To explain the influence mechanism of MgO on the consolidation and reduction characteristics of roasted iron pellets,the properties and structure of pellets were investigated from multi-dimensions.It indicated that th...To explain the influence mechanism of MgO on the consolidation and reduction characteristics of roasted iron pellets,the properties and structure of pellets were investigated from multi-dimensions.It indicated that the MgO addition decreased the reduction swelling index(RSI)and reduction degree of pellets in both CO and H_(2)atmospheres.During the stepwise reduction process of Fe2O3→Fe3O4→FeO,the reduction behaviour of pellets in CO and H_(2)was similar,while the reduction rate of pellets in H_(2)atmosphere was almost twice as high as that in CO atmosphere.During the stepwise reduction process of FeO→Fe,the RSI of pellets showed a logarithmic increase in CO atmosphere and a linear decrease in H_(2)atmosphere.As investigated by first-principles calculations,C and Fe mainly formed chemical bonds,and the CO reduction process released energy,promoting the formation of iron whiskers.However,H and Fe produced weak physical adsorption,and the H_(2)reduction process was endothermic,inhibiting the generation of iron whiskers.With Mg2+doping in FexO,the nucleation region of iron whiskers expanded in CO reduction process,and the morphology of iron whiskers transformed from“slender”to“stocky,”reducing RSI of the pellets.展开更多
Ball milling is an environmentally friendly technology for the remediation of petroleumcontaminated soil(PCS),but the cleanup of organic pollutants requires a long time,and the post-remediation soil needs an economica...Ball milling is an environmentally friendly technology for the remediation of petroleumcontaminated soil(PCS),but the cleanup of organic pollutants requires a long time,and the post-remediation soil needs an economically viable disposal/reuse strategy due to its vast volume.The present paper develops a ball milling process under oxygen atmosphere to enhance PCS remediation and reuse the obtained carbonized soil(BCS-O)as wastewater treatment materials.The total petroleum hydrocarbon removal rates by ball milling under vacuum,air,and oxygen atmospheres are 39.83%,55.21%,and 93.84%,respectively.The Langmuir and pseudo second-order models satisfactorily describe the adsorption capacity and behavior of BCS-O for transition metals.The Cu^(2+),Ni^(2+),and Mn^(2+)adsorbed onto BCS-O were mainly bound to metal carbonates and metal oxides.Furthermore,BCS-O can effectively activate persulfate(PDS)oxidation to degrade aniline,while BCS-O loaded with transition metal(BCS-O-Me)shows better activation efficiency and reusability.BCS-O and BCS-O-Me activated PDS oxidation systems are dominated by^(1)O_(2)oxidation and electron transfer.The main active sites are oxygen-containing functional groups,vacancy defects,and graphitized carbon.The oxygen-containing functional groups and vacancy defects primarily activate PDS to generate^(1)O_(2)and attack aniline.Graphitized carbon promotes aniline degradation by accelerating electron transfer.The paper develops an innovative strategy to simultaneously realize efficient remediation of PCS and sequential reuse of the postremediation soil.展开更多
The direct deoxygenative homo-coupling of benzyl alcohols holds great promise to build up bibenzyl motifs in organic synthesis,yet it remains a grand challenge in selectivity and activity control.Herein,we first disco...The direct deoxygenative homo-coupling of benzyl alcohols holds great promise to build up bibenzyl motifs in organic synthesis,yet it remains a grand challenge in selectivity and activity control.Herein,we first discovered that iron carbide catalysts displayed high efficiency and selectivity in the catalytic deoxygenative homo-coupling of benzyl alcohols into bibenzyls using H_(2)as the reductant.Ir-promoted Fe0@Fe_(5)C_(2)gave the best performance among the investigated catalysts,and a broad scope of substrates with diverse functional groups could be smoothly converted into bibenzyls,with the yield up to 85%.In addition,in the presence of alkenes,three-component coupling reactions between alcohols and alkenes were also for the first time achieved to construct more complex multi-ring molecules.The radical-trapping experiment and FTIR measurements revealed the radical nature of the reaction and the significantly promoted C–O bond activation after carbonization,respectively.This work will provide guidelines for the rational design of efficient and selective catalysts for the alcohol-involved carbon-carbon coupling reactions.展开更多
Knowing the optimal operating parameters of Stirling engines is important for efficient combustion through adaptability to changed pressures and oxygen atmospheres. In this study, the optimum operating conditions for ...Knowing the optimal operating parameters of Stirling engines is important for efficient combustion through adaptability to changed pressures and oxygen atmospheres. In this study, the optimum operating conditions for efficient combustion in a singular Stirling engine combustor at different oxygen atmospheres were investigated and determined. Numerical simulations were performed to investigate the effects of ejection ratio and pressure on combustion performance. In an oxygen/carbon dioxide atmosphere, the results show that increasing the ejection ratio substantially alters the flame distribution in the Stirling engine combustor, increasing heat transfer and external combustion efficiency. In contrast, increasing the ejection ratio reduces the average and maximum temperatures of the Stirling engine combustor. Increased pressure affects the flame distribution in the Stirling engine combustor and impedes the flow and convective heat transfer in the combustor, reducing the overall external combustion efficiency at pressures above 6.5 MPa. In an air/carbon dioxide atmosphere, an increased ejection ratio reduces the average and maximum temperatures in the Stirling engine combustor. However, the overall flame distribution does not change substantially. The external combustion efficiency tends to increase and then decrease because of two opposing factors: the increase in the convective heat transfer coefficient and the decrease in the temperature difference. Increasing pressure inhibits forced convection heat transfer in the Stirling engine combustor, reducing external combustion efficiency, which drops from 78% to 65% when pressure increases from 0.2 MPa to 0.5 MPa.展开更多
The hurdle technology for food preservation effectively addresses the limitations of individual antimicrobial technologies by integrating their strengths.It can not only prolong the storage time of food but also maint...The hurdle technology for food preservation effectively addresses the limitations of individual antimicrobial technologies by integrating their strengths.It can not only prolong the storage time of food but also maintains its high quality.In this study,three antimicrobial and bactericidal technologies,namely soluble gas stabilization(SGS),modified atmosphere packaging(MAP),and cold plasma(CP),were applied to chilled chicken breasts.The packaging,total viable count(TVC),and physicochemical properties of chilled chicken breasts after treatments and storage at 4℃were monitored.The microbial diversity at the initial and end points of the storage time of each group was also analyzed.The results indicated that a 3−5 h SGS treatment can effectively increase the proportion of carbon dioxide in the MAP during the storage process of chilled chicken breasts,thereby alleviating the packaging collapse problem.Simultaneously,the effect of SGS,MAP,and CP combinational treatments significantly extended the storage time of chilled chicken breasts while maintaining the physicochemical qualities of samples.Compared to the control group,the TVC of chicken breast treated with SGS,MAP,and CP treatments decreased by 0.58(lg(CFU/g))at 0 day.The shelf life was extended by 5 days.After 8 days,the total volatile basic nitrogen(TVB-N)was 26.67 vs.19.50 mg/100 g,thiobarbituric acid reactive substances(TBARS)was 0.99 vs.0.72 mg MDA/kg,and TVC was 8.22 vs.6.52(lg(CFU/g)).High-throughput sequencing results showed that SGS and MAP treatments significantly reduce the proportion of Pseudomonas and Psychrobacter,which are sensitive to carbon dioxide,in the total bacterial genera.This study underscores the potential of integrating multiple antimicrobial technologies for effective food preservation.展开更多
