Efficient water dissociation catalysts are important for reducing the activation energy barrier of water molecules in the field of energy conversio n.Herein,symmetry-bro ken Rh ensemble induced by mandated charge was ...Efficient water dissociation catalysts are important for reducing the activation energy barrier of water molecules in the field of energy conversio n.Herein,symmetry-bro ken Rh ensemble induced by mandated charge was established to boost the catalytic activity toward water dissociation.As an experimental verification,the turnover frequency of 1.0-RTO_(V4)in hydrogen generation from ammonia borane hydrolysis reaches up to 2838 min-1(24828 min^(-1)depend on Rh dispersion),exceeding the benchmark set up by state-of-the-art catalysts.The transfer of mandated charge from O_(V)to Rh near O_(V)breaks the local symmetry of Rh nanoparticle and forms Rh^(γ-)(electron-aggregation Rh)-Rh interfacial atomic ensemble.This symmetry-broken Rh ensemble is the reason for the high activity of the catalyst.This work provides an effective electronic regulation strategy based on symmetry-broken atomic ensemble induced by mandated charge,designed to stimulate the limiting activity of metal catalyst in the field of next generation energy chemistry.展开更多
We propose a new approach for quantum state transfer(QST) between atomic ensembles separately trapped in two distant cavities connected by an optical fiber via adiabatic passage. The three-level Λ-type atoms in eac...We propose a new approach for quantum state transfer(QST) between atomic ensembles separately trapped in two distant cavities connected by an optical fiber via adiabatic passage. The three-level Λ-type atoms in each ensemble dispersively interact with the nonresonant classical field and cavity mode. By choosing appropriate parameters of the system, the effective Hamiltonian describes two atomic ensembles interacting with "the same cavity mode" and has a dark state. Consequently, the QST between atomic ensembles can be implemented via adiabatic passage. Numerical calculations show that the scheme is robust against moderate fluctuations of the experimental parameters. In addition, the effect of decoherence can be suppressed effectively. The idea provides a scalable way to an atomic-ensemble-based quantum network, which may be reachable with currently available technology.展开更多
We study the optical properties of a two-level atomic ensemble controlled by a high-finesse cavity. Even though the cavity is initially in the vacuum state in the absence of external driving, the probe response of the...We study the optical properties of a two-level atomic ensemble controlled by a high-finesse cavity. Even though the cavity is initially in the vacuum state in the absence of external driving, the probe response of the atomic ensemble can be dramatically modified. When the collectively enhanced atom–cavity coupling is strong enough and the cavity decay rate is much smaller than the atomic damping rate, an electromagnetically induced transparency-like coherent phenomenon emerges with a dip absorption for the response of the two-level atoms in the cavity without driving, and thus is called vacuum induced transparency. We also show the slow light with very low group velocity in such an atomic ensemble.展开更多
We show a scheme of preparing multipartite W type of maximally entangled states among many atomic ensembles with the generation time increasing with the party number only polynomially. The scheme is based on laser man...We show a scheme of preparing multipartite W type of maximally entangled states among many atomic ensembles with the generation time increasing with the party number only polynomially. The scheme is based on laser manipulation of atomic ensembles and single-photon detection, and fits well the status of the current experimental technology. We also show one of the applications of this kind of W state, demonstrating Bell theorem without inequalities.展开更多
We propose a scheme for the generation of two collections of atoms trapped in distant cavities connected by an optical fiber.The virtual photon exchange leads to the entanglement between these two atomic ensembles.Dur...We propose a scheme for the generation of two collections of atoms trapped in distant cavities connected by an optical fiber.The virtual photon exchange leads to the entanglement between these two atomic ensembles.During the operation the atomic system,cavity modes,and fiber are not excited,which is important in view of decoherence.展开更多
This paper proposes two simple and robust schemes to generate an atomic-ensemble Greenberger-Horne--Zeilinger-type (GHZ-type) entangled state via linear optics and single photon detection. These schemes are based on...This paper proposes two simple and robust schemes to generate an atomic-ensemble Greenberger-Horne--Zeilinger-type (GHZ-type) entangled state via linear optics and single photon detection. These schemes are based on two-photon Hong-Ou-Mandel-type interference, therefore they are insensitive to the phase fluctuation. This advantage will make the realizations of these two schemes easier. One scheme can scale efficiently with the number of ensembles because of the used quantum memory. Both schemes are also robust to the noise and within the reach of current technology.展开更多
