Dense-array ambient noise tomography is a powerful tool for achieving high-resolution subsurface imag-ing,significantly impacting geohazard prevention and control.Conventional dense-array studies,how-ever,require simu...Dense-array ambient noise tomography is a powerful tool for achieving high-resolution subsurface imag-ing,significantly impacting geohazard prevention and control.Conventional dense-array studies,how-ever,require simultaneous observations of numerous stations for extensive coverage.To conduct a comprehensive karst feature investigation with limited stations,we designed a new synchronous-asyn-chronous observation system that facilitates dense array observations.We conducted two rounds of asynchronous observations,each lasting approximately 24 h,in combination with synchronous backbone stations.We achieved wide-ranging coverage of the study area utilizing 197 nodal receivers,with an average station spacing of 7 m.The beamforming results revealed distinct variations in the noise source distributions between day and night.We estimated the source strength in the stationary phase zone and used a weighting scheme for stacking the cross-correlation functions(C ^(1) functions)to suppress the influ-ence of nonuniform noise source distributions.The weights were derived from the similarity coefficients between multicomponent C^(1)functions related to Rayleigh waves.We employed the cross-correlation of C ^(1) functions(C^(2)methods)to obtain the empirical Green’s functions between asynchronous stations.To eliminate artifacts in C ^(2) functions from higher-mode surface waves in C^(1)functions,we filtered the C^(1)functions on the basis of different particle motions linked to multimode Rayleigh waves.The dispersion measurements of Rayleigh waves obtained from both the C^(1)and C^(2)functions were utilized in surface wave tomography.The inverted three-dimensional(3D)shear-wave(S-wave)velocity model reveals two significant low-velocity zones at depths ranging from 40 to 60 m,which align well with the karst caves found in the drilling data.The method of short-term synchronous-asynchronous ambient noise tomography shows promise as a cost-effective and efficient approach for urban geohazard investigations.展开更多
Federated learning combines with fog computing to transform data sharing into model sharing,which solves the issues of data isolation and privacy disclosure in fog computing.However,existing studies focus on centraliz...Federated learning combines with fog computing to transform data sharing into model sharing,which solves the issues of data isolation and privacy disclosure in fog computing.However,existing studies focus on centralized single-layer aggregation federated learning architecture,which lack the consideration of cross-domain and asynchronous robustness of federated learning,and rarely integrate verification mechanisms from the perspective of incentives.To address the above challenges,we propose a Blockchain and Signcryption enabled Asynchronous Federated Learning(BSAFL)framework based on dual aggregation for cross-domain scenarios.In particular,we first design two types of signcryption schemes to secure the interaction and access control of collaborative learning between domains.Second,we construct a differential privacy approach that adaptively adjusts privacy budgets to ensure data privacy and local models'availability of intra-domain user.Furthermore,we propose an asynchronous aggregation solution that incorporates consensus verification and elastic participation using blockchain.Finally,security analysis demonstrates the security and privacy effectiveness of BSAFL,and the evaluation on real datasets further validates the high model accuracy and performance of BSAFL.展开更多
Considering the complexity of plant-wide optimization for large-scale industries, a distributed optimization framework to solve the profit optimization problem in ethylene whole process is proposed. To tackle the dela...Considering the complexity of plant-wide optimization for large-scale industries, a distributed optimization framework to solve the profit optimization problem in ethylene whole process is proposed. To tackle the delays arising from the residence time for materials passing through production units during the process with guaranteed constraint satisfaction, an asynchronous distributed parameter projection algorithm with gradient tracking method is introduced. Besides, the heavy ball momentum and Nesterov momentum are incorporated into the proposed algorithm in order to achieve double acceleration properties. The experimental results show that the proposed asynchronous algorithm can achieve a faster convergence compared with the synchronous algorithm.展开更多
Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned a...Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned aerial vehicles.Localizing moving targets is crucial for analyzing their motion characteristics and dynamic properties.Reconstructing the trajectories of points from asynchronous cameras is a significant challenge.It encompasses two coupled sub-problems:Trajectory reconstruction and camera synchronization.Present methods typically address only one of these sub-problems individually.This paper proposes a 3D trajectory reconstruction method for point targets based on asynchronous cameras,simultaneously solving both sub-problems.Firstly,we extend the trajectory intersection method to asynchronous cameras to resolve the limitation of traditional triangulation that requires camera synchronization.Secondly,we develop models for camera temporal information and target motion,based on imaging mechanisms and target dynamics characteristics.The parameters are optimized simultaneously to achieve trajectory reconstruction without accurate time parameters.Thirdly,we optimize the camera rotations alongside the camera time information and target motion parameters,using tighter and more continuous constraints on moving points.The reconstruction accuracy is significantly improved,especially when the camera rotations are inaccurate.Finally,the simulated and real-world experimental results demonstrate the feasibility and accuracy of the proposed method.The real-world results indicate that the proposed algorithm achieved a localization error of 112.95 m at an observation distance range of 15-20 km.展开更多
