Carbon nanotube(CNT),particularly single-walled CNT,possesses exceptional properties,and can be utilized in many high-end applications including high-performance electronics.However,the atomic arrangement of a CNT det...Carbon nanotube(CNT),particularly single-walled CNT,possesses exceptional properties,and can be utilized in many high-end applications including high-performance electronics.However,the atomic arrangement of a CNT determines its band structure,making the atomic-precision fabrication one of most important topics for the development of this material.In this perspective,the author gives a personal summary on the history,current status of the atomic-precision fabrication of CNT and outlines the remaining challenges as well as the possible paths that may lead the production of atomically precise CNTs from‘fabrication’to‘manufacturing’.展开更多
Atomic scale engineering of materials and interfaces has become increasingly important in material manufacturing.Atomic layer deposition(ALD)is a technology that can offer many unique properties to achieve atomic-scal...Atomic scale engineering of materials and interfaces has become increasingly important in material manufacturing.Atomic layer deposition(ALD)is a technology that can offer many unique properties to achieve atomic-scale material manufacturing controllability.Herein,we discuss this ALD technology for its applications,attributes,technology status and challenges.We envision that the ALD technology will continue making significant contributions to various industries and technologies in the coming years.展开更多
With the rapid development in advanced industries,such as microelectronics and optics sectors,the functional feature size of devises/components has been decreasing from micro to nanometric,and even ACS for higher perf...With the rapid development in advanced industries,such as microelectronics and optics sectors,the functional feature size of devises/components has been decreasing from micro to nanometric,and even ACS for higher performance,smaller volume and lower energy consumption.By this time,a great many quantum structures are proposed,with not only an extreme scale of several or even single atom,but also a nearly ideal lattice structure with no material defect.It is almost no doubt that such structures play critical role in the next generation products,which shows an urgent demand for the ACSM.Laser machining is one of the most important approaches widely used in engineering and scientific research.It is high-efficient and applicable for most kinds of materials.Moreover,the processing scale covers a huge range from millimeters to nanometers,and has already touched the atomic level.Laser–material interaction mechanism,as the foundation of laser machining,determines the machining accuracy and surface quality.It becomes much more sophisticated and dominant with a decrease in processing scale,which is systematically reviewed in this article.In general,the mechanisms of laser-induced material removal are classified into ablation,CE and atomic desorption,with a decrease in the scale from above microns to angstroms.The effects of processing parameters on both fundamental material response and machined surface quality are discussed,as well as theoretical methods to simulate and understand the underlying mechanisms.Examples at nanometric to atomic scale are provided,which demonstrate the capability of laser machining in achieving the ultimate precision and becoming a promising approach to ACSM.展开更多
Surface modification for micro-nanoparticles at the atomic and close-to-atomic scales is of great importance to enhance their performance in various applications,including high-volume battery,persistent luminescence,e...Surface modification for micro-nanoparticles at the atomic and close-to-atomic scales is of great importance to enhance their performance in various applications,including high-volume battery,persistent luminescence,etc.Fluidized bed atomic layer deposition(FB-ALD)is a promising atomic-scale manufacturing technology that offers ultrathin films on large amounts of particulate materials.Nevertheless,nanoparticles tend to agglomerate due to the strong cohesive forces,which is much unfavorable to the film conformality and also hinders their real applications.In this paper,the particle fluidization process in an ultrasonic vibration-assisted FB-ALD reactor is numerically investigated from micro-scale to macro-scale through the multiscale computational fluid dynamics and discrete element method(CFD-DEM)modeling with experimental verification.Various vibration amplitudes and frequencies are investigated in terms of their effects on the fluid dynamics,distribution of particle velocity and solid volume fraction,as well as the size of agglomerates.Results show that the fluid turbulent kinetic energy,which is the key power source for the particles to obtain the kinetic energy for overcoming the interparticle agglomeration forces,can be strengthened obviously by the ultrasonic vibration.Besides,the application of ultrasonic vibration is found to reduce the mean agglomerate size in the FB.This is bound to facilitate the heat transfer and precursor diffusion in the entire FB-ALD reactor and the agglomerates,which can largely shorten the coating time and improve the film conformality as well as precursor utilization.The simulation results also agree well with our battery experimental results,verifying the validity of the multiscale CFD-DEM model.This work has provided momentous guidance to the mass manufacturing of atomic-scale particle coating from lab-scale to industrial applications.展开更多