We investigate the coherent tunneling phenomenon of the laser-driven atomic ensembles confined in a well-separated double-well potential. By generalizing the Frohlich canonical transformation to adiabatically eliminat...We investigate the coherent tunneling phenomenon of the laser-driven atomic ensembles confined in a well-separated double-well potential. By generalizing the Frohlich canonical transformation to adiabatically eliminate the light field variable, a BCS-like effective Hamiltonian is obtained to depict the residual interaction between the two atomic ensembles. The number of the tunneling collective low excitations and its relationship to the ratios g<SUB>r</SUB>/g<SUB>l</SUB> and N<SUB>r</SUB>/N<SUB>l</SUB> are given.展开更多
We propose a novel cooling protocol within a triple-Laguerre-Gaussian cavity optomechanical system,which is designed to suppress the thermal vibrations of a rotating mirror to reach its quantum ground state.The system...We propose a novel cooling protocol within a triple-Laguerre-Gaussian cavity optomechanical system,which is designed to suppress the thermal vibrations of a rotating mirror to reach its quantum ground state.The system incorporates two auxiliary cavities and an atomic ensemble coupled to a Laguerre-Gaussian rotational cavity.By carefully selecting system parameters,the cooling process of the rotating mirror is significantly enhanced,while the heating process is effectively suppressed,enabling efficient ground-state cooling even in the unresolved sideband regime.Compared to previous works,our scheme reduces the stringent restrictions on auxiliary systems,making it more experimentally feasible under broader parameter conditions.These findings provide a robust approach for achieving ground-state cooling in mechanical resonators.展开更多
The four-wave mixing process in atomic ensembles has many important applications in quantum information.We review recent progress on the generation of optical quantum states from the four-wave mixing process in hot at...The four-wave mixing process in atomic ensembles has many important applications in quantum information.We review recent progress on the generation of optical quantum states from the four-wave mixing process in hot atomic ensembles,including the production of two-beam,multi-beam,and multiplexed quantum correlated or entangled states.We also review the applications of these optical quantum states in implementing quantum information protocols,constructing SU(1,1)quantum interferometers,and realizing quantum plasmonic sensing.These applications indicate that the four-wave mixing process in hot atomic ensembles is a promising platform for quantum information processing,especially for implementing alloptical quantum information protocols,constructing SU(1,1)interferometers,and realizing quantum sensing.展开更多
Photonic graphene,possesses a honeycomb-like geometric structure,provides a superior platform for simulating photonic bandgap,Dirac physics,and topological photonics.Here,the photonic graphene with reconfigurable geom...Photonic graphene,possesses a honeycomb-like geometric structure,provides a superior platform for simulating photonic bandgap,Dirac physics,and topological photonics.Here,the photonic graphene with reconfigurable geometric structures is demonstrated in a 5S_(1/2)–5P_(3/2)–5D_(5/2)cascade-type 85Rb atomic ensembles.A strong hexagonal-coupling field,formed by the interference of three identical coupling beams,is responsible for optically inducing photonic graphene in atomic vapor.The incident weak probe beam experiences discrete diffraction,and the observed pattern at the output plane of vapor cell exhibits a clear hexagonal intensity distribution.The complete photonic graphene geometries from transversely stretched to longitudinally stretched are conveniently constructed by varying the spatial arrangement of three coupling beams,and the corresponding diffraction patterns are implemented theoretically and experimentally to map these distorted geometric structures.Moreover,the distribution of lattice sites intensity in photonic graphene is further dynamically adjusted by two-photon detuning and the coupling beams power.This work paves the way for further investigation of light transport and graphene dynamics.展开更多
We demonstrate the generation of non-classical photon pairs in a warm S-Rb atomic vapor ('ell with no buffer gas or polarization preserving coatings via spontaneous four-wave mixing. We obtain the photon pairs with ...We demonstrate the generation of non-classical photon pairs in a warm S-Rb atomic vapor ('ell with no buffer gas or polarization preserving coatings via spontaneous four-wave mixing. We obtain the photon pairs with a 1/e correlation time of 40 ns and the violation of Cauchy-Sehwartz inequality by a factor of 23 - 3. This provides a convenient and efficient method to generate photon pair sources based on an atomic ensemble.展开更多
We propose a potentially practical scheme to generate macroscopic W-type state of N atomic ensembles in cavity QED system consisting of N atomic ensembles trapped in N single-mode cavities connected by(N 1)optical fib...We propose a potentially practical scheme to generate macroscopic W-type state of N atomic ensembles in cavity QED system consisting of N atomic ensembles trapped in N single-mode cavities connected by(N 1)optical fibers.We show that the N-qubit W-type state of atomic ensembles can be realized with high success probabilities if the coulping strength of the cavity-fiber is much stronger than that of cavity-atom.We also show that both the growth of atomic number in each ensemble and the increase of the number of atomic ensembles can diminish the detrimental influence from dissipative processes.This idea provides a scalable way to an atomic-ensemble-based quantum network,which is plausible with current available technology.展开更多