Cement production,while essential for global infrastructure,contributes significantly to carbon dioxide emissions,accounting for approximately 7%of total emissions.To mitigate these environmental impacts,flash calcina...Cement production,while essential for global infrastructure,contributes significantly to carbon dioxide emissions,accounting for approximately 7%of total emissions.To mitigate these environmental impacts,flash calcination of kaolinitic clays has been investigated as a sustainable alternative.This technique involves the rapid heating of clays,enabling their use as supplementary cementitious materials.The primary objective of this study was to modify the color of calcined clay in various atmospheres(oxidizing,inert,and reducing)to achieve a grayish tone similar to commercial cement while preserving its reactive properties.The experimental procedure employed a tubular reactor with precise control of gas flows(atmospheric air,nitrogen,and a carbon monoxide–nitrogen mixture).Physicochemical characterization of the raw clay was conducted before calcination,with analyses repeated on the calcined clays following experimentation.Results indicated that clay calcined in an oxidizing atmosphere acquired a reddish hue,attributed to the oxidation of iron in hematite.The Clay exhibited a pinkish tone in an inert atmosphere,while calcination in a reducing atmosphere yielded the desired grayish color.Regarding pozzolanic activity,clays calcined in oxidizing and inert atmospheres displayed robust strength,ranging from 82%to 87%.Calcination in a reducing atmosphere resulted in slightly lower strength,around 74%,likely due to the clay’s chemical composition and the calcination process,which affects compound formation and material reactivity.展开更多
The year,2024,marks the 40th anniversary of Chinese research expeditions in the polar regions and the 25th anniversary of its Arctic research expeditions.China has conducted 14 national Arctic research expeditions.Wit...The year,2024,marks the 40th anniversary of Chinese research expeditions in the polar regions and the 25th anniversary of its Arctic research expeditions.China has conducted 14 national Arctic research expeditions.With the increase of understandings on the global impacts of the changes of Arctic climate system,especially on China’s weather and climate,and demands for commercial utilization of the Arctic sea routes,Chinese scientists have made great progresses on in site and remote sensing observation technologies for Arctic Ocean,interaction mechanisms between atmosphere,sea ice,and ocean,the connection mechanism between the Arctic Ocean and other regions,and have achieved a series of research results.This study summarizes the research achievements by Chinese scientists in the above-mentioned aspects or beyond,identifies knowledge gaps,and based on this,discusses prospects and provides suggestions.From a perspective of observation,improving the observation capabilities of the Arctic Ocean in winter and the ocean under the ice,as well as floe-scale processes of sea ice and mesoscale and submesoscale processes of the ocean,is an urgent task to be addressed.Strengthening international cooperation is necessary for building a monitoring network for the Arctic marine environment.From a perspective of numerical simulation,the descriptive ability and parameterization scheme of sub-grid processes based on observational evidence need to be developed.From a perspective of cross-sphere interactions,in addition to the multi-media coupling within the Arctic Ocean that this review focuses on,the interaction between the Arctic Ocean and land or ice sheet(Greenland),especially the water cycle process,is also a scientific domain that needs to be considered,in the context of Arctic warming and humidification.From a perspective of climate effects,the physical mechanisms that affect the robustness of teleconnection need to be clarified.展开更多
This study employs Principal Component Analysis(PCA)and 13 years of SD-WACCM-X model data(2007-2019)to investigate the characteristics and mechanisms of Inter-hemispheric Coupling(IHC)triggered by sudden stratospheric...This study employs Principal Component Analysis(PCA)and 13 years of SD-WACCM-X model data(2007-2019)to investigate the characteristics and mechanisms of Inter-hemispheric Coupling(IHC)triggered by sudden stratospheric warming(SSW)events.IHC in both hemispheres leads to a cold anomaly in the equatorial stratosphere,a warm anomaly in the equatorial mesosphere,and increased temperatures in the mesosphere and lower thermosphere(MLT)region of the summer hemisphere.However,the IHC features during boreal winter period are significantly weaker than during the austral winter period,primarily due to weaker stationary planetary wave activity in the Southern Hemisphere(SH).During the austral winter period,IHC results in a warm anomaly in the polar mesosphere of the SH,which does not occur in the NH during boreal winter period.This study also examines the possible influence of quasi-two-day waves(QTDWs)on IHC.We found that the largest temperature anomaly in the summer polar MLT region is associated with a large wind instability area,and a well-developed critical layer structure of QTDW in January.In contrast,during July,despite favorable conditions for QTDW propagation in the Northern Hemisphere,weaker IHC response is observed,suggesting that IHC features and the relationship with QTDWs during July would be more complex than during January.展开更多
The present study monitored bacterial succession,physicochemical properties,and volatile organic compounds(VOCs)changes in smoked chicken legs with modified atmosphere packaging(MAP,60% CO_(2) and 40%N_(2))during a 25...The present study monitored bacterial succession,physicochemical properties,and volatile organic compounds(VOCs)changes in smoked chicken legs with modified atmosphere packaging(MAP,60% CO_(2) and 40%N_(2))during a 25-day storage period at 4℃.After 15 days of storage,S erratia proteamaculans and Pseudomonas fragi became the predominant bacteria.Furthermore,physicochemical properties changed significantly,as evidenced by an increase in thiobarbituric acid reactive substances and b*(yellowness)value,and a decrease in hardness.A total of 65 VOCs were identified during storage.Correlation between bacterial succession and quality indicators(including VOCs and physicochemical properties)allowed the identification of 26 core dominant bacteria,including S.proteamaculans,Psychrobacter alimentarius,Pseudomonas putida,and Pseudomonas poae,which were positively related to spoilage VOCs(e.g.,1-octen-3-ol,1-pentanol,and 3-methyl-1-butanol)and could be defined as specific spoilage organisms(SSOs).The results of this study provide a systematic approach to predict SSOs in smoked chicken legs during storage,which can also provide a basis for product safety.展开更多