Indirect additive manufacturing(AM)methods have recently attracted attention from researchers thanks to their great potential for cheap,straightforward,and small-scale production of metallic components.Atomic diffusio...Indirect additive manufacturing(AM)methods have recently attracted attention from researchers thanks to their great potential for cheap,straightforward,and small-scale production of metallic components.Atomic diffusion additive manufacturing(ADAM),a variant of indirect AM methods,is a layer-wise indirect AM process recently developed based on fused deposition modeling and metal injection molding.However,there is still limited knowledge of the process conditions and material properties fabricated through this process,where sintering plays a crucial role in the final consolidation of parts.Therefore,this research,for the first time,systematically investigates the impact of various sintering conditions on the shrinkage,relative density,microstructure,and hardness of the 17-4PH ADAM samples.For this reason,as-washed samples were sintered under different time-temperature combinations.The sample density was evaluated using Archimedes,computed tomography,and image analysis methods.The outcomes revealed that sintering variables significantly impacted the density of brown 17-4PH Stainless Steel samples.The results indicated more than 99% relative densities,higher than the value reported by Markforged Inc.(~96%).Based on parallel porosities observed in the computed tomography results,it can be suggested that by modifying the infill pattern during printing,it would be possible to increase the final relative density.The microhardness of the sintered samples in this study was higher than that of the standard sample provided by Markforged Inc.Sintering at 1330℃ for 4 h increased the density of the printed sample without compromising its mechanical properties.According to X-ray diffraction analysis,the standard sample provided by Markforged Inc.and“1330℃—4 h”one had similar stable phases,although copper-rich intermetallics were more abundant in the microstructure of reference samples.This study is expected to facilitate the adoption of indirect metal AM methods by different sectors,thanks to the high achievable relative densities reported here.展开更多
Nitrogen is essential for life and ecosystems.The nitrogen cycle is fundamental to all life on earth and has been implicated in his-torical mass extinction events,where disruptions to its stability have played a criti...Nitrogen is essential for life and ecosystems.The nitrogen cycle is fundamental to all life on earth and has been implicated in his-torical mass extinction events,where disruptions to its stability have played a critical role[1].Moreover,the nitrogen cycle's response to climate change could critically influence atmo-spheric CO_(2) levels and the trajectory of global warming[2].However,improper management of anthropogenic nitrogen-containing wastewater,including domestic sewage,agricultural runoff,and industrial effluents,has pushed the nitrogen cycle to the brink of imbalance[1].展开更多
To explore a proof-of-concept for atomically precise manufacturing(APM)using scanning probe microscopy(SPM),first principle theoretical calculations of atom-by-atom transfer from the apex of an SPM tip to an individua...To explore a proof-of-concept for atomically precise manufacturing(APM)using scanning probe microscopy(SPM),first principle theoretical calculations of atom-by-atom transfer from the apex of an SPM tip to an individual radical on a surfacebound organic molecule have been performed.Atom transfer is achieved by spatially controlled motion of a gold terminated tip to the radical.Two molecular tools for SPM-based APM have been designed and investigated,each comprising an adamantane core,a radical end group,and trithiol linkers to enable strong chemisorption on the Au(111)surface:ethynyl-adamantanetrithiol and adamantyl-trithiol.We demonstrate the details of controlled Au atom abstraction during tip approach toward and retraction from the radical species.Upon approach of the tip,the apical Au atom undergoes a transfer toward the carbon radical at a clearly defined threshold separation.This atomic displacement is accompanied by a net energy gain of the system in the range−0.5 to−1.5 eV,depending on the radical structure.In the case of a triangular pyramidal apex model,two tip configurations are possible after the tip atom displacement:(1)an Au atom is abstracted from the tip and bound to the C radical,not bound to the tip base anymore,and(2)apical tip atoms rearrange to form a continuous neck between the tip and radical.In the second case,subsequent tip retraction leads to the same final configuration as the first,with the abstracted Au atom bound to radical carbon atom of the molecular tool.For the less reactive adamantyl-trithiol radical molecular tool,Au atom transfer is less energetically favored,but this has the advantage of avoiding other apex gold atoms from rearrangement.展开更多