In the famous quantum communication scheme developed by Duan et al.[L.M.Duan,M.D.Lukin,J.I.Cirac,and P.Zoller,Nature(London) 414(2001) 413],the probability of successful generating a symmetric collective atomic state ...In the famous quantum communication scheme developed by Duan et al.[L.M.Duan,M.D.Lukin,J.I.Cirac,and P.Zoller,Nature(London) 414(2001) 413],the probability of successful generating a symmetric collective atomic state with a single-photon emitted have to be far smaller than 1 to obtain an acceptable entangled state.Based on strong dipole-dipole interaction between two Rydberg atoms,two simultaneous excitations in an atomic ensemble are greatly suppressed,which makes it possible to excite a mesoscopic cold atomic ensemble into a near-ideal singly-excited symmetric collective state accompanied by a signal-photon with near unity success probability.展开更多
We demonstrate a dual-wavelength optical frequency standard based on the dual-optical-transition modulation transfer spectroscopy(DOT-MTS)between different quantum transitions of the rubidium D1(795 nm)and D2(780 nm)l...We demonstrate a dual-wavelength optical frequency standard based on the dual-optical-transition modulation transfer spectroscopy(DOT-MTS)between different quantum transitions of the rubidium D1(795 nm)and D2(780 nm)lines.In a single rubidium atomic ensemble,modulation frequency sidebands from the 780 nm pump beam are simultaneously transferred to both the 780 and 795 nm probe lasers.The DOT-MTS enables the simultaneous stabilization of 780 and 795 nm lasers on a single vapor cell.Both lasers exhibit a frequency instability in the low 10-14range at 1 s of averaging,as estimated from the residual error signal.A theoretical model is developed based on the V-type atomic level structure to illustrate the dual-wavelength spectroscopy.This approach can be extended to develop a multi-wavelength optical frequency standard within a single atomic ensemble,broadening its applicability in fields such as precision metrology,Rydberg atoms,wavelength standards,optical networks,and beyond.展开更多
Atomically dispersed metal catalysts(ADMCs),featured with maximized atom efficiency and well-defined active sites,have attracted increasing research interest,especially for addressing the critical challenges of the ox...Atomically dispersed metal catalysts(ADMCs),featured with maximized atom efficiency and well-defined active sites,have attracted increasing research interest,especially for addressing the critical challenges of the oxygen evolution reaction(OER),including slow kinetics,limited stability,and dependence on scarce noble metals.From isolated atomic centers to multi-metallic ensemble atomic sites(EAS),spatially coupled metal centers with distinct atomic configurations offer a new platform for tailoring the energetics of OER pathways.EAS provide cooperative interactions that can modulate intermediate binding energies,enable multi-electron transfer,and enhance structural resilience under work conditions.In this review,we summarize recent progress in the mechanistic understanding of EAS in acidic OER(AOER)over the past three years,highlight advances in material synthesis strategies,and explore how artificial intelligence and machine learning are accelerating the discovery of optimal ensembles.We propose future directions for rational catalyst design and advocate the integration of advanced characterizations and data-driven modeling to realize next-generation AOER catalysts.展开更多
The Bessel-like vector vortex beam(BlVVB)has gained increasing significance across numerous applications.However,its practical application is restricted by manufacturing difficulties and polarization manipulation.Thus...The Bessel-like vector vortex beam(BlVVB)has gained increasing significance across numerous applications.However,its practical application is restricted by manufacturing difficulties and polarization manipulation.Thus,the ability to manipulate its degrees of freedom is highly desirable.In this paper,the full-domain polarization modulation of BlVVB within a hot atomic ensemble has been investigated.We begin with the theoretical analysis of the resonant magneto-optical effect of atoms with a horizontal linear-polarized beam and experimentally demonstrate precise manipulation of the polarization state across the entire domain of the BlVVB,achieving an error margin of less than 3°at various cross-sectional points.Our study provides a novel approach for the modulation of BlVVB based on atomic media,which holds potential applications in sensitive vector magnetometers,optical communications,and signal processing.展开更多
The Dicke model,which describes the collective interaction between an ensemble of atoms and a single-mode photon field,serves as a fundamental framework for studying light-matter interactions and quantum electrodynami...The Dicke model,which describes the collective interaction between an ensemble of atoms and a single-mode photon field,serves as a fundamental framework for studying light-matter interactions and quantum electrodynamic phenomena.In this work,we investigate the manifestation of non-Hermitian effects in a generalized Dicke model,where two dissipative atom ensembles interact with a single-mode photon field.We explore the system in the semiclassical limit as a non-Hermitian Dicke model,revealing rich exceptional points(EPs)and diabolic points.Furthermore,we explore the quantum signature of EPs in the Hilbert space,relying on discrete photon numbers.The transition of photons from antibunching to bunching at steady state is unravelled.Our findings deepen the understanding of non-Hermitian physics in light-matter interaction,which is instructive for the design of advanced photonic devices.展开更多
