-states at the conduction band minimum. Synchrotron radiation photoemission spectroscopy demonstrates that the band structures are suitable for CO2 photoreduction, while the surface photovoltage spectra demonstrate that Ni doping increases the carrier separation efficiency. In situ diffuse reflectance Fourier transform infrared spectra disclose that the CO2^- radical is the main intermediate, while temperature-programed desorption curves reveal that the ZnCo2O4 atomic layers with/without Ni doping favor the respective CO and CH4 desorption. The Ni-doped ZnCo2O4 atomic layers exhibit a 3.5-time higher CO selectivity than the ZnCo2O4 atomic layers. This work establishes a clear correlation between elemental doping and selectivity regulation for CO2 photoreduction, opening new possibilities for tailoring solar-driven photocatalytic behaviors.
文摘Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous SiO_(2) refractive index gradient anti-reflective film prepared by atomic layer deposition(ALD).A porous SiO_(2) film with gradual porosity was obtained by phosphoric acid etching of Al_(2)O_(3)/SiO_(2) multilayers with gradient Al2O3 ratios,achieving a gradual decrease in refractive index from the substrate to the surface.The film exhibited an average transmittance as high as 97.8%within the wavelength range from 320 nm to 1200 nm.The environmental adaptability was further enhanced by surface modification using rare earth oxide(REO)La_(2)O_(3),resulting in formation of a lotus leaf-like structure and achieving a water contact angle of 100.0°.These data proved that the modification significantly improved hydrophobic self-cleaning capability while maintaining exceptional transparency of the film.The surface structure of the modified film remained undamaged even after undergoing wipe testing,demonstrating its excellent surface durability.
基金supported by the National Natural Science Foundation of China(Nos.U21A2054,21905007)the Key Discipline of Materials Science and Engineering,Bureau of Education of Guangzhou(Grant No.202255464).
文摘The bismuth-telluride-based alloy is the only thermoelectric material commercialized for the applications of refrigeration and energy harvesting,but its low cost-effectiveness severely restricts its large-scale ap-plication.The introduction of a porous structure in bulk thermoelectric materials has been theoretically proven to effectively reduce thermal conductivity and cost.However,the electrical properties of highly porous materials are considerably suppressed due to the strong carrier scattering at the interface be-tween the matrix and pores,ultimately leading to decreased figure of merit,ZT.Here,we use an atomic layer deposition strategy to introduce some hollow glass bubbles with nano-oxide layers into commercial Bi_(0.5)Sb_(1.5)Te_(3)for preparing high-performance porous thermoelectric materials.Experimental results indi-cate that the nano-oxide layers weaken carrier scattering at the interface between pores and matrix while maintaining high-strength phonon scattering,thereby optimizing carrier/phonon transport behaviors,and effectively increasing the ZT by 23.2%(from 0.99 to 1.22 at 350 K).Besides,our strategy has excellent universality confirmed by its effectiveness in improving the ZT of Bi_(2)Te_(2.7)Se_(0.3),therefore demonstrating great potential for developing low-cost and high-performance thermoelectric materials.
基金the European Union,the SOLiD project(grant agreement no.101069505),for the financial support。
文摘LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)is an attractive material for high-energy-density Li-ion batteries in electric vehicles.However,it suffers from rapid capacity fading.Previous studies have shown that tuning the positive electrode material via atomic layer deposition(ALD)can enhance the electrochemical performance of the material.In this article,we introduce a novel coating method using gaseous precursors in an ALD reactor,where an AlO_(x)layer is deposited directly on the surface of the NMC811 precursor,followed by lithiation.The AlO_(x)coating is applied to the NMC811 powder substrate by exposing it to gas-phase precursors,using a conventional ALD and simplified ALD(chemical vapor deposition-like)method.It is observed that the novel methods lead to the incorporation of Al as a dopant within the bulk of NMC811,rather than forming a conformal AlO_(x)coating,after the final lithiation step.The optimized procedures result in positive electrode materials with higher capacity and enhanced cycling stability in both half-cell and full-cell configurations.Doping or coating was shown to mitigate transition metal dissolution,reduce side reactions between the active material and electrolyte,and improve structural stability.
