A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for det...A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.展开更多
Newton's gravitational constant G is the least known fundamental constant of nature. Since Cavendish made the first measurement of G with a torsion balance over two hundred years ago, the best results of G have been ...Newton's gravitational constant G is the least known fundamental constant of nature. Since Cavendish made the first measurement of G with a torsion balance over two hundred years ago, the best results of G have been obtained by using torsion balances. However, the uncorrected anelasticity of torsion fibers makes the results questionable. We present a new method of G measurement by using a superconducting gravity gradiometer constructed with levitated test masses, which is free from the irregularities of mechanical suspension. The superconducting gravity gradiometer is rotated to generate a centrifugal acceleration that nulls the gravity field of the source mass, forming an artificial planetary system. This experiment has a potential accuracy of G better than 10 ppm.展开更多
The next-generation gravity satellite mission equipped with the Cold Atom Interferometry(CAI)gradiometer has great potential for the Earth's gravity field estimation.Deploying a CAI gradiometer on the Chinese Tian...The next-generation gravity satellite mission equipped with the Cold Atom Interferometry(CAI)gradiometer has great potential for the Earth's gravity field estimation.Deploying a CAI gradiometer on the Chinese Tiangong Space Station launched for long-term Earth science research not only reduces the cost compared to a dual-satellite constellation but also enhances interdisciplinary collaboration in the Earth's gravity field detection.In this study,we conducted gravity gradient-based simulations to assess the contribution of deploying a CAI gradiometer on the Tiangong Space Station to collaboratively observe the Earth's gravity field with a polar-orbit gravity satellite.The simulation results demonstrate that whether utilizing V_(yy) component,three diagonal components or full components,the derived gravity field models show significant improvements within 100 degree and above 200 degree after incorporating Tiangong Space Station.In particular,the gravity field solution recovered from three diagonal components achieves the best accuracy.In the case of using diagonal components,the collaboration observation scheme effectively reduced the cumulative geoid height error by approximately 5.3 cm(300 d/o).In the spatial domain,the incorporation of the Tiangong Space Station primarily impacts the estimated gravity field within the orbital coverage area of the space station,and this effect is particularly pronounced when just employing V_(yy) component.However,due to the limitation of angular velocity observation inaccuracy associated with the CAI gradiometer in nadir mode,there is no substantial accuracy improvement observed above 200 degree when adding gradient components.展开更多
Although satellite gravity gradient data plays a great role in determining short-wavelength part of static gravity field model,accuracy of the long-wavelength part of gravity field model recovered by them are poor,whi...Although satellite gravity gradient data plays a great role in determining short-wavelength part of static gravity field model,accuracy of the long-wavelength part of gravity field model recovered by them are poor,which leads to only a few applications in time-variable gravity investigation.The reason is that some factors limit the accuracy of the gravity field recovered using gradient data,including accuracy of the gravity gradient observations,measurement bandwidth(MBW)of gradiometer,satellite inclination,etc.This paper aims at analyzing the influence of these limitations on gravity field recovery and discusses the possibility of time-variable gravity field detection by using gravity gradient observations.Firstly,for arbitrary satellite orbit inclination,we give the frequency distributions of all the components of gravity gradients(i.e.Txx;Tyy;Tzz;Txy;Txz and Tyz,).The results show that the maximum frequency of each component of the gravity gradients is the same,i.e.l=Ts(l is degree of the gravity field model,Ts is the orbital periods),and it is not influenced by the inclination of the satellite orbits.Secondly,the paper gives a theory proof to explain why only the low orders of the coefficients are influenced by polar gaps.Big polar gaps are experimented by a numerical test with inclination of 45°.Finally,considering that the measurement bandwidth can be expanded and accuracy of gradient observations can be improved by superconducting gravity gradiometer(SGG)compared to gradiometer used in Gravity field and steadystate Ocean Circulation Explorer(GOCE),the possibility of detecting time-variable gravity using gravity gradient observations is discussed.The results show that the SGG creates errors in MBW with magnitude of 0.014 m E,which is smaller than the magnitude of the time-variable gravity gradient signals(i.e.,0.02 m E)derived from Gravity Recovery and Climate Experiment(GRACE)gravity field models.This indicates the potential of SGG in time-variable gravity detection.展开更多