This paper provides a comprehensive review of the principles of magnetic and optical control in thermal atomic spin ensembles,as well as recent advances and applications in quantum precision measurement.As a practical...This paper provides a comprehensive review of the principles of magnetic and optical control in thermal atomic spin ensembles,as well as recent advances and applications in quantum precision measurement.As a practical macroscopic quantum system,thermal atomic spin ensembles have emerged as a key platform for next-generation quantum sensors due to their exceptional sensitivity,accuracy,and scalability.The review emphasizes how magneto-optical modulation techniques can be employed to extract real-time information about spin dynamics and system states,thereby generating high-quality observables that serve as the foundation for advanced control strategies such as feedback regulation,quantum state estimation,and pulsed manipulation.These techniques are shown to play a crucial role in enhancing measurement sensitivity,dynamic response and long-term stability.In addition,the incorporation of modern control theories,including closed-loop feedback and Kalman filter,has facilitated real-time optimization of atomic spin dynamics,unlocking new levels of sensitivity across a range of applications such as atomic magnetometers,co-magnetometers,inertial sensors,and microwave masers.This paper systematically discusses the synergistic interplay of modulation,measurement,and control in thermal spin ensembles,exploring its potential across a wide range of scientific and engineering applications.These technological advances provide a solid foundation for ultra-sensitive magnetic field detection and show promising prospects in frontier fields such as dark matter detection and gravitational wave observation.Looking ahead,such innovations are expected to further drive the miniaturization and integration of quantum sensors,significantly expanding their utility across disciplines.展开更多
We theoretically explore the tunability of magnomechanically induced transparency(MMIT) phenomenon and fastslow light effect in a hybrid cavity magnomechanical system in which a high-quality yttrium iron garnet(YIG) s...We theoretically explore the tunability of magnomechanically induced transparency(MMIT) phenomenon and fastslow light effect in a hybrid cavity magnomechanical system in which a high-quality yttrium iron garnet(YIG) sphere and an atomic ensemble are placed inside a microwave cavity. In the probe output spectrum, we can observe magnoninduced transparency(MIT) and MMIT due to the photon-magnon and phonon-magnon couplings. We further investigate the effect of atomic ensemble on the absorption spectrum. The results show that better transparency can be obtained by choosing appropriate atomic ensemble parameters. We give an explicit explanation for the mechanism of the Fano resonance phenomenon. Moreover, we discuss phenomena of slow-light propagation. The maximum group delay increases significantly with the increasing atom–cavity coupling strength, and the conversion between slow light and fast light can also be achieved by adjusting the atom–cavity coupling strength. These results may have potential applications for quantum information processing and high precision measurements.展开更多
We propose a scheme for preparing multiple-photon GHZ state via cavity-assisted interaction. There are n-pair single-photon pulses successively injected and reflected from two sides of the cavity, which traps one atom...We propose a scheme for preparing multiple-photon GHZ state via cavity-assisted interaction. There are n-pair single-photon pulses successively injected and reflected from two sides of the cavity, which traps one atom. After the atomic state is measured, a 2n-photon GHZ state is produced. In the ideal case, the successful probability of the scheme is close to unity.展开更多
基金supported by the National Natural Science Foundation of China(No.22279118,No.22309164)the China Postdoctoral Science Foundation(No.2023M733214)+1 种基金the Young Top Talent Program of Zhongyuan-Yingcai-Jihua(No.30602674)the Special Projects of Henan Province Key Research and Development and Promotion(Science and Technology Research)(No.232102241033)。
文摘Efficient water dissociation catalysts are important for reducing the activation energy barrier of water molecules in the field of energy conversio n.Herein,symmetry-bro ken Rh ensemble induced by mandated charge was established to boost the catalytic activity toward water dissociation.As an experimental verification,the turnover frequency of 1.0-RTO_(V4)in hydrogen generation from ammonia borane hydrolysis reaches up to 2838 min-1(24828 min^(-1)depend on Rh dispersion),exceeding the benchmark set up by state-of-the-art catalysts.The transfer of mandated charge from O_(V)to Rh near O_(V)breaks the local symmetry of Rh nanoparticle and forms Rh^(γ-)(electron-aggregation Rh)-Rh interfacial atomic ensemble.This symmetry-broken Rh ensemble is the reason for the high activity of the catalyst.This work provides an effective electronic regulation strategy based on symmetry-broken atomic ensemble induced by mandated charge,designed to stimulate the limiting activity of metal catalyst in the field of next generation energy chemistry.