Atomic force microscopy(AFM)-based electrochemical etching of a highly oriented pyrolytic graphite(HOPG)surface is studied toward the single-atomic-layer lithography of intricate patterns.Electrochemical etching is pe...Atomic force microscopy(AFM)-based electrochemical etching of a highly oriented pyrolytic graphite(HOPG)surface is studied toward the single-atomic-layer lithography of intricate patterns.Electrochemical etching is performed in the water meniscus formed between the AFM tip apex and HOPG surface due to a capillary effect under controlled high relative humid-ity(~75%)at otherwise ambient conditions.The conditions to etch nano-holes,nano-lines,and other intricate patterns are investigated.The clectrochemical reactions of HOPG etching should not generatc debris duc to the conversion of graphite to gaseous CO and CO_(2)based on etching reactions.However,debris is observed on the etched HOPG surface,and incom-plete gasification of carbon occurs during the etching process,resulting in the generation of solid intermediates.Moreover,the applied potential is of critical importance for precise etching,and the precision is also significantly influenced by the AFM tip wear.This study shows that the AFM-based electrochemical etching has the potential to remove the material in a single-atomic-layer precision.This result is likely because the etching process is based on anodic dissolution,resulting in the material removal atom by atom.展开更多
This paper presents a new approach for material removal on silicon at atomic and close-to-atomic scale assisted by photons.The corresponding mechanisms are also investigated.The proposed approach consists of two seque...This paper presents a new approach for material removal on silicon at atomic and close-to-atomic scale assisted by photons.The corresponding mechanisms are also investigated.The proposed approach consists of two sequential steps:surface modification and photon irradiation.The back bonds of silicon atoms are first weakened by the chemisorption of chlorine and then broken by photon energy,leading to the desorption of chlorinated silicon.The mechanisms of photon-induced desorption of chlorinated silicon,i.e.,SiCl_(2) and SiCl,are explained by two models:the Menzel-Gomer-Redhead(MGR)and Antoniewicz models.The desorption probability associated with the two models is numerically calculated by solving the Liouville-von Neumann equations for open quantum systems.The calculation accuracy is verified by comparison with the results in literatures in the case of the NO/Pt(111)system.The calculation method is then applied to the cases of SiCl_(2)/Si and SiCl/Si systems.The results show that the value of desorption probability first increases dramatically and then saturates to a stable value within hundreds of femtoseconds after excitation.The desorption probability shows a super-linear dependence on the lifetime of excited states.展开更多
Metallic glasses(MGs)that mainly made up of metallic elements are a new member of the glassy materials family.This new kind of glass combines the characteristics of liquids and solids,glasses and metals,making it fasc...Metallic glasses(MGs)that mainly made up of metallic elements are a new member of the glassy materials family.This new kind of glass combines the characteristics of liquids and solids,glasses and metals,making it fascinating to both scientists and industrialists.With the discovery of more and more systems,MG is becoming one of the most active research field in metallic materials,and some concepts and technologies derived from MGs also facilitate the development of other materials from quasi-crystals to high entropy alloys.MGs have now been successfully used in aerospace,robotics,medicine,consumer electronics,etc.and the practical applications of MGs are still growing.On the other hand,the diverse properties and the unique structure of the MGs render them ideal models to study major open issues including the structural model of disordered materials,glass transition,collective motion and energy landscape.However,understanding the emerging properties and phenomena of MGs still poses enormous challenges,which has stimulated a wealth of efforts,including the development of new experimental approaches,the synthesis of systems with tailored properties,and the advancements in experimental techniques,theoretical models,and numerical simulations.In this Roadmap,we try to provide a broad overview of recent and potential future activities in the MG field,and present a roadmap for the development and applications of MGs by gathering contributions form scientists with diverse backgrounds,illustrating the major challenges and discussing the latest technology and strategy to tackle these challenges with experts covering various developments in general concepts,synthesis and characterisation,and theoretical and simulation methods.展开更多