Atmospheric escape plays a critical role in shaping the long-term climate evolution of Mars.Among the various escape mechanisms,energetic neutral atoms(ENAs)generated through charge exchange between solar wind ions an...Atmospheric escape plays a critical role in shaping the long-term climate evolution of Mars.Among the various escape mechanisms,energetic neutral atoms(ENAs)generated through charge exchange between solar wind ions and exospheric neutrals serve as an important diagnostic for ion-neutral interactions and upper atmospheric loss.This study presents direct observations of hydrogen ENAs(H-ENAs)on the dayside of Mars by using the Mars Ion and Neutral Particle Analyzer(MINPA)onboard China’s Tianwen-1 orbiter.By analyzing H-ENA data during a coronal mass ejection and a stream interaction region from December 29,2021,to January 1,2022,and comparing these data with MAVEN/SWIA(Mars Atmosphere and Volatile EvolutioN/Solar Wind Ion Analyzer)solar wind measurements,we examine the temporal evolution of H-ENA flux and the associated sputtered escape of atmospheric constituents.The observed H-ENA velocity is consistent with upstream solar wind ions,and the H-ENA-to-ion intensity ratio is used to infer variations in exospheric density,revealing a delayed response to enhanced solar wind activity.Penetrating H-ENA intensities reach up to 5.3×10^(6)s^(−1) cm^(−2),with energy fluxes on the order of(0.5-8.1)×10^(−3) mW/m^(2).The estimated oxygen sputtered escape rate driven by penetrating H-ENAs ranges from 5.5×10^(23)s^(−1) to 5.2×10^(24)s^(−1),comparable to or exceeding previous estimates based on penetrating ions.The findings highlight the need for low-altitude H-ENA observations to better quantify their atmospheric interactions and refine our understanding of nonthermal escape processes at Mars.展开更多
CaBaCo_(4)O_(7)has been widely studied because of its distinctive structure and magnetic properties.This study examined the influence of different cooling atmospheres on the structure,magnetic properties,and dielectri...CaBaCo_(4)O_(7)has been widely studied because of its distinctive structure and magnetic properties.This study examined the influence of different cooling atmospheres on the structure,magnetic properties,and dielectric behavior of CaBaCo_(4)O_(7).Samples were cooled under different atmospheric conditions to assess these influences.Our findings indicate that reduced oxygen content leads to increased lattice distortion.Since oxygen atoms play a crucial role in mediating magnetic exchange,oxygen deficiency disrupts long-range magnetic order and promotes short-range antiferromagnetic interactions.Additionally,the cooling atmosphere significantly impacts grain size,thereby affecting the dielectric constant and dielectric loss.In the argon-cooled CaBaCo_(4)O_(7)(Ar)sample,oxygen deficiency reduced dielectric permittivity and increased dielectric loss.展开更多
Due to the high elevation and cold climate of the Tibetan Plateau,the western region retains extensive snow cover during the summer,which can exhibit rapid variability over the course of just a few days.This study uti...Due to the high elevation and cold climate of the Tibetan Plateau,the western region retains extensive snow cover during the summer,which can exhibit rapid variability over the course of just a few days.This study utilizes numerical experiments to investigate the atmospheric response to extreme Tibetan Plateau snow cover(TPSC)events on a subseasonal timescale during summer.The results indicate that the subseasonal variations in TPSC exert limited impact on nonlocal atmospheric circulation and temperature during this period.Nevertheless,local surface energy and atmospheric temperature exhibit rapid cooling responses to increased snow cover.Specifically,an increase in snow cover over the western Tibetan Plateau leads to a sharp rise in surface albedo,resulting in a reduction in land surface energy and a negative response in the diabatic heating rate from the surface to 350 hPa locally.This negative diabatic heating response subsequently causes a decline in both surface and overlying atmospheric temperatures.The temperature response is confined to the western Tibetan Plateau and extends vertically from the surface to approximately 350 hPa.These extreme TPSC events and their associated atmospheric impacts occur within a two-week timescale.展开更多
The Sq(solar quiet)geomagnetic field is generated by the electric currents in the E-region of the ionosphere,driven by the atmospheric tides.It is a critical part of high-precision geomagnetic field modeling.Based on ...The Sq(solar quiet)geomagnetic field is generated by the electric currents in the E-region of the ionosphere,driven by the atmospheric tides.It is a critical part of high-precision geomagnetic field modeling.Based on the classic thermal tide theory and atmospheric electrodynamics,this research,for the first time,developed an Sq geomagnetic field model that is directly built on the physical mechanism of the ionospheric dynamo,which is responsible for daily variations of the geomagnetic field.The performance in Sq geomagnetic field modeling was investigated using the Macao Science Satellite-1(MSS-1)data.Our model can enhance the physics-based framework of comprehensive geomagnetic field modeling for the MSS-1 and ensuing missions.展开更多
Arsenic(As),classified as a Group I carcinogen by the International Agency for Research on Cancer(IARC),poses severe risks to ecosystems and human health through atmospheric exposure.This review synthesizes current kn...Arsenic(As),classified as a Group I carcinogen by the International Agency for Research on Cancer(IARC),poses severe risks to ecosystems and human health through atmospheric exposure.This review synthesizes current knowledge on the sources,health impacts,and control strategies of atmospheric arsenic,with an emphasis on its global transport and toxicity.Natural sources,such as volcanic eruptions and soil erosion,contribute approximately 2.1 Gg/year;however,anthropogenic activities,notably metal smelting and coal combustion,dominate emissions,with global anthropogenic releases reaching approximately 28.6 Gg/year.Atmospheric arsenic primarily exists in two forms:particulate matter(PM_(2.5)-bound As(Ⅴ)/As(Ⅲ)and methylated species)and gaseous forms(e.g.,AsH_(3),As_(2)O_(3)),facilitating long-range transport and cross-continental pollution,as evidenced by Asian emissions contributing 39% of Arctic deposition.Advanced techniques,such as inductively coupled plasma mass spectrometry(ICP-MS)and models like GEOS-Chem,enhance emission tracking;however,gaps persist in monitoring gaseous arsenic and refining emission inventories.Health risks include lung cancer,neurotoxicity,and cardiovascular diseases,exacerbated by inhalation and dietary exposure via contaminated crops.Control technologies,including calcium-and iron-based adsorbents and industrial scrubbers,show promise but face challenges related to efficiency and cost.Regional strategies,such as China’s tightened emission limits(0.5 mg/m^(3))and the EU’s Best Available Techniques(BAT),highlight progress,yet global cooperation remains vital for transboundary mitigation.Future research should prioritize low-cost sensors,elucidating speciation-toxicity relationships,and AI-driven emission management to address data gaps and optimize policies.Integrating multidisciplinary approaches—advanced science,stringent regulations,and international collaboration—is crucial to mitigate the environmental and public health impacts of arsenic amid growing industrialization and climate change.展开更多