基金supported by the National Natural Science Foundation of China(21808214)Research Project Supported by Shanxi Scholarship Council of China(2023-126)Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20220013)。
文摘Normally,a transparent inert film is coated on the surface of TiO_(2) particles to enhance the weatherability of the pigment.Liquid-phase coating process is mainly used in industry,which difficult to get really uniform films.This work combining nanoparticle fluidization technology with atomic layer deposition(ALD) technology to achieve precise surface modification of a large number of micro-nano particles.First,we explored the fluidization characteristics of TiO_(2) nanoparticles in a home-made atmospheric fluidized bed ALD reactor(FB-ALD) to ensure the uniform fluidization of a large number of nanoparticles.Then TiCl_(4) and H_(2)O were used as precursors to deposit amorphous TiO_(2) films on the surface of TiO_(2) nanoparticles at 80℃ under atmospheric pressure,and the growth per cycle was about 0.109 nm per cycle.After 30 ALD cycles,the film thickness was about 3.1 nm,which could almost fully suppress the photocatalytic activity of TiO_(2).Compared with other traditional coating materials,amorphous TiO_(2) has higher light refractive index,and realizes the suppression of the photocatalytic activity of TiO_(2) without introducing other substances,demonstrating greater application potential in TiO_(2) pigment coating field.The process is a gas-phase coating method,which is efficient,no waste water,and easy to scale up.This work shown the excellent property of interface engineering in improving pigment weatherability and can also provide guidance for the nanoparticle surface modification.
基金supported by the National Natural Science Foundation of China(Grant Nos.22278101,22068010,22168016,and 52365044)the Natural Science Foundation of Hainan Province(Grant Nos.2019RC142 and 519QN176)the Finance Science and Technology Project of Hainan Province(Grant No.ZDYF2020009).
文摘Novel and promising chloride ion batteries(CIBs)that can operate at room temperature have attracted great attentions,due to the sustainable chloride-containing resources and high theoretical energy density.To achieve the superior electrochemical properties of CIBs,the structure design of electrode materials is essential.Herein,2D NiAl-layered double hydroxide(NiAl-LDH)nanoarrays derived from Al2O3 are in-situ grafted to graphene(G)by atomic layer deposition(ALD)and hydrothermal method.The achieved NiAl-LDH@G hybrids with 2D NiAl-LDH arrays grown perpendicularly on graphene surface,can efficiently prevent the stacking of LDHs and enlarge specific surface area to provide more active sites.The NiAl-LDH@G cathode exhibits a maximum discharge capacity of 223.3 mA h g^(-1)and an excellent reversible capacity of 107 mA h g^(-1)over 500 cycles at 100 mA g^(-1)with a high coulombic efficiency around 96%,whereas pure NiAl-LDH has a discharge capacity of only 48.8 mA h g^(-1)and a coulombic efficiency(CE)of about 78%.More importantly,the NiAl-LDH@G electrode has a stable voltage at 1.9 V and an outstanding discharge capacity of higher than 72 mA h g^(-1)after 120 days.Additionally,XRD,XPS,and EDS have been employed to unveil the electrochemical reaction and Cl-storage mechanism of the NiAlLDH@G cathode in CIBs.This work opens a facile and reasonable way for improving electrochemical performance at anion-type rechargeable batteries in terms of cathode material design and mechanism interpretation.
基金supported by the National Natural Science Foundation of China(21872160,21802094,21673269)the National Science Fund for Distinguished Young Scholars(21825204)+1 种基金the National Key R&D Program of China(2017YFA0700101)the Natural Science Basic Research Plan in Shaanxi Province of China(2018JQ2038)~~
文摘Electrocatalysis is a promising approach to clean energy conversion due to its high efficiency and low environmental pollution. Noble metal materials have been studied to show high activity toward electrocatalyltic reactions, although such applications remain restricted by the high cost and poor durability of the noble metals. By precisely adjusting the catalyst composition, size, and structure, electrocatalysts with excellent performance can be obtained. Atomic layer deposition(ALD) is a technique used to produce ultrathin films and ultrafine nanoparticles at the atomic level. It possesses unique advantages for the controllable design and synthesis of electrocatalysts. Furthermore, the homogenous composition and structure of the electrocatalysts prepared by ALD favor the exploration of structure-reactivity relationships and catalytic mechanisms. In this review, the mechanism, characteristics, and advantages of ALD in fabricating nanostructures are introduced first. Subsequently, the problems associated with existing electrocatalysts and a series of recently developed ALD strategies to enhance the activity and durability of electrocatalysts are presented. For example, the deposition of ultrafine Pt nanoparticles to increase the utilization and activity of Pt, fabrication of core–shell, overcoat, nanotrap, and other novel structures to protect the noble-metal nanoparticles and enhance the catalyst stability. In addition, ALD developments in synthesizing non-noble metallic electrocatalysts are summarized and discussed. Finally, based on the current studies, an outlook for the ALD application in the design and synthesis of electrocatalysts is presented.