To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic ...To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic Algorithm (AGA) to solve multi-agent path planning problems effectively. To enhance the real-time performance and computational efficiency of Multi-Agent Systems (MAS) in path planning, the AGA incorporates an Equal-Size Clustering Algorithm (ESCA) based on the K-means clustering method. The ESCA divides the primary task evenly into a series of subtasks, thereby reducing the gene length in the subsequent GA process. The algorithm then employs GA to solve each subtask sequentially. To evaluate the effectiveness of the proposed method, a simulation program was designed to perform path planning for 100 trajectories, and the results were compared with those of State-Of-The-Art (SOTA) methods. The simulation results demonstrate that, although the solutions provided by AGA are suboptimal, it exhibits significant advantages in terms of execution speed and solution stability compared to other algorithms.展开更多
This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(F...This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(FD)in unstable subsystems are developed.The FD challenge is then transformed into an H∞filtering issue.Utilizing the multiple discontinuous Lyapunov function(MDLF)approach and the mode-dependent average dwell time(MDADT)method,sufficient conditions are derived to ensure stability during both fast and slow switching.Furthermore,the existence and solutions for FD filters are provided through linear matrix inequalities(LMIs).The simulation outcomes demonstrated the excellent performance of the developed method in studied cases.展开更多
Federated learning combined with edge computing has greatly facilitated transportation in real-time applications such as intelligent traffic sys-tems.However,synchronous federated learning is in-efficient in terms of ...Federated learning combined with edge computing has greatly facilitated transportation in real-time applications such as intelligent traffic sys-tems.However,synchronous federated learning is in-efficient in terms of time and convergence speed,mak-ing it unsuitable for high real-time requirements.To address these issues,this paper proposes an Adap-tive Waiting time Asynchronous Federated Learn-ing(AWTAFL)based on Dueling Double Deep Q-Network(D3QN).The server dynamically adjusts the waiting time using the D3QN algorithm based on the current task progress and energy consumption,aim-ing to accelerate convergence and save energy.Addi-tionally,this paper presents a new federated learning global aggregation scheme,where the central server performs weighted aggregation based on the freshness and contribution of client parameters.Experimen-tal simulations demonstrate that the proposed algo-rithm significantly reduces the convergence time while ensuring model quality and effectively reducing en-ergy consumption in asynchronous federated learning.Furthermore,the improved global aggregation update method enhances training stability and reduces oscil-lations in the global model convergence.展开更多
A novel asynchronous ACS(add-compare-select) processor for Viterbi decoder is described.It is controlled by local handshake signals instead of the globe clock.The circuits of asynchronous adder unit,asynchronous compa...A novel asynchronous ACS(add-compare-select) processor for Viterbi decoder is described.It is controlled by local handshake signals instead of the globe clock.The circuits of asynchronous adder unit,asynchronous comparator unit,and asynchronous selector unit are proposed.A full-custom design of asynchronous 4-bit ACS processor is fabricated in CSMC-HJ 0.6μm CMOS 2P2M mixed-mode process.At a supply voltage of 5V,when it operates at 20MHz,the power consumption is 75.5mW.The processor has no dynamic power consumption when it awaits an opportunity in sleep mode.The results of performance test of asynchronous 4-bit ACS processor show that the average case response time 19.18ns is only 82% of the worst-case response time 23.37ns.Compared with the synchronous 4-bit ACS processor in power consumption and performance by simulation,it reveals that the asynchronous ACS processor has some advantages than the synchronous one.展开更多
In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchr...In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchronous dynamical system with rate constraints on events in the iteration domain. The stability condition is provided in the form of linear matrix inequalities (LMIS) depending on the stability of asynchronous dynamical systems. The analysis is supported by simulations.展开更多
Location estimation of underwater sensor networks(USNs)has become a critical technology,due to its fundamental role in the sensing,communication and control of ocean volume.However,the asynchronous clock,security atta...Location estimation of underwater sensor networks(USNs)has become a critical technology,due to its fundamental role in the sensing,communication and control of ocean volume.However,the asynchronous clock,security attack and mobility characteristics of underwater environment make localization much more challenging as compared with terrestrial sensor networks.This paper is concerned with a privacy-preserving asynchronous localization issue for USNs.Particularly,a hybrid network architecture that includes surface buoys,anchor nodes,active sensor nodes and ordinary sensor nodes is constructed.Then,an asynchronous localization protocol is provided,through which two privacy-preserving localization algorithms are designed to estimate the locations of active and ordinary sensor nodes.It is worth mentioning that,the proposed localization algorithms reveal disguised positions to the network,while they do not adopt any homomorphic encryption technique.More importantly,they can eliminate the effect of asynchronous clock,i.e.,clock skew and offset.The performance analyses for the privacy-preserving asynchronous localization algorithms are also presented.Finally,simulation and experiment results reveal that the proposed localization approach can avoid the leakage of position information,while the location accuracy can be significantly enhanced as compared with the other works.展开更多