Here,we aimed to study the changes in proteome of golden pompano fillets during post-mortem storage.Tandem mass tags(TMT)-labeled quantitative proteomic strategy was applied to investigate the relationships between pr...Here,we aimed to study the changes in proteome of golden pompano fillets during post-mortem storage.Tandem mass tags(TMT)-labeled quantitative proteomic strategy was applied to investigate the relationships between protein changes and quality characteristics of modified atmosphere packaging(MAP)fillets during superchilling(-3°C)storage.Scanning electron microscopy was used to show that the muscle histology microstructure of fillets was damaged to varying degrees,and low-field nuclear magnetic resonance was used to find that the immobilized water and free water in the muscle of fillets changed significantly.Total sulfhydryl content,TCA-soluble peptides and Ca2+-ATPase activity also showed that the fillet protein had a deterioration by oxidation and denaturation.The Fresh(FS),MAP,and air packaging(AP)groups were set.Total of 150 proteins were identified as differential abundant proteins(DAPs)in MAP/FS,while 209 DAPs were in AP/FS group.The KEGG pathway analysis indicated that most DAPs were involved in binding proteins and protein turnover.Correlation analysis found that 52 DAPs were correlated with quality traits.Among them,8 highly correlated DAPs are expected to be used as potential quality markers for protein oxidation and water-holding capacity.These results provide a further understanding of the muscle deterioration mechanism of packaging golden pompano fillets during superchilling.展开更多
This paper is intended to summarize the research conducted during the first 2 years of the Dragon 5 project 59,332(geophysical and atmospheric retrieval from Synthetic Aperture Radar(SAR)data stacks over natural scena...This paper is intended to summarize the research conducted during the first 2 years of the Dragon 5 project 59,332(geophysical and atmospheric retrieval from Synthetic Aperture Radar(SAR)data stacks over natural scenarios).Monitoring atmospheric phenomena,encompassing both tropospheric and ionospheric conditions,holds pivotal significance for various scientific and practical applications.In this paper,we present an exploration of advanced techniques for estimating tropospheric and ionospheric phase screens using stacks of Synthetic Aperture Radar(SAR)images.Our study delves into the current state-of-the-art in atmospheric monitoring with a focus on spaceborne SAR systems,shedding light on their evolving capabilities.For tropospheric phase screen estimation,we propose a novel approach that jointly estimates the tropospheric component from all the images.We discuss the methodology in detail,highlighting its ability to recover accurate tropospheric maps.Through a series of quantitative case studies using real Sentinel-1 satellite data,we demonstrate the effectiveness of our technique in capturing tropospheric variability over different geographical regions.Concurrently,we delve into the estimation of ionospheric phase screens utilizing SAR image stacks.The intricacies of ionospheric disturbances pose unique challenges,necessitating specialized techniques.We dissect our approach,showcasing its capacity to mitigate ionospheric noise and recover precise phase information.Real data from the Sentinel-1 satellite are employed to showcase the efficacy of our method,unraveling ionospheric perturbations with improved accuracy.The integration of our techniques,though presented separately for clarity,collectively contributes to a comprehensive framework for atmospheric monitoring.Our findings emphasize the potential of SAR-based approaches in advancing our knowledge of atmospheric processes,thus fostering advancements in weather prediction,geophysics,and environmental management.展开更多
The corrosion behaviour of zinc–aluminium–magnesium-coated steel in a simulated polluted marine atmospheric environment was investigated.Therefore,an indoor ageing acceleration test was carefully designed by simulat...The corrosion behaviour of zinc–aluminium–magnesium-coated steel in a simulated polluted marine atmospheric environment was investigated.Therefore,an indoor ageing acceleration test was carefully designed by simulating a polluted marine environment.The objective was to in-depth investigate the corrosion mechanism of Zn–Al–Mg-coated steel exposed to a simulated polluted marine environment.The experiments were carried out by scanning electron microscopy for micro-morphological characterization,X-ray diffraction,electrochemical impedance spectroscopy and electrodynamic polarization curves for the aged samples.The analysis of the results obtained after an indoor accelerated ageing test shows that Zn–Al–Mg coatings generate insoluble Zn_(5)Cl_(2)(OH)_(8)·H_(2)O and Zn_(4)SO_(4)(OH)_(6)during the corrosion process,which hinders the diffusion of corrosive substances into the substrate,and the insoluble substances are structurally dense and thus inhibit further corrosion.Therefore,this effectively inhibits the occurrence of further corrosion,and thus,Zn–Al–Mg coating can significantly extend the service life of Zn–Al–Mg-coated steel.展开更多
The failure cause of a tinned copper wire clamp in marine atmosphere was studied systematically by X-ray photoelectron spectroscopy,scanning electron microscopy with energy dispersive spectroscopy and electrochemical ...The failure cause of a tinned copper wire clamp in marine atmosphere was studied systematically by X-ray photoelectron spectroscopy,scanning electron microscopy with energy dispersive spectroscopy and electrochemical measurements.The main components of the green rust on the surface of the damaged wire clamp are SnO_(2),CuO,Cu_(2)Cl(OH)_(3) and CuCO(OH)_(2).Much of green rust distributes at the platform edge along the axial direction on the crimp connection,and severe corrosion and corrosion pits occur at the platform edge zone along the axial direction.The enriching Cl-at the marine atmosphere and the existing O_(2) in air collectively enhance the corrosion process of the tin coating and the copper matrix.Finite element model results show that the residual stress and strain of the tin coating are the largest at the platform edge along the axial direction on the crimp connection,and the corresponding electrode potential of the tin coating at this zone drops significantly.The above results indicate that the residual strain increases the driving force of the corrosion electrochemical reactions and accelerates the corrosion rate and the pit corrosion of the tin coating at this zone.展开更多
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
Integrated CO_(2)capture and utilization(ICCU)technology requires dual functional materials(DFMs)to carry out the process in a single reaction system.The influence of the calcination atmosphere on efficiency of 4%Ru-8...Integrated CO_(2)capture and utilization(ICCU)technology requires dual functional materials(DFMs)to carry out the process in a single reaction system.The influence of the calcination atmosphere on efficiency of 4%Ru-8%Na_(2)CO_(3)-8%CaO/γ-Al_(2)O_(3)DFM is studied.The adsorbent precursors are first co-impregnated onto alumina and calcined in air.Then,Ru precursor is impregnated and four aliquotes are subjected to different calcination protocols:static air in muffle or under different mixtures(10%H_(2)/N_(2),50%H_(2)/N_(2)and N_(2))streams.Samples are characterized by XRD,N_(2)adsorption-desorption,H_(2)chemisorption,TEM,XPS,H_(2)-TPD,H_(2)-TPR,CO_(2)-TPD and TPSR.The catalytic behavior is evaluated,in cycles of CO_(2)adsorption and hydrogenation to CH_(4),and temporal evolution of reactants and products concentrations is analyzed.The calcination atmosphere influences the physicochemical properties and,ultimately,activity of DFMs.Characterization data and catalytic performance discover the acccomodation of Ru nanoparticles disposition and basic sites is mostly influencing the catalytic activity.DFM calcined under N_(2)flow(RuNaCa-N_(2))shows the highest CH_(4)production(449μmol/g at 370℃),because a well-controlled decomposition of precursors which favors the better accomodation of adsorbent and Ru phases,maximizing the specific surface area,the Ru-basic sites interface and the participation of different basic sites in the CO_(2)methanation reaction.Thus,the calcination in a N_(2)flow is revealed as the optimal calcination protocol to achieve highly efficient DFM for integrated CO_(2)adsorption and hydrogenation applications.展开更多
基金support from the National Natural Science Foundation of China(52174290).