基金financially supported by the National Natural Science Foundation of China(No.51972045,5197021414)the Fundamental Research Funds for the Chinese Central Universities,China(No.ZYGX2019J025)+4 种基金Sichuan Science and Technology Program(No.2020JDRC0015 and No.2020JDRC0045)Sichuan Science and Technology Innovation Talent Project(No.2021JDRC0021)the Vice-Chancellor fellowship scheme at RMIT Universitythe RMIT Micro Nano Research Facility(MNRF)in the Victorian node of the Australian National Fabrication Facility(ANFF)the RMIT Microscopy and Microanalysis Facility(RMMF)to support this work。
文摘Developing highly efficient magnetic microwave absorb-ers(MAs)is crucial,and yet challenging for anti-corrosion properties in extremely humid and salt-induced foggy environments.Herein,a dual-oxide shell of ZnO/Al_(2)O_(3) as a robust barrier to FeSiAl core is introduced to mitigate corrosion resistance.The FeSiAl@ZnO@Al_(2)O_(3) layer by layer hybrid structure is realized with atomic-scale precision through the atomic layer deposition technique.Owing to the unique hybrid structure,the FeSiAl@ZnO@Al_(2)O_(3) exhibits record-high micro-wave absorbing performance in low-frequency bands covering L and S bands with a minimum reflection loss(RLmin)of-50.6 dB at 3.4 GHz.Compared with pure FeSiAl(RLmin of-13.5 dB,a bandwidth of 0.5 GHz),the RLmin value and effective bandwidth of this designed novel absorber increased up to~3.7 and~3 times,respectively.Fur-thermore,the inert ceramic dual-shells have improved 9.0 times the anti-corrosion property of FeSiAl core by multistage barriers towards corrosive medium and obstruction of the electric circuit.This is attributed to the large charge transfer resistance,increased impedance modulus|Z|0.01 Hz,and frequency time constant of FeSiAl@ZnO@Al_(2)O_(3).The research demonstrates a promising platform toward the design of next-generation MAs with improved anti-corrosion properties.
基金supported by the U.S. Department of Energy, Office of Science, and Office of the Basic Energy Sciences, under Contract DE-AC-02-06CH11357~~
文摘Atomic layer deposition(ALD)attracts great attention nowadays due to its ability for designing and modifying catalytic systems at the molecular level.There are several reported review papers published recently discussing this technique in catalysis.However,the mechanism on how the deposited materials improve the catalyst stability and tune the reaction selectivity is still unclear.Herein,catalytic systems created via ALD on stepwise preparation and/or modification under self-limiting reaction conditions are summarized.The effects of deposited materials in terms of electronic/geometry modification over the catalytic nanoparticles(NPs)are discussed.These effects explain the mechanism of the catalytic stability improvement and the selectivity modification.The unique properties of ALD for designing new catalytic systems are further investigated for building up photocatalytic reaction nanobowls,tandem catalyst and bi-active-component metallic catalytic systems.
基金supported by the Natural Science and Engineering Research Council of Canada (NSERC)the Canada Research Chair Program (CRC) and the University of Western Ontario (UWO)
文摘Noble single‐atom catalysts have rapidly been attracting attention due to their unique catalytic properties and maximized utilization.Atomic layer deposition(ALD)is an emerging powerful technique for large‐scale synthesis of stable single atom.In this review,we summarize recent developments of single atom synthesized by ALD as well as explore future research direction and trends.
基金sponsored by the National Natural Science Foundation of China (Nos. 51402190, 61574091)Shanghai Sailing Program (18YF1427800)the special funds for theoretical physics of the National Natural Science Foundation of China (No. 11747029)
文摘Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facile solvothermal process. The as-prepared photoanodes show dramatically enhanced performance for photoelectrochemical(PEC) water splitting, compared to single semiconductor counterparts. The optical and PEC properties of In_2S_3/ZnO NSAs have been optimized by modulating the thickness of the Zn O overlayer. After pairing with ZnO, the NSAs exhibit a broadened absorption range and an increased light absorptance over a wide wavelength region of 250–850 nm. The optimized sample of In_2S_3/ZnO-50 NSAs shows a photocurrent density of 1.642 m A cm^(-2)(1.5 V vs. RHE) and an incident photonto-current efficiency of 27.64% at 380 nm(1.23 V vs.RHE), which are 70 and 116 times higher than those of the pristine In_2S_3 NSAs, respectively. A detailed energy band edge analysis reveals the type-II band alignment of the In_2S_3/ZnO heterojunction, which enables efficient separation and collection of photogenerated carriers,especially with the assistance of positive bias potential, and then results in the significantly increased PEC activity.