Atomic force microscopy(AFM)-based local anodic oxidation(LAO)stands out for its high resolution,maskless operation,and simplicity.However,the role of mechanical force in LAO remains underexplored.This study addresses...Atomic force microscopy(AFM)-based local anodic oxidation(LAO)stands out for its high resolution,maskless operation,and simplicity.However,the role of mechanical force in LAO remains underexplored.This study addresses this gap by introducing an innovative experimental approach that decouples mechanical load from other variables,enabling precise control of adhesive and compressive forces during LAO.Through systematic experiments,we investigate the effect of load conditions on oxide morphology and current–voltage characteristics.Results reveal that adhesive forces promote vertical oxide growth with minimal lateral spreading,while compressive forces enhance lateral oxidation but introduce considerable variability.A high compressive force(+20 nN)combined with high bias voltages(>7 V)results in considerable current fluctuations and abrupt oxide protrusions,which are attributed to localized microdischarges and mechanical disruptions.These findings provide new insights into the interplay between mechanical forces and electrochemical processes in LAO,contributing to the development of more reliable and precise nanofabrication techniques.This study not only bridges a critical knowledge gap but also offers practical implications for optimizing AFM-based oxidation processes in semiconductor manufacturing and related fields.展开更多
基金supported by JSPS KAKENHI(Grant Nos.JP18H05329,JP19H02543,JP20H00220,and JP20KK0114)by JST,CREST Grant No.JPMJCR20B5,Japansupported by the‘Nanotechnology Platform’of the MEXT,Japan,Grant Nos.JPMXP09A20UT0063 and JPMXP09A21UT0050.
文摘Carbon nanotube(CNT),particularly single-walled CNT,possesses exceptional properties,and can be utilized in many high-end applications including high-performance electronics.However,the atomic arrangement of a CNT determines its band structure,making the atomic-precision fabrication one of most important topics for the development of this material.In this perspective,the author gives a personal summary on the history,current status of the atomic-precision fabrication of CNT and outlines the remaining challenges as well as the possible paths that may lead the production of atomically precise CNTs from‘fabrication’to‘manufacturing’.
基金the support from Guangdong Basic and Applied Basic Research Foundation (2020B1515120039)Guangdong Technology Center for Oxide Semiconductor Devices+2 种基金the support from National Key R&D Program of China (2022YFF1500400)the National Natural Science Foundation of China (51835005)the support from the Natural Sciences and Engineering Research Council of Canada (NSERC)
文摘Atomic scale engineering of materials and interfaces has become increasingly important in material manufacturing.Atomic layer deposition(ALD)is a technology that can offer many unique properties to achieve atomic-scale material manufacturing controllability.Herein,we discuss this ALD technology for its applications,attributes,technology status and challenges.We envision that the ALD technology will continue making significant contributions to various industries and technologies in the coming years.
基金supported by the National Natural Science Foundation of China(Nos.52035009,52105475).
文摘With the rapid development in advanced industries,such as microelectronics and optics sectors,the functional feature size of devises/components has been decreasing from micro to nanometric,and even ACS for higher performance,smaller volume and lower energy consumption.By this time,a great many quantum structures are proposed,with not only an extreme scale of several or even single atom,but also a nearly ideal lattice structure with no material defect.It is almost no doubt that such structures play critical role in the next generation products,which shows an urgent demand for the ACSM.Laser machining is one of the most important approaches widely used in engineering and scientific research.It is high-efficient and applicable for most kinds of materials.Moreover,the processing scale covers a huge range from millimeters to nanometers,and has already touched the atomic level.Laser–material interaction mechanism,as the foundation of laser machining,determines the machining accuracy and surface quality.It becomes much more sophisticated and dominant with a decrease in processing scale,which is systematically reviewed in this article.In general,the mechanisms of laser-induced material removal are classified into ablation,CE and atomic desorption,with a decrease in the scale from above microns to angstroms.The effects of processing parameters on both fundamental material response and machined surface quality are discussed,as well as theoretical methods to simulate and understand the underlying mechanisms.Examples at nanometric to atomic scale are provided,which demonstrate the capability of laser machining in achieving the ultimate precision and becoming a promising approach to ACSM.