文摘To explain the influence mechanism of MgO on the consolidation and reduction characteristics of roasted iron pellets,the properties and structure of pellets were investigated from multi-dimensions.It indicated that the MgO addition decreased the reduction swelling index(RSI)and reduction degree of pellets in both CO and H_(2)atmospheres.During the stepwise reduction process of Fe2O3→Fe3O4→FeO,the reduction behaviour of pellets in CO and H_(2)was similar,while the reduction rate of pellets in H_(2)atmosphere was almost twice as high as that in CO atmosphere.During the stepwise reduction process of FeO→Fe,the RSI of pellets showed a logarithmic increase in CO atmosphere and a linear decrease in H_(2)atmosphere.As investigated by first-principles calculations,C and Fe mainly formed chemical bonds,and the CO reduction process released energy,promoting the formation of iron whiskers.However,H and Fe produced weak physical adsorption,and the H_(2)reduction process was endothermic,inhibiting the generation of iron whiskers.With Mg2+doping in FexO,the nucleation region of iron whiskers expanded in CO reduction process,and the morphology of iron whiskers transformed from“slender”to“stocky,”reducing RSI of the pellets.
基金supported by the National Natural Science Foundation of China(No.41772240)the Key Research and Development program of Jiangsu Province(No.BE2021637).
文摘Ball milling is an environmentally friendly technology for the remediation of petroleumcontaminated soil(PCS),but the cleanup of organic pollutants requires a long time,and the post-remediation soil needs an economically viable disposal/reuse strategy due to its vast volume.The present paper develops a ball milling process under oxygen atmosphere to enhance PCS remediation and reuse the obtained carbonized soil(BCS-O)as wastewater treatment materials.The total petroleum hydrocarbon removal rates by ball milling under vacuum,air,and oxygen atmospheres are 39.83%,55.21%,and 93.84%,respectively.The Langmuir and pseudo second-order models satisfactorily describe the adsorption capacity and behavior of BCS-O for transition metals.The Cu^(2+),Ni^(2+),and Mn^(2+)adsorbed onto BCS-O were mainly bound to metal carbonates and metal oxides.Furthermore,BCS-O can effectively activate persulfate(PDS)oxidation to degrade aniline,while BCS-O loaded with transition metal(BCS-O-Me)shows better activation efficiency and reusability.BCS-O and BCS-O-Me activated PDS oxidation systems are dominated by^(1)O_(2)oxidation and electron transfer.The main active sites are oxygen-containing functional groups,vacancy defects,and graphitized carbon.The oxygen-containing functional groups and vacancy defects primarily activate PDS to generate^(1)O_(2)and attack aniline.Graphitized carbon promotes aniline degradation by accelerating electron transfer.The paper develops an innovative strategy to simultaneously realize efficient remediation of PCS and sequential reuse of the postremediation soil.
文摘The direct deoxygenative homo-coupling of benzyl alcohols holds great promise to build up bibenzyl motifs in organic synthesis,yet it remains a grand challenge in selectivity and activity control.Herein,we first discovered that iron carbide catalysts displayed high efficiency and selectivity in the catalytic deoxygenative homo-coupling of benzyl alcohols into bibenzyls using H_(2)as the reductant.Ir-promoted Fe0@Fe_(5)C_(2)gave the best performance among the investigated catalysts,and a broad scope of substrates with diverse functional groups could be smoothly converted into bibenzyls,with the yield up to 85%.In addition,in the presence of alkenes,three-component coupling reactions between alcohols and alkenes were also for the first time achieved to construct more complex multi-ring molecules.The radical-trapping experiment and FTIR measurements revealed the radical nature of the reaction and the significantly promoted C–O bond activation after carbonization,respectively.This work will provide guidelines for the rational design of efficient and selective catalysts for the alcohol-involved carbon-carbon coupling reactions.
基金Supported by the Shanghai Rising Star Program (Grant No. 21QB1403900)the Shanghai Municipal Commission of Science and Technology (Grant No. 22170712600)。
文摘Knowing the optimal operating parameters of Stirling engines is important for efficient combustion through adaptability to changed pressures and oxygen atmospheres. In this study, the optimum operating conditions for efficient combustion in a singular Stirling engine combustor at different oxygen atmospheres were investigated and determined. Numerical simulations were performed to investigate the effects of ejection ratio and pressure on combustion performance. In an oxygen/carbon dioxide atmosphere, the results show that increasing the ejection ratio substantially alters the flame distribution in the Stirling engine combustor, increasing heat transfer and external combustion efficiency. In contrast, increasing the ejection ratio reduces the average and maximum temperatures of the Stirling engine combustor. Increased pressure affects the flame distribution in the Stirling engine combustor and impedes the flow and convective heat transfer in the combustor, reducing the overall external combustion efficiency at pressures above 6.5 MPa. In an air/carbon dioxide atmosphere, an increased ejection ratio reduces the average and maximum temperatures in the Stirling engine combustor. However, the overall flame distribution does not change substantially. The external combustion efficiency tends to increase and then decrease because of two opposing factors: the increase in the convective heat transfer coefficient and the decrease in the temperature difference. Increasing pressure inhibits forced convection heat transfer in the Stirling engine combustor, reducing external combustion efficiency, which drops from 78% to 65% when pressure increases from 0.2 MPa to 0.5 MPa.
基金supported by the National Natural Science Foundation of China(32272252)the China Agriculture Research System(CARS-41)funded by the Chinese Ministry of Agriculture and Rural Affairs and Wens Fifth Five R&D Major Project(WENS-2020-1-ZDZX-007).
文摘The hurdle technology for food preservation effectively addresses the limitations of individual antimicrobial technologies by integrating their strengths.It can not only prolong the storage time of food but also maintains its high quality.In this study,three antimicrobial and bactericidal technologies,namely soluble gas stabilization(SGS),modified atmosphere packaging(MAP),and cold plasma(CP),were applied to chilled chicken breasts.The packaging,total viable count(TVC),and physicochemical properties of chilled chicken breasts after treatments and storage at 4℃were monitored.The microbial diversity at the initial and end points of the storage time of each group was also analyzed.The results indicated that a 3−5 h SGS treatment can effectively increase the proportion of carbon dioxide in the MAP during the storage process of chilled chicken breasts,thereby alleviating the packaging collapse problem.Simultaneously,the effect of SGS,MAP,and CP combinational treatments significantly extended the storage time of chilled chicken breasts while maintaining the physicochemical qualities of samples.Compared to the control group,the TVC of chicken breast treated with SGS,MAP,and CP treatments decreased by 0.58(lg(CFU/g))at 0 day.The shelf life was extended by 5 days.After 8 days,the total volatile basic nitrogen(TVB-N)was 26.67 vs.19.50 mg/100 g,thiobarbituric acid reactive substances(TBARS)was 0.99 vs.0.72 mg MDA/kg,and TVC was 8.22 vs.6.52(lg(CFU/g)).High-throughput sequencing results showed that SGS and MAP treatments significantly reduce the proportion of Pseudomonas and Psychrobacter,which are sensitive to carbon dioxide,in the total bacterial genera.This study underscores the potential of integrating multiple antimicrobial technologies for effective food preservation.
基金financial support for the research and for the publication costs of the articlesupported by Santa Catarina State Research Support Foundation(FAPESC)National Council for Scientific and Technological Development(CNPq no 302903/2023-2).
