Many terrestrial experiments have been designed to detect domain walls composed of axions or axionlike particles(ALPs), which are promising candidates of dark matter. When the domain wall crosses over the Earth, the p...Many terrestrial experiments have been designed to detect domain walls composed of axions or axionlike particles(ALPs), which are promising candidates of dark matter. When the domain wall crosses over the Earth, the pseudoscalar field of ALPs could couple to the atomic spins. Such exotic spin-dependent couplings can be searched for by monitoring the transient-in-time change of the atomic spin precession frequency in the presence of a magnetic field. We propose here a single-species cesium atomic comagnetometer, which measures the spin precession frequencies of atoms in different ground-state hyperfine levels, to eliminate the common-mode magnetic-field variations and search for the exotic nonmagnetic couplings solely between protons and ALPs. With the single-species atomic comagnetometer, we experimentally rule out the possibility that the decay constant of the linear pseudoscalar couplings of ALPs to protons is fp■ 3.71 ×107 Ge V. The advanced system has the potential to constrain the constant to be fp■ 10.7 × 109 Ge V, promising to improve astrophysical constraint level by at least one order of magnitude. Our system could provide a sensitive detection method for the global network of optical magnetometers to search for exotic physics.展开更多
The fluctuation of the vapor cell temperature leads to the variations of the density of the alkali metal atoms,which seriously damages the long-term stability of the spin-exchange relaxation-free(SERF)comagnetometer.T...The fluctuation of the vapor cell temperature leads to the variations of the density of the alkali metal atoms,which seriously damages the long-term stability of the spin-exchange relaxation-free(SERF)comagnetometer.To address this problem,we propose a novel method for suppressing the cell temperature error by manipulating the probe laser frequency.A temperature coefficient model of the SERF comagnetometer is established based on the steady-state response,which indicates that the comagnetometer can be tuned to a working point where the output signal is insensitive to the cell temperature fluctuation,and the working point is determined by the relaxation rate of the alkali metal atoms.The method is verified in a K-Rb-^(21)Ne comagnetometer,and the experimental results are consistent with the theory.The theory and method presented here lay a foundation for the practical applications of the SERF comagnetometer.展开更多
基金the National Natural Science Foundation of China(Grant No.62071012)the National Science Fund for Distinguished Young Scholars of China(Grant No.61225003)National Hi-Tech Research and Development Program of China.
文摘Many terrestrial experiments have been designed to detect domain walls composed of axions or axionlike particles(ALPs), which are promising candidates of dark matter. When the domain wall crosses over the Earth, the pseudoscalar field of ALPs could couple to the atomic spins. Such exotic spin-dependent couplings can be searched for by monitoring the transient-in-time change of the atomic spin precession frequency in the presence of a magnetic field. We propose here a single-species cesium atomic comagnetometer, which measures the spin precession frequencies of atoms in different ground-state hyperfine levels, to eliminate the common-mode magnetic-field variations and search for the exotic nonmagnetic couplings solely between protons and ALPs. With the single-species atomic comagnetometer, we experimentally rule out the possibility that the decay constant of the linear pseudoscalar couplings of ALPs to protons is fp■ 3.71 ×107 Ge V. The advanced system has the potential to constrain the constant to be fp■ 10.7 × 109 Ge V, promising to improve astrophysical constraint level by at least one order of magnitude. Our system could provide a sensitive detection method for the global network of optical magnetometers to search for exotic physics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62103024 and 61925301)in part by the Aeronautical Science Foundation(Grant No.2023Z073051012)。
文摘The fluctuation of the vapor cell temperature leads to the variations of the density of the alkali metal atoms,which seriously damages the long-term stability of the spin-exchange relaxation-free(SERF)comagnetometer.To address this problem,we propose a novel method for suppressing the cell temperature error by manipulating the probe laser frequency.A temperature coefficient model of the SERF comagnetometer is established based on the steady-state response,which indicates that the comagnetometer can be tuned to a working point where the output signal is insensitive to the cell temperature fluctuation,and the working point is determined by the relaxation rate of the alkali metal atoms.The method is verified in a K-Rb-^(21)Ne comagnetometer,and the experimental results are consistent with the theory.The theory and method presented here lay a foundation for the practical applications of the SERF comagnetometer.