基金supported by the National Natural Science Foundation of China(51835005 and 51911540476)National Key Research and Development Program of China(2020YFB2010401)+3 种基金Hubei Province Natural Science Foundation for innovative research groups(2020CFA030)Independent Innovation Research Fund of HUST(2019kfyXMBZ025)Tencent Foundationthe Engineering and Physical Sciences Research Council project(EP/T019085/1).
文摘Surface modification for micro-nanoparticles at the atomic and close-to-atomic scales is of great importance to enhance their performance in various applications,including high-volume battery,persistent luminescence,etc.Fluidized bed atomic layer deposition(FB-ALD)is a promising atomic-scale manufacturing technology that offers ultrathin films on large amounts of particulate materials.Nevertheless,nanoparticles tend to agglomerate due to the strong cohesive forces,which is much unfavorable to the film conformality and also hinders their real applications.In this paper,the particle fluidization process in an ultrasonic vibration-assisted FB-ALD reactor is numerically investigated from micro-scale to macro-scale through the multiscale computational fluid dynamics and discrete element method(CFD-DEM)modeling with experimental verification.Various vibration amplitudes and frequencies are investigated in terms of their effects on the fluid dynamics,distribution of particle velocity and solid volume fraction,as well as the size of agglomerates.Results show that the fluid turbulent kinetic energy,which is the key power source for the particles to obtain the kinetic energy for overcoming the interparticle agglomeration forces,can be strengthened obviously by the ultrasonic vibration.Besides,the application of ultrasonic vibration is found to reduce the mean agglomerate size in the FB.This is bound to facilitate the heat transfer and precursor diffusion in the entire FB-ALD reactor and the agglomerates,which can largely shorten the coating time and improve the film conformality as well as precursor utilization.The simulation results also agree well with our battery experimental results,verifying the validity of the multiscale CFD-DEM model.This work has provided momentous guidance to the mass manufacturing of atomic-scale particle coating from lab-scale to industrial applications.
文摘Indirect additive manufacturing(AM)methods have recently attracted attention from researchers thanks to their great potential for cheap,straightforward,and small-scale production of metallic components.Atomic diffusion additive manufacturing(ADAM),a variant of indirect AM methods,is a layer-wise indirect AM process recently developed based on fused deposition modeling and metal injection molding.However,there is still limited knowledge of the process conditions and material properties fabricated through this process,where sintering plays a crucial role in the final consolidation of parts.Therefore,this research,for the first time,systematically investigates the impact of various sintering conditions on the shrinkage,relative density,microstructure,and hardness of the 17-4PH ADAM samples.For this reason,as-washed samples were sintered under different time-temperature combinations.The sample density was evaluated using Archimedes,computed tomography,and image analysis methods.The outcomes revealed that sintering variables significantly impacted the density of brown 17-4PH Stainless Steel samples.The results indicated more than 99% relative densities,higher than the value reported by Markforged Inc.(~96%).Based on parallel porosities observed in the computed tomography results,it can be suggested that by modifying the infill pattern during printing,it would be possible to increase the final relative density.The microhardness of the sintered samples in this study was higher than that of the standard sample provided by Markforged Inc.Sintering at 1330℃ for 4 h increased the density of the printed sample without compromising its mechanical properties.According to X-ray diffraction analysis,the standard sample provided by Markforged Inc.and“1330℃—4 h”one had similar stable phases,although copper-rich intermetallics were more abundant in the microstructure of reference samples.This study is expected to facilitate the adoption of indirect metal AM methods by different sectors,thanks to the high achievable relative densities reported here.
基金supported by the National Natural Science Foundation of China(Nos.52172291,52122312 and 52473294)the“Shuguang Program”supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.22SG31).