文摘Cement production,while essential for global infrastructure,contributes significantly to carbon dioxide emissions,accounting for approximately 7%of total emissions.To mitigate these environmental impacts,flash calcination of kaolinitic clays has been investigated as a sustainable alternative.This technique involves the rapid heating of clays,enabling their use as supplementary cementitious materials.The primary objective of this study was to modify the color of calcined clay in various atmospheres(oxidizing,inert,and reducing)to achieve a grayish tone similar to commercial cement while preserving its reactive properties.The experimental procedure employed a tubular reactor with precise control of gas flows(atmospheric air,nitrogen,and a carbon monoxide–nitrogen mixture).Physicochemical characterization of the raw clay was conducted before calcination,with analyses repeated on the calcined clays following experimentation.Results indicated that clay calcined in an oxidizing atmosphere acquired a reddish hue,attributed to the oxidation of iron in hematite.The Clay exhibited a pinkish tone in an inert atmosphere,while calcination in a reducing atmosphere yielded the desired grayish color.Regarding pozzolanic activity,clays calcined in oxidizing and inert atmospheres displayed robust strength,ranging from 82%to 87%.Calcination in a reducing atmosphere resulted in slightly lower strength,around 74%,likely due to the clay’s chemical composition and the calcination process,which affects compound formation and material reactivity.
基金The National Natural Science Foundation of China under contract Nos 42325604 and 42276253the Program of Shanghai Academic/Technology Research Leader under contract No.22XD1403600the Fund of the Ministry of Industry and Information Technology of China under contract No.CBG2N21-2-1.
文摘The year,2024,marks the 40th anniversary of Chinese research expeditions in the polar regions and the 25th anniversary of its Arctic research expeditions.China has conducted 14 national Arctic research expeditions.With the increase of understandings on the global impacts of the changes of Arctic climate system,especially on China’s weather and climate,and demands for commercial utilization of the Arctic sea routes,Chinese scientists have made great progresses on in site and remote sensing observation technologies for Arctic Ocean,interaction mechanisms between atmosphere,sea ice,and ocean,the connection mechanism between the Arctic Ocean and other regions,and have achieved a series of research results.This study summarizes the research achievements by Chinese scientists in the above-mentioned aspects or beyond,identifies knowledge gaps,and based on this,discusses prospects and provides suggestions.From a perspective of observation,improving the observation capabilities of the Arctic Ocean in winter and the ocean under the ice,as well as floe-scale processes of sea ice and mesoscale and submesoscale processes of the ocean,is an urgent task to be addressed.Strengthening international cooperation is necessary for building a monitoring network for the Arctic marine environment.From a perspective of numerical simulation,the descriptive ability and parameterization scheme of sub-grid processes based on observational evidence need to be developed.From a perspective of cross-sphere interactions,in addition to the multi-media coupling within the Arctic Ocean that this review focuses on,the interaction between the Arctic Ocean and land or ice sheet(Greenland),especially the water cycle process,is also a scientific domain that needs to be considered,in the context of Arctic warming and humidification.From a perspective of climate effects,the physical mechanisms that affect the robustness of teleconnection need to be clarified.
基金supported by the National Natural Science Foundation of China(Grant Numbers 42374195 and 42188101)the fellowship of China National Postdoctoral Program for Innovative Talents(Grant Number BX20230273)+1 种基金the Hubei Provincial Natural Science Foundation of China(Grant Number 2024AFB-097)the Postdoctor Project of Hubei Province(Grant Number 2024HBBHCXA054).
文摘This study employs Principal Component Analysis(PCA)and 13 years of SD-WACCM-X model data(2007-2019)to investigate the characteristics and mechanisms of Inter-hemispheric Coupling(IHC)triggered by sudden stratospheric warming(SSW)events.IHC in both hemispheres leads to a cold anomaly in the equatorial stratosphere,a warm anomaly in the equatorial mesosphere,and increased temperatures in the mesosphere and lower thermosphere(MLT)region of the summer hemisphere.However,the IHC features during boreal winter period are significantly weaker than during the austral winter period,primarily due to weaker stationary planetary wave activity in the Southern Hemisphere(SH).During the austral winter period,IHC results in a warm anomaly in the polar mesosphere of the SH,which does not occur in the NH during boreal winter period.This study also examines the possible influence of quasi-two-day waves(QTDWs)on IHC.We found that the largest temperature anomaly in the summer polar MLT region is associated with a large wind instability area,and a well-developed critical layer structure of QTDW in January.In contrast,during July,despite favorable conditions for QTDW propagation in the Northern Hemisphere,weaker IHC response is observed,suggesting that IHC features and the relationship with QTDWs during July would be more complex than during January.
基金funded by the National Natural Science Foundation of China(U22A20547)the Major Science and Technology Projects of Heilongjiang Province(2021ZX12B05 and 2020ZX07B02)。
文摘The present study monitored bacterial succession,physicochemical properties,and volatile organic compounds(VOCs)changes in smoked chicken legs with modified atmosphere packaging(MAP,60% CO_(2) and 40%N_(2))during a 25-day storage period at 4℃.After 15 days of storage,S erratia proteamaculans and Pseudomonas fragi became the predominant bacteria.Furthermore,physicochemical properties changed significantly,as evidenced by an increase in thiobarbituric acid reactive substances and b*(yellowness)value,and a decrease in hardness.A total of 65 VOCs were identified during storage.Correlation between bacterial succession and quality indicators(including VOCs and physicochemical properties)allowed the identification of 26 core dominant bacteria,including S.proteamaculans,Psychrobacter alimentarius,Pseudomonas putida,and Pseudomonas poae,which were positively related to spoilage VOCs(e.g.,1-octen-3-ol,1-pentanol,and 3-methyl-1-butanol)and could be defined as specific spoilage organisms(SSOs).The results of this study provide a systematic approach to predict SSOs in smoked chicken legs during storage,which can also provide a basis for product safety.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42188101, 42274211, 41974170, 42374184, 42122032, and 41974196)the Chinese Academy of Sciences (Grant Nos. QYZDJSSW-JSC028, XDA15052500, XDA17010301, and XDB41000000)+3 种基金the CNSA (Grant No. D050103)the Specialized Research Fund for State Key Laboratories of Chinathe Specialized Research Fund for Laboratory of Geospace Environment of the University of Science and Technology of Chinasupported by the International Space Science Institute (ISSI) in Bern and Beijing through the ISSI/ISSI-BJ International Team Project titled “Understanding the Mars Space Environment Through Multi-Spacecraft Measurements” (ISSI Team Project No. 23-582 and ISSI-BJ Team Project No. 58)
文摘Atmospheric escape plays a critical role in shaping the long-term climate evolution of Mars.Among the various escape mechanisms,energetic neutral atoms(ENAs)generated through charge exchange between solar wind ions and exospheric neutrals serve as an important diagnostic for ion-neutral interactions and upper atmospheric loss.This study presents direct observations of hydrogen ENAs(H-ENAs)on the dayside of Mars by using the Mars Ion and Neutral Particle Analyzer(MINPA)onboard China’s Tianwen-1 orbiter.By analyzing H-ENA data during a coronal mass ejection and a stream interaction region from December 29,2021,to January 1,2022,and comparing these data with MAVEN/SWIA(Mars Atmosphere and Volatile EvolutioN/Solar Wind Ion Analyzer)solar wind measurements,we examine the temporal evolution of H-ENA flux and the associated sputtered escape of atmospheric constituents.The observed H-ENA velocity is consistent with upstream solar wind ions,and the H-ENA-to-ion intensity ratio is used to infer variations in exospheric density,revealing a delayed response to enhanced solar wind activity.Penetrating H-ENA intensities reach up to 5.3×10^(6)s^(−1) cm^(−2),with energy fluxes on the order of(0.5-8.1)×10^(−3) mW/m^(2).The estimated oxygen sputtered escape rate driven by penetrating H-ENAs ranges from 5.5×10^(23)s^(−1) to 5.2×10^(24)s^(−1),comparable to or exceeding previous estimates based on penetrating ions.The findings highlight the need for low-altitude H-ENA observations to better quantify their atmospheric interactions and refine our understanding of nonthermal escape processes at Mars.