This paper reports on a study of the methodology of external calibration of GOCE data,using regional terrestrial-gravity data.Three regions around the world are selected in the numerical experiments.The result indicat...This paper reports on a study of the methodology of external calibration of GOCE data,using regional terrestrial-gravity data.Three regions around the world are selected in the numerical experiments.The result indicates that this calibration method is feasible.The effect is best with an accuracy of scale factor at 10-2 level,in Australia,where the area is smooth and the gravity data points are dense.The accuracy is one order of magnitude lower in both Canada,where the area is smooth but the data points are sparse,and Norway,where the area is rather tough and the data points are sparse.展开更多
目前卫星重力梯度测量精度主要受限于核心载荷重力梯度仪的噪声.要提高卫星重力梯度测量的精度,首先要发展更高精度的星载重力梯度仪.在该背景下,本文一方面针对已成功搭载GOCE卫星飞行的静电式重力梯度仪,基于静电控制的工作原理,探讨...目前卫星重力梯度测量精度主要受限于核心载荷重力梯度仪的噪声.要提高卫星重力梯度测量的精度,首先要发展更高精度的星载重力梯度仪.在该背景下,本文一方面针对已成功搭载GOCE卫星飞行的静电式重力梯度仪,基于静电控制的工作原理,探讨了静电式重力梯度仪测量精度的根本受限因素,分析表明,通过改进敏感探头的设计以及降低动态范围,静电重力梯度仪的极限测量分辨率可达0.3 m E/Hz1/2;另一方面,建议发展原子干涉型的星载重力梯度仪,在空间微重力环境下,其潜在测量灵敏度高达0.03 m E/Hz1/2,有望为未来完善50~100 km空间分辨率的全球重力场模型提供一种可能的技术途径.展开更多
文摘A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.
文摘Newton's gravitational constant G is the least known fundamental constant of nature. Since Cavendish made the first measurement of G with a torsion balance over two hundred years ago, the best results of G have been obtained by using torsion balances. However, the uncorrected anelasticity of torsion fibers makes the results questionable. We present a new method of G measurement by using a superconducting gravity gradiometer constructed with levitated test masses, which is free from the irregularities of mechanical suspension. The superconducting gravity gradiometer is rotated to generate a centrifugal acceleration that nulls the gravity field of the source mass, forming an artificial planetary system. This experiment has a potential accuracy of G better than 10 ppm.
基金National Key R&D Program of China(2021YFB3900101)the National Natural Science Foundation of China(42174099 and 42192532)It is also partly supported by the Fundamental Research Funds for the Central Universities.
文摘The next-generation gravity satellite mission equipped with the Cold Atom Interferometry(CAI)gradiometer has great potential for the Earth's gravity field estimation.Deploying a CAI gradiometer on the Chinese Tiangong Space Station launched for long-term Earth science research not only reduces the cost compared to a dual-satellite constellation but also enhances interdisciplinary collaboration in the Earth's gravity field detection.In this study,we conducted gravity gradient-based simulations to assess the contribution of deploying a CAI gradiometer on the Tiangong Space Station to collaboratively observe the Earth's gravity field with a polar-orbit gravity satellite.The simulation results demonstrate that whether utilizing V_(yy) component,three diagonal components or full components,the derived gravity field models show significant improvements within 100 degree and above 200 degree after incorporating Tiangong Space Station.In particular,the gravity field solution recovered from three diagonal components achieves the best accuracy.In the case of using diagonal components,the collaboration observation scheme effectively reduced the cumulative geoid height error by approximately 5.3 cm(300 d/o).In the spatial domain,the incorporation of the Tiangong Space Station primarily impacts the estimated gravity field within the orbital coverage area of the space station,and this effect is particularly pronounced when just employing V_(yy) component.However,due to the limitation of angular velocity observation inaccuracy associated with the CAI gradiometer in nadir mode,there is no substantial accuracy improvement observed above 200 degree when adding gradient components.