基金Project supported by the Funding(type B)from the Fujian Education Department,China(Grant No.JB13261)
文摘We propose a new approach for quantum state transfer(QST) between atomic ensembles separately trapped in two distant cavities connected by an optical fiber via adiabatic passage. The three-level Λ-type atoms in each ensemble dispersively interact with the nonresonant classical field and cavity mode. By choosing appropriate parameters of the system, the effective Hamiltonian describes two atomic ensembles interacting with "the same cavity mode" and has a dark state. Consequently, the QST between atomic ensembles can be implemented via adiabatic passage. Numerical calculations show that the scheme is robust against moderate fluctuations of the experimental parameters. In addition, the effect of decoherence can be suppressed effectively. The idea provides a scalable way to an atomic-ensemble-based quantum network, which may be reachable with currently available technology.
基金Project supported by the National Natural Science Foundation of China(Grant No.11304010)
文摘We study the optical properties of a two-level atomic ensemble controlled by a high-finesse cavity. Even though the cavity is initially in the vacuum state in the absence of external driving, the probe response of the atomic ensemble can be dramatically modified. When the collectively enhanced atom–cavity coupling is strong enough and the cavity decay rate is much smaller than the atomic damping rate, an electromagnetically induced transparency-like coherent phenomenon emerges with a dip absorption for the response of the two-level atoms in the cavity without driving, and thus is called vacuum induced transparency. We also show the slow light with very low group velocity in such an atomic ensemble.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174052 and 11474049)the China Advanced Science and Technology Innovation Fund
文摘We show a scheme of preparing multipartite W type of maximally entangled states among many atomic ensembles with the generation time increasing with the party number only polynomially. The scheme is based on laser manipulation of atomic ensembles and single-photon detection, and fits well the status of the current experimental technology. We also show one of the applications of this kind of W state, demonstrating Bell theorem without inequalities.
基金Supported by the Doctoral Foundation of the Ministry of Education of China under Grant No.20093514110009
文摘We propose a scheme for the generation of two collections of atoms trapped in distant cavities connected by an optical fiber.The virtual photon exchange leads to the entanglement between these two atomic ensembles.During the operation the atomic system,cavity modes,and fiber are not excited,which is important in view of decoherence.
基金Project supported by National Natural Science Foundation of China (Grant Nos 10674126 and 10874171)National Fundamental Research Program of China (Grant Nos 2006CB921900 and 2009CB929601)+1 种基金the Innovation Fund from CAS,Program for NCETInternational Cooperation Program from CAS and Ministry of Science and Technology of China
文摘This paper proposes two simple and robust schemes to generate an atomic-ensemble Greenberger-Horne--Zeilinger-type (GHZ-type) entangled state via linear optics and single photon detection. These schemes are based on two-photon Hong-Ou-Mandel-type interference, therefore they are insensitive to the phase fluctuation. This advantage will make the realizations of these two schemes easier. One scheme can scale efficiently with the number of ensembles because of the used quantum memory. Both schemes are also robust to the noise and within the reach of current technology.
基金国家自然科学基金,中国科学院知识创新工程项目,the Chinese Fundamental Research Program
文摘We investigate the coherent tunneling phenomenon of the laser-driven atomic ensembles confined in a well-separated double-well potential. By generalizing the Frohlich canonical transformation to adiabatically eliminate the light field variable, a BCS-like effective Hamiltonian is obtained to depict the residual interaction between the two atomic ensembles. The number of the tunneling collective low excitations and its relationship to the ratios g<SUB>r</SUB>/g<SUB>l</SUB> and N<SUB>r</SUB>/N<SUB>l</SUB> are given.
基金Project supported by the National Natural Science Foundation of China(Grant No.62471180)。
文摘We propose a novel cooling protocol within a triple-Laguerre-Gaussian cavity optomechanical system,which is designed to suppress the thermal vibrations of a rotating mirror to reach its quantum ground state.The system incorporates two auxiliary cavities and an atomic ensemble coupled to a Laguerre-Gaussian rotational cavity.By carefully selecting system parameters,the cooling process of the rotating mirror is significantly enhanced,while the heating process is effectively suppressed,enabling efficient ground-state cooling even in the unresolved sideband regime.Compared to previous works,our scheme reduces the stringent restrictions on auxiliary systems,making it more experimentally feasible under broader parameter conditions.These findings provide a robust approach for achieving ground-state cooling in mechanical resonators.