基金supported by NSFC(22175005)Guangdong Basic and Applied Basic Research Foundation(2020B1515120039)+1 种基金Shenzhen Fundamental Research Program(JCYJ20200109110628172,GXWD20201231165807007-20200802205241003)Guangdong Technology Center for Oxide Semiconductor Devices and ICs。
文摘Atomic layer deposition(ALD)has become an indispensable thin-film technology in the contemporary microelectronics industry.The unique self-limited layer-by-layer growth feature of ALD has outstood this technology to deposit highly uniform conformal pinhole-free thin films with angstrom-level thickness control,particularly on 3D topologies.Over the years,the ALD technology has enabled not only the successful downscaling of the microelectronic devices but also numerous novel 3D device structures.As ALD is essentially a variant of chemical vapor deposition,a comprehensive understanding of the involved chemistry is of crucial importance to further develop and utilize this technology.To this end,we,in this review,focus on the surface chemistry and precursor chemistry aspects of ALD.We first review the surface chemistry of the gas–solid ALD reactions and elaborately discuss the associated mechanisms for the film growth;then,we review the ALD precursor chemistry by comparatively discussing the precursors that have been commonly used in the ALD processes;and finally,we selectively present a few newly-emerged applications of ALD in microelectronics,followed by our perspective on the future of the ALD technology.
基金supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2020M3H4A3081867)the industry technology R&D program (20006400) funded by the Ministry of Trade,Industry and Energy (MOTIE, Korea)+2 种基金the project number 20010402 funded by the Ministry of Trade,Industry and Energy (MOTIE, Korea)the Industry Technology R&D program (#20010371) funded by the Ministry of Trade,Industry and Energy (MOTIE, Republic of Korea)the Technology Innovation Program (20017382) funded By the Ministryof Trade,Industry and Energy (MOTIE, Korea)
文摘Since the first report of amorphous In–Ga–Zn–O based thin film transistors,interest in oxide semiconductors has grown.They offer high mobility,low off-current,low process temperature,and wide flexibility for compositions and processes.Unfortunately,depositing oxide semiconductors using conventional processes like physical vapor deposition leads to problematic issues,especially for high-resolution displays and highly integrated memory devices.Conventional approaches have limited process flexibility and poor conformality on structured surfaces.Atomic layer deposition(ALD)is an advanced technique which can provide conformal,thickness-controlled,and high-quality thin film deposition.Accordingly,studies on ALD based oxide semiconductors have dramatically increased recently.Even so,the relationships between the film properties of ALD-oxide semiconductors and the main variables associated with deposition are still poorly understood,as are many issues related to applications.In this review,to introduce ALD-oxide semiconductors,we provide:(a)a brief summary of the history and importance of ALD-based oxide semiconductors in industry,(b)a discussion of the benefits of ALD for oxide semiconductor deposition(in-situ composition control in vertical distribution/vertical structure engineering/chemical reaction and film properties/insulator and interface engineering),and(c)an explanation of the challenging issues of scaling oxide semiconductors and ALD for industrial applications.This review provides valuable perspectives for researchers who have interest in semiconductor materials and electronic device applications,and the reasons ALD is important to applications of oxide semiconductors.
基金Financial supports from the Jiangsu Natural Science Foundation(BK20190677)National Natural Science Foundation of China(21908096)+2 种基金Scientific Research Foundation of Chuzhou University(2020qd06)support from the Program of Excellent Innovation Teams of Jiangsu Higher Education Institutionsthe Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Chromium(Cr)is a common heavy metal that has severe impacts on the ecosystem and human health.Capacitive deionization(CDI)is an environment-friendly and energy-efficient electrochemical purification technology to remove Cr from polluted water.The performance of CDI systems relies primarily on the properties of electrodes.Carbon-nanotubes(CNTs)membranes are promising candidates in creating advanced CDI electrodes and processes.However,the low electrosorption capacity and high hydrophobicity of CNTs greatly impede their applications in water systems.In this study,we employ atomic layer deposition(ALD)to deposit TiO_(2) nanoparticulates on CNTs membranes for preparing electrodes with hydrophilicity.The TiO_(2)-deposited CNTs membranes display preferable electrosorption performance and reusability in CDI processes after only 20 ALD cycles deposition.The total Cr and Cr(VI)removal efficiencies are significantly improved to 92.1%and 93.3%,respectively.This work demonstrates that ALD is a highly controllable and simple method to produce advanced CDI electrodes,and broadens the application of metal oxide/carbon composites in the electrochemical processes.
基金financially supported by the National Natural Science Foundation of China (Nos. 61971252 and51972182)the Shandong Provincial Natural Science Foundation (ZR2020JQ27 and ZR2021YQ42)the Youth Innovation Team Project of Shandong Provincial Education Department (2020KJN015)。
文摘Atomic layer deposition(ALD) is a versatile technique to deposit metals and metal oxide sensing materials at the atomic scale to achieve improved sensor functions. This article reviews metals and metal oxide semiconductor(MOS) heterostructures for gas sensing applications in which at least one of the preparation steps is carried out by ALD. In particular, three types of MOS-based heterostructures synthesized by ALD are discussed, including ALD of metal catalysts on MOS, ALD of metal oxides on MOS and MOS core–shell(C–S) heterostructures.The gas sensing performances of these heterostructures are carefully analyzed and discussed.Finally, the further developments required and the challenges faced by ALD for the synthesis of MOS gas sensing materials are discussed.