基金Project supported by the Key Research Project of Colleges and Universities of Henan Province(Grant No.23A140017)the Research Project of Department of Science and Technology of Henan Province(Grant No.242102231072)+1 种基金the National Natural Sciences Foundation of China(Grant No.52402336)the special fund of the Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences“New magnetic materials and structural devices for 5G communication”(Grant No.E41602QB01).
文摘CaBaCo_(4)O_(7)has been widely studied because of its distinctive structure and magnetic properties.This study examined the influence of different cooling atmospheres on the structure,magnetic properties,and dielectric behavior of CaBaCo_(4)O_(7).Samples were cooled under different atmospheric conditions to assess these influences.Our findings indicate that reduced oxygen content leads to increased lattice distortion.Since oxygen atoms play a crucial role in mediating magnetic exchange,oxygen deficiency disrupts long-range magnetic order and promotes short-range antiferromagnetic interactions.Additionally,the cooling atmosphere significantly impacts grain size,thereby affecting the dielectric constant and dielectric loss.In the argon-cooled CaBaCo_(4)O_(7)(Ar)sample,oxygen deficiency reduced dielectric permittivity and increased dielectric loss.
基金supported by the National Key R&D Program of China[grant number 2022YFF0801603]the Natural Science Foundation of China[grant number 41905074].
文摘Due to the high elevation and cold climate of the Tibetan Plateau,the western region retains extensive snow cover during the summer,which can exhibit rapid variability over the course of just a few days.This study utilizes numerical experiments to investigate the atmospheric response to extreme Tibetan Plateau snow cover(TPSC)events on a subseasonal timescale during summer.The results indicate that the subseasonal variations in TPSC exert limited impact on nonlocal atmospheric circulation and temperature during this period.Nevertheless,local surface energy and atmospheric temperature exhibit rapid cooling responses to increased snow cover.Specifically,an increase in snow cover over the western Tibetan Plateau leads to a sharp rise in surface albedo,resulting in a reduction in land surface energy and a negative response in the diabatic heating rate from the surface to 350 hPa locally.This negative diabatic heating response subsequently causes a decline in both surface and overlying atmospheric temperatures.The temperature response is confined to the western Tibetan Plateau and extends vertically from the surface to approximately 350 hPa.These extreme TPSC events and their associated atmospheric impacts occur within a two-week timescale.
基金supported by the National Natural Science Foundation of China(Grant Nos.12250013,12403070,12425306,42250101,12273092)the Macao Foundation,and Shanghai Post-doctoral Excellence Program(Grant No.2023000137)。
文摘The Sq(solar quiet)geomagnetic field is generated by the electric currents in the E-region of the ionosphere,driven by the atmospheric tides.It is a critical part of high-precision geomagnetic field modeling.Based on the classic thermal tide theory and atmospheric electrodynamics,this research,for the first time,developed an Sq geomagnetic field model that is directly built on the physical mechanism of the ionospheric dynamo,which is responsible for daily variations of the geomagnetic field.The performance in Sq geomagnetic field modeling was investigated using the Macao Science Satellite-1(MSS-1)data.Our model can enhance the physics-based framework of comprehensive geomagnetic field modeling for the MSS-1 and ensuing missions.
文摘Arsenic(As),classified as a Group I carcinogen by the International Agency for Research on Cancer(IARC),poses severe risks to ecosystems and human health through atmospheric exposure.This review synthesizes current knowledge on the sources,health impacts,and control strategies of atmospheric arsenic,with an emphasis on its global transport and toxicity.Natural sources,such as volcanic eruptions and soil erosion,contribute approximately 2.1 Gg/year;however,anthropogenic activities,notably metal smelting and coal combustion,dominate emissions,with global anthropogenic releases reaching approximately 28.6 Gg/year.Atmospheric arsenic primarily exists in two forms:particulate matter(PM_(2.5)-bound As(Ⅴ)/As(Ⅲ)and methylated species)and gaseous forms(e.g.,AsH_(3),As_(2)O_(3)),facilitating long-range transport and cross-continental pollution,as evidenced by Asian emissions contributing 39% of Arctic deposition.Advanced techniques,such as inductively coupled plasma mass spectrometry(ICP-MS)and models like GEOS-Chem,enhance emission tracking;however,gaps persist in monitoring gaseous arsenic and refining emission inventories.Health risks include lung cancer,neurotoxicity,and cardiovascular diseases,exacerbated by inhalation and dietary exposure via contaminated crops.Control technologies,including calcium-and iron-based adsorbents and industrial scrubbers,show promise but face challenges related to efficiency and cost.Regional strategies,such as China’s tightened emission limits(0.5 mg/m^(3))and the EU’s Best Available Techniques(BAT),highlight progress,yet global cooperation remains vital for transboundary mitigation.Future research should prioritize low-cost sensors,elucidating speciation-toxicity relationships,and AI-driven emission management to address data gaps and optimize policies.Integrating multidisciplinary approaches—advanced science,stringent regulations,and international collaboration—is crucial to mitigate the environmental and public health impacts of arsenic amid growing industrialization and climate change.
基金supported by Central Public-Interest Scientific Institution Basal Research Fund,CAFS(2023TD74,2023TD78)the Earmarked Fund for CARS-47(CARS-47)+2 种基金Guangdong Provincial Science and Technology Plan Project(2023B0202010015)Central Public-Interest Scientific Institution Basal Research Fund,CAFS(Sanya Yazhou Bay Science and Technology City(SKJC-2020-02-013))Special Funds for Promoting Economic Development in Guangdong Province(For Modern Fishery)(YueNong 2019B14).