文摘Nitrogen is essential for life and ecosystems.The nitrogen cycle is fundamental to all life on earth and has been implicated in his-torical mass extinction events,where disruptions to its stability have played a critical role[1].Moreover,the nitrogen cycle's response to climate change could critically influence atmo-spheric CO_(2) levels and the trajectory of global warming[2].However,improper management of anthropogenic nitrogen-containing wastewater,including domestic sewage,agricultural runoff,and industrial effluents,has pushed the nitrogen cycle to the brink of imbalance[1].
基金funded by the US Department of Energy,Office of Energy Efficiency and Renewable Energy under Award Number DE-EE0008308funded by the Extreme Science and Engineering Discovery Environment(XSEDE)which is supported by National Science Foundation Grant Number TG-CHE170060.25 Specifically,it used the Bridges,Bridges-2(Pittsburgh Supercomputing Center(PSC)),and SDSC Expanse compute systems.
文摘To explore a proof-of-concept for atomically precise manufacturing(APM)using scanning probe microscopy(SPM),first principle theoretical calculations of atom-by-atom transfer from the apex of an SPM tip to an individual radical on a surfacebound organic molecule have been performed.Atom transfer is achieved by spatially controlled motion of a gold terminated tip to the radical.Two molecular tools for SPM-based APM have been designed and investigated,each comprising an adamantane core,a radical end group,and trithiol linkers to enable strong chemisorption on the Au(111)surface:ethynyl-adamantanetrithiol and adamantyl-trithiol.We demonstrate the details of controlled Au atom abstraction during tip approach toward and retraction from the radical species.Upon approach of the tip,the apical Au atom undergoes a transfer toward the carbon radical at a clearly defined threshold separation.This atomic displacement is accompanied by a net energy gain of the system in the range−0.5 to−1.5 eV,depending on the radical structure.In the case of a triangular pyramidal apex model,two tip configurations are possible after the tip atom displacement:(1)an Au atom is abstracted from the tip and bound to the C radical,not bound to the tip base anymore,and(2)apical tip atoms rearrange to form a continuous neck between the tip and radical.In the second case,subsequent tip retraction leads to the same final configuration as the first,with the abstracted Au atom bound to radical carbon atom of the molecular tool.For the less reactive adamantyl-trithiol radical molecular tool,Au atom transfer is less energetically favored,but this has the advantage of avoiding other apex gold atoms from rearrangement.
基金The authors would like to thank the support received from the Science Foundation Ireland(SFI)(No.15/RP/B3208)‘111’project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(No.B07014)+2 种基金the National Natural Science Foundation of China(NSFC)(No.61635008)This project has also received funding from Enterprise Ireland and the European Union's Horizon 2020 Research and Inno-vation Programme under the Marie Sklodowska-Curie Grant(No.713654)from Science Foundation Ireland and the Sustainable Energy Authority of Ireland(SEAI)under the SFI Career Develop-ment Award Grant(17/CDA/4637).
文摘Atomic force microscopy(AFM)-based electrochemical etching of a highly oriented pyrolytic graphite(HOPG)surface is studied toward the single-atomic-layer lithography of intricate patterns.Electrochemical etching is performed in the water meniscus formed between the AFM tip apex and HOPG surface due to a capillary effect under controlled high relative humid-ity(~75%)at otherwise ambient conditions.The conditions to etch nano-holes,nano-lines,and other intricate patterns are investigated.The clectrochemical reactions of HOPG etching should not generatc debris duc to the conversion of graphite to gaseous CO and CO_(2)based on etching reactions.However,debris is observed on the etched HOPG surface,and incom-plete gasification of carbon occurs during the etching process,resulting in the generation of solid intermediates.Moreover,the applied potential is of critical importance for precise etching,and the precision is also significantly influenced by the AFM tip wear.This study shows that the AFM-based electrochemical etching has the potential to remove the material in a single-atomic-layer precision.This result is likely because the etching process is based on anodic dissolution,resulting in the material removal atom by atom.