基金funded by National Natural Science Foundation of China(No.41674026,41404019,41774089)Fundamental Research Funds for the Central University(No.2652018027)+2 种基金China Geological Survey(DD20191006)Open Research Fund of Qian Xuesen Laboratory of Space Technology,CAST(No.GZZKFJJ2020006)Open Research Fund of Key Laboratory of Space Utilization,Chinese Academy of Sciences(LSU-KFJJ201902)
文摘Although satellite gravity gradient data plays a great role in determining short-wavelength part of static gravity field model,accuracy of the long-wavelength part of gravity field model recovered by them are poor,which leads to only a few applications in time-variable gravity investigation.The reason is that some factors limit the accuracy of the gravity field recovered using gradient data,including accuracy of the gravity gradient observations,measurement bandwidth(MBW)of gradiometer,satellite inclination,etc.This paper aims at analyzing the influence of these limitations on gravity field recovery and discusses the possibility of time-variable gravity field detection by using gravity gradient observations.Firstly,for arbitrary satellite orbit inclination,we give the frequency distributions of all the components of gravity gradients(i.e.Txx;Tyy;Tzz;Txy;Txz and Tyz,).The results show that the maximum frequency of each component of the gravity gradients is the same,i.e.l=Ts(l is degree of the gravity field model,Ts is the orbital periods),and it is not influenced by the inclination of the satellite orbits.Secondly,the paper gives a theory proof to explain why only the low orders of the coefficients are influenced by polar gaps.Big polar gaps are experimented by a numerical test with inclination of 45°.Finally,considering that the measurement bandwidth can be expanded and accuracy of gradient observations can be improved by superconducting gravity gradiometer(SGG)compared to gradiometer used in Gravity field and steadystate Ocean Circulation Explorer(GOCE),the possibility of detecting time-variable gravity using gravity gradient observations is discussed.The results show that the SGG creates errors in MBW with magnitude of 0.014 m E,which is smaller than the magnitude of the time-variable gravity gradient signals(i.e.,0.02 m E)derived from Gravity Recovery and Climate Experiment(GRACE)gravity field models.This indicates the potential of SGG in time-variable gravity detection.
基金supported by the Director Foundation of the Institute of Seismology,China Earthquake Administration(IS201126025)The Basis Research Foundation of Key laboratory of Geospace Environment&Geodesy Ministry of Education,China(10-01-09)
文摘This paper reports on a study of the methodology of external calibration of GOCE data,using regional terrestrial-gravity data.Three regions around the world are selected in the numerical experiments.The result indicates that this calibration method is feasible.The effect is best with an accuracy of scale factor at 10-2 level,in Australia,where the area is smooth and the gravity data points are dense.The accuracy is one order of magnitude lower in both Canada,where the area is smooth but the data points are sparse,and Norway,where the area is rather tough and the data points are sparse.
文摘目前卫星重力梯度测量精度主要受限于核心载荷重力梯度仪的噪声.要提高卫星重力梯度测量的精度,首先要发展更高精度的星载重力梯度仪.在该背景下,本文一方面针对已成功搭载GOCE卫星飞行的静电式重力梯度仪,基于静电控制的工作原理,探讨了静电式重力梯度仪测量精度的根本受限因素,分析表明,通过改进敏感探头的设计以及降低动态范围,静电重力梯度仪的极限测量分辨率可达0.3 m E/Hz1/2;另一方面,建议发展原子干涉型的星载重力梯度仪,在空间微重力环境下,其潜在测量灵敏度高达0.03 m E/Hz1/2,有望为未来完善50~100 km空间分辨率的全球重力场模型提供一种可能的技术途径.