This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficienc...This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficiency when multiple lines are connected to the platform. The numerical model of the platform motion simulation in wave is presented. Additionally, how the asynchronous coupling algorithm is implemented during the dynamic coupling analysis is introduced. Through a comparison of the numerical results of our developed model with commercial software for a SPAR platform, the developed numerical model is checked and validated.展开更多
This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,th...This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,the sampleddata Takagi-Sugeno(T-S)fuzzy half-car active suspension(HCAS)system is considered,which is further modelled as a continuous system with an input delay.Firstly,considering that the fuzzy system and the fuzzy controller cannot share the identical premises due to the existence of input delay,a reconstructed method is employed to synchronize the time scales of membership functions between the fuzzy controller and the fuzzy system.Secondly,since external disturbances often belong to a restricted frequency range,a finite frequency control criterion is presented for control synthesis to reduce conservatism.Thirdly,given a full information of state variables is hardly available in practical suspension systems,a two-stage method is proposed to calculate the static output feedback control gains.Moreover,an iterative algorithm is proposed to compute the optimum solution.Finally,numerical simulations verify the effectiveness of the proposed controllers.展开更多
This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the pre...This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the predictions of physical designs because of errors in mechanical matching and installation.Therefore,parameter optimization methods such as pointwise scanning,evolutionary algorithms(EAs),and robust conjugate direction search are widely used in beam tuning to compensate for this inconsistency.However,it is difficult for them to deal with a large number of discrete local optima.The A3C algorithm,which has been applied in the automated control field,provides an approach for improving multi-dimensional optimization.The A3C algorithm is introduced and improved for the real-time beam tuning code for accelerators.Experiments in which optimization is achieved by using pointwise scanning,the genetic algorithm(one kind of EAs),and the A3C-algorithm are conducted and compared to optimize the currents of four steering magnets and two solenoids in the low-energy beam transport section(LEBT)of the Xi’an Proton Application Facility.Optimal currents are determined when the highest transmission of a radio frequency quadrupole(RFQ)accelerator downstream of the LEBT is achieved.The optimal work points of the tuned accelerator were obtained with currents of 0 A,0 A,0 A,and 0.1 A,for the four steering magnets,and 107 A and 96 A for the two solenoids.Furthermore,the highest transmission of the RFQ was 91.2%.Meanwhile,the lower time required for the optimization with the A3C algorithm was successfully verified.Optimization with the A3C algorithm consumed 42%and 78%less time than pointwise scanning with random initialization and pre-trained initialization of weights,respectively.展开更多
The advancement of the Internet of Things(IoT)brings new opportunities for collecting real-time data and deploying machine learning models.Nonetheless,an individual IoT device may not have adequate computing resources...The advancement of the Internet of Things(IoT)brings new opportunities for collecting real-time data and deploying machine learning models.Nonetheless,an individual IoT device may not have adequate computing resources to train and deploy an entire learning model.At the same time,transmitting continuous real-time data to a central server with high computing resource incurs enormous communication costs and raises issues in data security and privacy.Federated learning,a distributed machine learning framework,is a promising solution to train machine learning models with resource-limited devices and edge servers.Yet,the majority of existing works assume an impractically synchronous parameter update manner with homogeneous IoT nodes under stable communication connections.In this paper,we develop an asynchronous federated learning scheme to improve training efficiency for heterogeneous IoT devices under unstable communication network.Particularly,we formulate an asynchronous federated learning model and develop a lightweight node selection algorithm to carry out learning tasks effectively.The proposed algorithm iteratively selects heterogeneous IoT nodes to participate in the global learning aggregation while considering their local computing resource and communication condition.Extensive experimental results demonstrate that our proposed asynchronous federated learning scheme outperforms the state-of-the-art schemes in various settings on independent and identically distributed(i.i.d.)and non-i.i.d.data distribution.展开更多