文摘Here,we aimed to study the changes in proteome of golden pompano fillets during post-mortem storage.Tandem mass tags(TMT)-labeled quantitative proteomic strategy was applied to investigate the relationships between protein changes and quality characteristics of modified atmosphere packaging(MAP)fillets during superchilling(-3°C)storage.Scanning electron microscopy was used to show that the muscle histology microstructure of fillets was damaged to varying degrees,and low-field nuclear magnetic resonance was used to find that the immobilized water and free water in the muscle of fillets changed significantly.Total sulfhydryl content,TCA-soluble peptides and Ca2+-ATPase activity also showed that the fillet protein had a deterioration by oxidation and denaturation.The Fresh(FS),MAP,and air packaging(AP)groups were set.Total of 150 proteins were identified as differential abundant proteins(DAPs)in MAP/FS,while 209 DAPs were in AP/FS group.The KEGG pathway analysis indicated that most DAPs were involved in binding proteins and protein turnover.Correlation analysis found that 52 DAPs were correlated with quality traits.Among them,8 highly correlated DAPs are expected to be used as potential quality markers for protein oxidation and water-holding capacity.These results provide a further understanding of the muscle deterioration mechanism of packaging golden pompano fillets during superchilling.
基金prepared to summarize the research conducted during the first 2 years of research at the mid-term stage of the Dragon 5 project 59332(Geophysical and atmospheric retrieval from SAR data stacks over natural scenarios)funded by the European Space Agency under contract[4000136890/21/I-NB].
文摘This paper is intended to summarize the research conducted during the first 2 years of the Dragon 5 project 59,332(geophysical and atmospheric retrieval from Synthetic Aperture Radar(SAR)data stacks over natural scenarios).Monitoring atmospheric phenomena,encompassing both tropospheric and ionospheric conditions,holds pivotal significance for various scientific and practical applications.In this paper,we present an exploration of advanced techniques for estimating tropospheric and ionospheric phase screens using stacks of Synthetic Aperture Radar(SAR)images.Our study delves into the current state-of-the-art in atmospheric monitoring with a focus on spaceborne SAR systems,shedding light on their evolving capabilities.For tropospheric phase screen estimation,we propose a novel approach that jointly estimates the tropospheric component from all the images.We discuss the methodology in detail,highlighting its ability to recover accurate tropospheric maps.Through a series of quantitative case studies using real Sentinel-1 satellite data,we demonstrate the effectiveness of our technique in capturing tropospheric variability over different geographical regions.Concurrently,we delve into the estimation of ionospheric phase screens utilizing SAR image stacks.The intricacies of ionospheric disturbances pose unique challenges,necessitating specialized techniques.We dissect our approach,showcasing its capacity to mitigate ionospheric noise and recover precise phase information.Real data from the Sentinel-1 satellite are employed to showcase the efficacy of our method,unraveling ionospheric perturbations with improved accuracy.The integration of our techniques,though presented separately for clarity,collectively contributes to a comprehensive framework for atmospheric monitoring.Our findings emphasize the potential of SAR-based approaches in advancing our knowledge of atmospheric processes,thus fostering advancements in weather prediction,geophysics,and environmental management.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFB0304602)the National Natural Science Foundation of China(Nos.51771029)the National Environmental Corrosion Platform(NECP,2005DKA10400).
文摘The corrosion behaviour of zinc–aluminium–magnesium-coated steel in a simulated polluted marine atmospheric environment was investigated.Therefore,an indoor ageing acceleration test was carefully designed by simulating a polluted marine environment.The objective was to in-depth investigate the corrosion mechanism of Zn–Al–Mg-coated steel exposed to a simulated polluted marine environment.The experiments were carried out by scanning electron microscopy for micro-morphological characterization,X-ray diffraction,electrochemical impedance spectroscopy and electrodynamic polarization curves for the aged samples.The analysis of the results obtained after an indoor accelerated ageing test shows that Zn–Al–Mg coatings generate insoluble Zn_(5)Cl_(2)(OH)_(8)·H_(2)O and Zn_(4)SO_(4)(OH)_(6)during the corrosion process,which hinders the diffusion of corrosive substances into the substrate,and the insoluble substances are structurally dense and thus inhibit further corrosion.Therefore,this effectively inhibits the occurrence of further corrosion,and thus,Zn–Al–Mg coating can significantly extend the service life of Zn–Al–Mg-coated steel.
基金supports of National Natural Science Foundation of China(51971191)Henan Provincial Key R&D Program of China(2021GK2008)Youth Backbone Teacher Training Program of Henan Province(2021GGJS004).
文摘The failure cause of a tinned copper wire clamp in marine atmosphere was studied systematically by X-ray photoelectron spectroscopy,scanning electron microscopy with energy dispersive spectroscopy and electrochemical measurements.The main components of the green rust on the surface of the damaged wire clamp are SnO_(2),CuO,Cu_(2)Cl(OH)_(3) and CuCO(OH)_(2).Much of green rust distributes at the platform edge along the axial direction on the crimp connection,and severe corrosion and corrosion pits occur at the platform edge zone along the axial direction.The enriching Cl-at the marine atmosphere and the existing O_(2) in air collectively enhance the corrosion process of the tin coating and the copper matrix.Finite element model results show that the residual stress and strain of the tin coating are the largest at the platform edge along the axial direction on the crimp connection,and the corresponding electrode potential of the tin coating at this zone drops significantly.The above results indicate that the residual strain increases the driving force of the corrosion electrochemical reactions and accelerates the corrosion rate and the pit corrosion of the tin coating at this zone.
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金supported by Ministry of Science and InnovationNational Research Agency(Project PID2019-105960RBC21)+1 种基金by the Basque Government(Project IT1509-2022)One of the authors(JAOC)acknowledges the post-doctoral research grant(DOCREC20/49)provided by the University of the Basque Country。
文摘Integrated CO_(2)capture and utilization(ICCU)technology requires dual functional materials(DFMs)to carry out the process in a single reaction system.The influence of the calcination atmosphere on efficiency of 4%Ru-8%Na_(2)CO_(3)-8%CaO/γ-Al_(2)O_(3)DFM is studied.The adsorbent precursors are first co-impregnated onto alumina and calcined in air.Then,Ru precursor is impregnated and four aliquotes are subjected to different calcination protocols:static air in muffle or under different mixtures(10%H_(2)/N_(2),50%H_(2)/N_(2)and N_(2))streams.Samples are characterized by XRD,N_(2)adsorption-desorption,H_(2)chemisorption,TEM,XPS,H_(2)-TPD,H_(2)-TPR,CO_(2)-TPD and TPSR.The catalytic behavior is evaluated,in cycles of CO_(2)adsorption and hydrogenation to CH_(4),and temporal evolution of reactants and products concentrations is analyzed.The calcination atmosphere influences the physicochemical properties and,ultimately,activity of DFMs.Characterization data and catalytic performance discover the acccomodation of Ru nanoparticles disposition and basic sites is mostly influencing the catalytic activity.DFM calcined under N_(2)flow(RuNaCa-N_(2))shows the highest CH_(4)production(449μmol/g at 370℃),because a well-controlled decomposition of precursors which favors the better accomodation of adsorbent and Ru phases,maximizing the specific surface area,the Ru-basic sites interface and the participation of different basic sites in the CO_(2)methanation reaction.Thus,the calcination in a N_(2)flow is revealed as the optimal calcination protocol to achieve highly efficient DFM for integrated CO_(2)adsorption and hydrogenation applications.