基金the Innovation Program of Shanghai Municipal Education Commission(2021-01-07-00-08-E00100)National Natural Science Foundation of China(11874155,91436211,11374104,12174110)+8 种基金Basic Research Project of Shanghai Science and Technology Commission(20JC1416100)Natural Science Foundation of Shanghai(17ZR1442900)Minhang Leading Talents(201971)Program of Scientific and Technological Innovation of Shanghai(17JC1400401)Shanghai Sailing Program(21YF1410800)China Post-doctoral Science Foundation(2020M681224)National Basic Research Program of China(2016YFA0302103)Shanghai Municipal Science and Technology Major Project(2019SHZDZX01)111 Project(B12024).
文摘The four-wave mixing process in atomic ensembles has many important applications in quantum information.We review recent progress on the generation of optical quantum states from the four-wave mixing process in hot atomic ensembles,including the production of two-beam,multi-beam,and multiplexed quantum correlated or entangled states.We also review the applications of these optical quantum states in implementing quantum information protocols,constructing SU(1,1)quantum interferometers,and realizing quantum plasmonic sensing.These applications indicate that the four-wave mixing process in hot atomic ensembles is a promising platform for quantum information processing,especially for implementing alloptical quantum information protocols,constructing SU(1,1)interferometers,and realizing quantum sensing.
基金supported by the National Natural Science Foundation of China(No.62075121)the Open Fund of MOE Key Laboratory of Weak-Light Nonlinear Photonics(OS 22-2)Shanxi“1331 Project”.
文摘Photonic graphene,possesses a honeycomb-like geometric structure,provides a superior platform for simulating photonic bandgap,Dirac physics,and topological photonics.Here,the photonic graphene with reconfigurable geometric structures is demonstrated in a 5S_(1/2)–5P_(3/2)–5D_(5/2)cascade-type 85Rb atomic ensembles.A strong hexagonal-coupling field,formed by the interference of three identical coupling beams,is responsible for optically inducing photonic graphene in atomic vapor.The incident weak probe beam experiences discrete diffraction,and the observed pattern at the output plane of vapor cell exhibits a clear hexagonal intensity distribution.The complete photonic graphene geometries from transversely stretched to longitudinally stretched are conveniently constructed by varying the spatial arrangement of three coupling beams,and the corresponding diffraction patterns are implemented theoretically and experimentally to map these distorted geometric structures.Moreover,the distribution of lattice sites intensity in photonic graphene is further dynamically adjusted by two-photon detuning and the coupling beams power.This work paves the way for further investigation of light transport and graphene dynamics.
基金supported by the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China(Nos.11774286,11374238,11574247,11374008,and 11534008)
文摘We demonstrate the generation of non-classical photon pairs in a warm S-Rb atomic vapor ('ell with no buffer gas or polarization preserving coatings via spontaneous four-wave mixing. We obtain the photon pairs with a 1/e correlation time of 40 ns and the violation of Cauchy-Sehwartz inequality by a factor of 23 - 3. This provides a convenient and efficient method to generate photon pair sources based on an atomic ensemble.
基金supported by the National Natural Science Foundation of China(Grant Nos.10874122 and 11372122)the Program for Excellent Talents at the University of Guangdong Province(Guangdong TeacherLetter[1010]No.79)
文摘We propose a potentially practical scheme to generate macroscopic W-type state of N atomic ensembles in cavity QED system consisting of N atomic ensembles trapped in N single-mode cavities connected by(N 1)optical fibers.We show that the N-qubit W-type state of atomic ensembles can be realized with high success probabilities if the coulping strength of the cavity-fiber is much stronger than that of cavity-atom.We also show that both the growth of atomic number in each ensemble and the increase of the number of atomic ensembles can diminish the detrimental influence from dissipative processes.This idea provides a scalable way to an atomic-ensemble-based quantum network,which is plausible with current available technology.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 61076094,11072218,and 11272287Zhejiang Provincial Natural Science Foundation of China under Grant No. Y6110314Scientific Research Fund of Zhejiang Provincial Education Department under Grant No. Y200909693
文摘In the famous quantum communication scheme developed by Duan et al.[L.M.Duan,M.D.Lukin,J.I.Cirac,and P.Zoller,Nature(London) 414(2001) 413],the probability of successful generating a symmetric collective atomic state with a single-photon emitted have to be far smaller than 1 to obtain an acceptable entangled state.Based on strong dipole-dipole interaction between two Rydberg atoms,two simultaneous excitations in an atomic ensemble are greatly suppressed,which makes it possible to excite a mesoscopic cold atomic ensemble into a near-ideal singly-excited symmetric collective state accompanied by a signal-photon with near unity success probability.