Soft reduction is known to be one of the best ways to improve the internal quality of slab castings such as center segregation, center porosity, centerline or triangular zone cracks, which is based on a proper adoptio...Soft reduction is known to be one of the best ways to improve the internal quality of slab castings such as center segregation, center porosity, centerline or triangular zone cracks, which is based on a proper adoption of the amount of reduction upon the given final solidification zone through roll gap adjustments. The synchronization of the clamping cylinders for roll gap adjustments should be very important to the application of soft reduction, including the synchronization of the clamping cylinders adjustments in the same and different segments. The synchronization of clamping cylinders adjustments is mainly affected by the adjustable accuracy of the four position-controlled clamping cylinders mounted in the upper frames of the segments according to a predetermined transformation relationship between the signals of displacement sensors and aimed roll gap, which, however, is also influenced by the installation accuracy, the precision of displacement sensors, the deformation of the segment frames and/or its bearing pedestals. Due to the actual asynchronous adjustments of the four clamping cylinders, the dynamic soft reduction operation is normally applied at non-ideal mechanical conditions. Here 7 possible situations of asynchronous adjustments of the local segments which may induce gap deviation have been presented. The roll gap deviation in the soft reduction region of a slab casting has been studied by a 3-D visco-elastic plastic FEM model, through which the additional inter-roll bulging, the related triangular cracks induced by one kind of the possible asynchronous adjustment situation and the effectiveness of soft reduction have been analyzed. A critical tolerance for the gap adjustments has been proposed for better contribution of soft reduction to the internal quality of slabs.展开更多
In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-m...In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.展开更多
The reaction between urea and formaldehyde in water solution was theoretically investigated by using B3LYP and MP2 methods. It was found that the addition of the nitrogen atom in urea to the carbonyl group in formalde...The reaction between urea and formaldehyde in water solution was theoretically investigated by using B3LYP and MP2 methods. It was found that the addition of the nitrogen atom in urea to the carbonyl group in formaldehyde precedes the proton transfer and the proton migration from water to the carbonyl group occurs before the proton abstraction from the nitrogen. With one or two water molecules involved in the TS, the activation energy barrier is lowered compared to the TS of the mechanism with no water participation. The energy change along the reaction coordinate clearly shows that a zwitterionic-like intermediate does not exist on the PES. The reaction between urea and formaldehyde occurs in a concerted mechanism but with asynchronous characters, This is different from the stepwise mechanism recently found for the amination reactions of formaldehyde.展开更多
The robust controller design problem for switched polytopic systems under asynchronous switching is addressed.These systems exist in many aviation applications,such as dynamical systems involving rapid variations.A sw...The robust controller design problem for switched polytopic systems under asynchronous switching is addressed.These systems exist in many aviation applications,such as dynamical systems involving rapid variations.A switched polytopic system is established to describe the highly maneuverable technology vehicle within the full flight envelope and a robust dynamic output feedback control method is designed for the switched polytopic system.Combining the Lyapunov-like function method and the average dwell time method,a sufficient condition is derived for the switched polytopic system with asynchronous switching and data dropout to be globally,uniformly and asymptotically stable in terms of linear matrix inequality.The robust dynamic output feedback controller is then applied to the highly maneuverable technology vehicle to illustrate the effectiveness of the proposed approach.The simulation results show that the angle of attack tracking performance is acceptable over the time history and the control surface responses are all satisfying along the full flight trajectory.展开更多
This letter explores the distributed multisensor dynamic system, which has uniform sampling velocity and asynchronous sampling data for different sensors, and puts forward a new gradation fusion algorithm of multisens...This letter explores the distributed multisensor dynamic system, which has uniform sampling velocity and asynchronous sampling data for different sensors, and puts forward a new gradation fusion algorithm of multisensor dynamic system. As the total forecasted increment value between the two adjacent moments is the forecasted estimate value of the corresponding state increment in the fusion center, the new algorithm models the state and the forecasted estimate value of every moment. Kalman filter and all measurements arriving sequentially in the fusion period are employed to update the evaluation of target state step by step, on the condition that the system has obtained the target state evaluation that is based on the overall information in the previous fusion period. Accordingly, in the present period, the fusion evaluation of the target state at each sampling point on the basis of the overall information can be obtained. This letter elaborates the form of this new algorithm. Computer simulation demonstrates that this new algorithm owns greater precision in estimating target state than the present asynchronous fusion algorithm calibrated in time does.展开更多
基金supported by the National Natural Science Foundation of China(41830103)the Project of Nanjing Center of China Geological Survey(DD20190281).