基金This work was supported by the Science Foundation Ireland(SFI)(No.15/RP/B3208)the National Natural Science Foundation of China(NSFC)(No.52035009)。
文摘This paper presents a new approach for material removal on silicon at atomic and close-to-atomic scale assisted by photons.The corresponding mechanisms are also investigated.The proposed approach consists of two sequential steps:surface modification and photon irradiation.The back bonds of silicon atoms are first weakened by the chemisorption of chlorine and then broken by photon energy,leading to the desorption of chlorinated silicon.The mechanisms of photon-induced desorption of chlorinated silicon,i.e.,SiCl_(2) and SiCl,are explained by two models:the Menzel-Gomer-Redhead(MGR)and Antoniewicz models.The desorption probability associated with the two models is numerically calculated by solving the Liouville-von Neumann equations for open quantum systems.The calculation accuracy is verified by comparison with the results in literatures in the case of the NO/Pt(111)system.The calculation method is then applied to the cases of SiCl_(2)/Si and SiCl/Si systems.The results show that the value of desorption probability first increases dramatically and then saturates to a stable value within hundreds of femtoseconds after excitation.The desorption probability shows a super-linear dependence on the lifetime of excited states.
基金support by the National Nature Science Foundation of China(Grant No.52071043)the Science and Technology Research Program of Chongqing Municipal Education Commission of China(Grant No.KJQN202200541)the Foundation of Chongqing Normal University(21XLB046).
文摘Metallic glasses(MGs)that mainly made up of metallic elements are a new member of the glassy materials family.This new kind of glass combines the characteristics of liquids and solids,glasses and metals,making it fascinating to both scientists and industrialists.With the discovery of more and more systems,MG is becoming one of the most active research field in metallic materials,and some concepts and technologies derived from MGs also facilitate the development of other materials from quasi-crystals to high entropy alloys.MGs have now been successfully used in aerospace,robotics,medicine,consumer electronics,etc.and the practical applications of MGs are still growing.On the other hand,the diverse properties and the unique structure of the MGs render them ideal models to study major open issues including the structural model of disordered materials,glass transition,collective motion and energy landscape.However,understanding the emerging properties and phenomena of MGs still poses enormous challenges,which has stimulated a wealth of efforts,including the development of new experimental approaches,the synthesis of systems with tailored properties,and the advancements in experimental techniques,theoretical models,and numerical simulations.In this Roadmap,we try to provide a broad overview of recent and potential future activities in the MG field,and present a roadmap for the development and applications of MGs by gathering contributions form scientists with diverse backgrounds,illustrating the major challenges and discussing the latest technology and strategy to tackle these challenges with experts covering various developments in general concepts,synthesis and characterisation,and theoretical and simulation methods.
基金Science Foundation Ireland,Grant 22/RP-2TF/10466,Fengzhou Fang.
文摘Atomic force microscopy(AFM)-based local anodic oxidation(LAO)stands out for its high resolution,maskless operation,and simplicity.However,the role of mechanical force in LAO remains underexplored.This study addresses this gap by introducing an innovative experimental approach that decouples mechanical load from other variables,enabling precise control of adhesive and compressive forces during LAO.Through systematic experiments,we investigate the effect of load conditions on oxide morphology and current–voltage characteristics.Results reveal that adhesive forces promote vertical oxide growth with minimal lateral spreading,while compressive forces enhance lateral oxidation but introduce considerable variability.A high compressive force(+20 nN)combined with high bias voltages(>7 V)results in considerable current fluctuations and abrupt oxide protrusions,which are attributed to localized microdischarges and mechanical disruptions.These findings provide new insights into the interplay between mechanical forces and electrochemical processes in LAO,contributing to the development of more reliable and precise nanofabrication techniques.This study not only bridges a critical knowledge gap but also offers practical implications for optimizing AFM-based oxidation processes in semiconductor manufacturing and related fields.
基金financially supported by Guangdong Basic and Applied Basic Research,China(2019B1515130005,2020B1515130007,2021B1515140005,2022A1515010347)Guangdong Major Project of Basic and Applied Basic Research,China(2019B030302010)+2 种基金the National Natural Science Foundation of China(52071222,61888102,52101191)the National Key Research and Development Program of China(2021YFA0716302)the Program for the Experiments for Space Exploration from Qian Xuesen Laboratory,China Academy of Space Technology(TKTSPY-2020-03-02)。