基金Beijing Nova Program(20240484696)Innovation Program for Quantum Science and Technology(2021ZD0303202)Wenzhou Major Science and Technology Innovation Key Project(ZG2020046)。
文摘We demonstrate a dual-wavelength optical frequency standard based on the dual-optical-transition modulation transfer spectroscopy(DOT-MTS)between different quantum transitions of the rubidium D1(795 nm)and D2(780 nm)lines.In a single rubidium atomic ensemble,modulation frequency sidebands from the 780 nm pump beam are simultaneously transferred to both the 780 and 795 nm probe lasers.The DOT-MTS enables the simultaneous stabilization of 780 and 795 nm lasers on a single vapor cell.Both lasers exhibit a frequency instability in the low 10-14range at 1 s of averaging,as estimated from the residual error signal.A theoretical model is developed based on the V-type atomic level structure to illustrate the dual-wavelength spectroscopy.This approach can be extended to develop a multi-wavelength optical frequency standard within a single atomic ensemble,broadening its applicability in fields such as precision metrology,Rydberg atoms,wavelength standards,optical networks,and beyond.
基金supported by China Ministry of Science and Technology(2020YFA0710203)the Major Frontier Research Project of the University of Science and Technology of China(LS2060000002)+4 种基金the Joint Funds of the National Natural Science Foundation of China(U23A2081)the National Natural Science Foundation of China(22221003)the Anhui Provincial Key Research and Development Project(2023z04020010)the Anhui Provincial Natural Science Foundation(2108085UD06 and 2208085UD04)USTC Research Funds of the Double First-Class Initiative(YD2060006005).
文摘Atomically dispersed metal catalysts(ADMCs),featured with maximized atom efficiency and well-defined active sites,have attracted increasing research interest,especially for addressing the critical challenges of the oxygen evolution reaction(OER),including slow kinetics,limited stability,and dependence on scarce noble metals.From isolated atomic centers to multi-metallic ensemble atomic sites(EAS),spatially coupled metal centers with distinct atomic configurations offer a new platform for tailoring the energetics of OER pathways.EAS provide cooperative interactions that can modulate intermediate binding energies,enable multi-electron transfer,and enhance structural resilience under work conditions.In this review,we summarize recent progress in the mechanistic understanding of EAS in acidic OER(AOER)over the past three years,highlight advances in material synthesis strategies,and explore how artificial intelligence and machine learning are accelerating the discovery of optimal ensembles.We propose future directions for rational catalyst design and advocate the integration of advanced characterizations and data-driven modeling to realize next-generation AOER catalysts.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12033007,61801458,12103058,12203058,12074309,and 61875205)the Key Project of Frontier Science Research of the Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH007)+2 种基金the Strategic Priority Research Program of CAS(Grant No.XDC07020200)the Youth Innovation Promotion Association,CAS(Grant Nos.2021408,2022413,and 2023425)the Research on Highly Sensitive Long-Wave Receiver Based on Rydberg Atoms(Grant No.1P2024000059)。
文摘The Bessel-like vector vortex beam(BlVVB)has gained increasing significance across numerous applications.However,its practical application is restricted by manufacturing difficulties and polarization manipulation.Thus,the ability to manipulate its degrees of freedom is highly desirable.In this paper,the full-domain polarization modulation of BlVVB within a hot atomic ensemble has been investigated.We begin with the theoretical analysis of the resonant magneto-optical effect of atoms with a horizontal linear-polarized beam and experimentally demonstrate precise manipulation of the polarization state across the entire domain of the BlVVB,achieving an error margin of less than 3°at various cross-sectional points.Our study provides a novel approach for the modulation of BlVVB based on atomic media,which holds potential applications in sensitive vector magnetometers,optical communications,and signal processing.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1404400)the National Natural Science Foundation of China(Grant Nos.12125504 and 12305050)+3 种基金Zhejiang Provincial Natural Science Foundation(Grant No.LZ25A050001)the Doctoral Support Program for Young Talents of the China Association for Science and Technologythe Hundred Talents Program of the Chinese Academy of Sciencesthe Natural Science Foundation of Jiangsu Higher Education Institutions of China(Grant No.23KJB140017)。
文摘The Dicke model,which describes the collective interaction between an ensemble of atoms and a single-mode photon field,serves as a fundamental framework for studying light-matter interactions and quantum electrodynamic phenomena.In this work,we investigate the manifestation of non-Hermitian effects in a generalized Dicke model,where two dissipative atom ensembles interact with a single-mode photon field.We explore the system in the semiclassical limit as a non-Hermitian Dicke model,revealing rich exceptional points(EPs)and diabolic points.Furthermore,we explore the quantum signature of EPs in the Hilbert space,relying on discrete photon numbers.The transition of photons from antibunching to bunching at steady state is unravelled.Our findings deepen the understanding of non-Hermitian physics in light-matter interaction,which is instructive for the design of advanced photonic devices.