文摘Dense-array ambient noise tomography is a powerful tool for achieving high-resolution subsurface imag-ing,significantly impacting geohazard prevention and control.Conventional dense-array studies,how-ever,require simultaneous observations of numerous stations for extensive coverage.To conduct a comprehensive karst feature investigation with limited stations,we designed a new synchronous-asyn-chronous observation system that facilitates dense array observations.We conducted two rounds of asynchronous observations,each lasting approximately 24 h,in combination with synchronous backbone stations.We achieved wide-ranging coverage of the study area utilizing 197 nodal receivers,with an average station spacing of 7 m.The beamforming results revealed distinct variations in the noise source distributions between day and night.We estimated the source strength in the stationary phase zone and used a weighting scheme for stacking the cross-correlation functions(C ^(1) functions)to suppress the influ-ence of nonuniform noise source distributions.The weights were derived from the similarity coefficients between multicomponent C^(1)functions related to Rayleigh waves.We employed the cross-correlation of C ^(1) functions(C^(2)methods)to obtain the empirical Green’s functions between asynchronous stations.To eliminate artifacts in C ^(2) functions from higher-mode surface waves in C^(1)functions,we filtered the C^(1)functions on the basis of different particle motions linked to multimode Rayleigh waves.The dispersion measurements of Rayleigh waves obtained from both the C^(1)and C^(2)functions were utilized in surface wave tomography.The inverted three-dimensional(3D)shear-wave(S-wave)velocity model reveals two significant low-velocity zones at depths ranging from 40 to 60 m,which align well with the karst caves found in the drilling data.The method of short-term synchronous-asynchronous ambient noise tomography shows promise as a cost-effective and efficient approach for urban geohazard investigations.
基金supported in part by the National Key Research and Development Program of China under Grant No.2021YFB3101100in part by the National Natural Science Foundation of China under Grant 62272123,62272102,62272124+2 种基金in part by the Project of High-level Innovative Talents of Guizhou Province under Grant[2020]6008in part by the Science and Technology Program of Guizhou Province under Grant No.[2020]5017,No.[2022]065in part by the Guangxi Key Laboratory of Cryptography and Information Security under Grant GCIS202105。
文摘Federated learning combines with fog computing to transform data sharing into model sharing,which solves the issues of data isolation and privacy disclosure in fog computing.However,existing studies focus on centralized single-layer aggregation federated learning architecture,which lack the consideration of cross-domain and asynchronous robustness of federated learning,and rarely integrate verification mechanisms from the perspective of incentives.To address the above challenges,we propose a Blockchain and Signcryption enabled Asynchronous Federated Learning(BSAFL)framework based on dual aggregation for cross-domain scenarios.In particular,we first design two types of signcryption schemes to secure the interaction and access control of collaborative learning between domains.Second,we construct a differential privacy approach that adaptively adjusts privacy budgets to ensure data privacy and local models'availability of intra-domain user.Furthermore,we propose an asynchronous aggregation solution that incorporates consensus verification and elastic participation using blockchain.Finally,security analysis demonstrates the security and privacy effectiveness of BSAFL,and the evaluation on real datasets further validates the high model accuracy and performance of BSAFL.
基金supported by National Key Research and Development Program of China(2022YFB3305900)National Natural Science Foundation of China(62394343,62394345)+1 种基金Major Science and Technology Projects of Longmen Laboratory(NO.LMZDXM202206)Shanghai Rising-Star Program under Grant 24QA2706100.
文摘Considering the complexity of plant-wide optimization for large-scale industries, a distributed optimization framework to solve the profit optimization problem in ethylene whole process is proposed. To tackle the delays arising from the residence time for materials passing through production units during the process with guaranteed constraint satisfaction, an asynchronous distributed parameter projection algorithm with gradient tracking method is introduced. Besides, the heavy ball momentum and Nesterov momentum are incorporated into the proposed algorithm in order to achieve double acceleration properties. The experimental results show that the proposed asynchronous algorithm can achieve a faster convergence compared with the synchronous algorithm.