基金supported by the National Natural Science Foundation of China(Grant No.62103026)the Innovation Program for Quantum Science and Technology(Grant Nos.2021ZD0300400,and 2021ZD0300402)+1 种基金the China National Funds for Distinguished Young Scientists(Grant No.61925301)the Fundamental Research Funds for the Central Universities。
文摘This paper provides a comprehensive review of the principles of magnetic and optical control in thermal atomic spin ensembles,as well as recent advances and applications in quantum precision measurement.As a practical macroscopic quantum system,thermal atomic spin ensembles have emerged as a key platform for next-generation quantum sensors due to their exceptional sensitivity,accuracy,and scalability.The review emphasizes how magneto-optical modulation techniques can be employed to extract real-time information about spin dynamics and system states,thereby generating high-quality observables that serve as the foundation for advanced control strategies such as feedback regulation,quantum state estimation,and pulsed manipulation.These techniques are shown to play a crucial role in enhancing measurement sensitivity,dynamic response and long-term stability.In addition,the incorporation of modern control theories,including closed-loop feedback and Kalman filter,has facilitated real-time optimization of atomic spin dynamics,unlocking new levels of sensitivity across a range of applications such as atomic magnetometers,co-magnetometers,inertial sensors,and microwave masers.This paper systematically discusses the synergistic interplay of modulation,measurement,and control in thermal spin ensembles,exploring its potential across a wide range of scientific and engineering applications.These technological advances provide a solid foundation for ultra-sensitive magnetic field detection and show promising prospects in frontier fields such as dark matter detection and gravitational wave observation.Looking ahead,such innovations are expected to further drive the miniaturization and integration of quantum sensors,significantly expanding their utility across disciplines.
基金the National Natural Science Foundation of China (Grant No. 62061028)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology (Grant No. ammt2021A4)+4 种基金the Foundation for Distinguished Young Scientists of Jiangxi Province (Grant No. 20162BCB23009)the Open Research Fund Program of the State Key Laboratory of LowDimensional Quantum Physics (Grant No. KF202010)the Interdisciplinary Innovation Fund of Nanchang University (Grant No. 9166-27060003-YB12)the Open Research Fund Program of Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education (Grant No. OEIAM202004)the Graduate Innovation Special Fund of Jiangxi Province (Grant No. YC2021-S054)。
文摘We theoretically explore the tunability of magnomechanically induced transparency(MMIT) phenomenon and fastslow light effect in a hybrid cavity magnomechanical system in which a high-quality yttrium iron garnet(YIG) sphere and an atomic ensemble are placed inside a microwave cavity. In the probe output spectrum, we can observe magnoninduced transparency(MIT) and MMIT due to the photon-magnon and phonon-magnon couplings. We further investigate the effect of atomic ensemble on the absorption spectrum. The results show that better transparency can be obtained by choosing appropriate atomic ensemble parameters. We give an explicit explanation for the mechanism of the Fano resonance phenomenon. Moreover, we discuss phenomena of slow-light propagation. The maximum group delay increases significantly with the increasing atom–cavity coupling strength, and the conversion between slow light and fast light can also be achieved by adjusting the atom–cavity coupling strength. These results may have potential applications for quantum information processing and high precision measurements.
基金Supported by the National Natural Science Foundation of China under Grant No 10574022, the Natural Science Foundation of Fujian Province under Grant Nos 2006J0230 and A0410016, and the Funds of Education Committee of Fujian Province under Grant No JB05334.
文摘We propose a scheme for preparing multiple-photon GHZ state via cavity-assisted interaction. There are n-pair single-photon pulses successively injected and reflected from two sides of the cavity, which traps one atom. After the atomic state is measured, a 2n-photon GHZ state is produced. In the ideal case, the successful probability of the scheme is close to unity.