基金supported by the Hunan Provin〓〓cial Natural Science Foundation for Excellent Young Scholars(Grant No.2023JJ20045)the National Natural Science Foundation of China(Grant No.12372189)。
文摘Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned aerial vehicles.Localizing moving targets is crucial for analyzing their motion characteristics and dynamic properties.Reconstructing the trajectories of points from asynchronous cameras is a significant challenge.It encompasses two coupled sub-problems:Trajectory reconstruction and camera synchronization.Present methods typically address only one of these sub-problems individually.This paper proposes a 3D trajectory reconstruction method for point targets based on asynchronous cameras,simultaneously solving both sub-problems.Firstly,we extend the trajectory intersection method to asynchronous cameras to resolve the limitation of traditional triangulation that requires camera synchronization.Secondly,we develop models for camera temporal information and target motion,based on imaging mechanisms and target dynamics characteristics.The parameters are optimized simultaneously to achieve trajectory reconstruction without accurate time parameters.Thirdly,we optimize the camera rotations alongside the camera time information and target motion parameters,using tighter and more continuous constraints on moving points.The reconstruction accuracy is significantly improved,especially when the camera rotations are inaccurate.Finally,the simulated and real-world experimental results demonstrate the feasibility and accuracy of the proposed method.The real-world results indicate that the proposed algorithm achieved a localization error of 112.95 m at an observation distance range of 15-20 km.
文摘To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic Algorithm (AGA) to solve multi-agent path planning problems effectively. To enhance the real-time performance and computational efficiency of Multi-Agent Systems (MAS) in path planning, the AGA incorporates an Equal-Size Clustering Algorithm (ESCA) based on the K-means clustering method. The ESCA divides the primary task evenly into a series of subtasks, thereby reducing the gene length in the subsequent GA process. The algorithm then employs GA to solve each subtask sequentially. To evaluate the effectiveness of the proposed method, a simulation program was designed to perform path planning for 100 trajectories, and the results were compared with those of State-Of-The-Art (SOTA) methods. The simulation results demonstrate that, although the solutions provided by AGA are suboptimal, it exhibits significant advantages in terms of execution speed and solution stability compared to other algorithms.
基金the National Natural Science Foundation of China(Grant Nos.62303380,62176214,62101590,62003268)the Aeronautical Science Foundation of China(Grant No.201907053001).
文摘This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(FD)in unstable subsystems are developed.The FD challenge is then transformed into an H∞filtering issue.Utilizing the multiple discontinuous Lyapunov function(MDLF)approach and the mode-dependent average dwell time(MDADT)method,sufficient conditions are derived to ensure stability during both fast and slow switching.Furthermore,the existence and solutions for FD filters are provided through linear matrix inequalities(LMIs).The simulation outcomes demonstrated the excellent performance of the developed method in studied cases.
基金supported by the National Natural Science Foundation of China(62371082)Guangxi Science and Technology Project(AB24010317)+1 种基金Science and Technology Project of Chongqing Education Commission(KJZD-K202400606)Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0726,CSTB2023NSCQ-LZX0014).
文摘Federated learning combined with edge computing has greatly facilitated transportation in real-time applications such as intelligent traffic sys-tems.However,synchronous federated learning is in-efficient in terms of time and convergence speed,mak-ing it unsuitable for high real-time requirements.To address these issues,this paper proposes an Adap-tive Waiting time Asynchronous Federated Learn-ing(AWTAFL)based on Dueling Double Deep Q-Network(D3QN).The server dynamically adjusts the waiting time using the D3QN algorithm based on the current task progress and energy consumption,aim-ing to accelerate convergence and save energy.Addi-tionally,this paper presents a new federated learning global aggregation scheme,where the central server performs weighted aggregation based on the freshness and contribution of client parameters.Experimen-tal simulations demonstrate that the proposed algo-rithm significantly reduces the convergence time while ensuring model quality and effectively reducing en-ergy consumption in asynchronous federated learning.Furthermore,the improved global aggregation update method enhances training stability and reduces oscil-lations in the global model convergence.
文摘A novel asynchronous ACS(add-compare-select) processor for Viterbi decoder is described.It is controlled by local handshake signals instead of the globe clock.The circuits of asynchronous adder unit,asynchronous comparator unit,and asynchronous selector unit are proposed.A full-custom design of asynchronous 4-bit ACS processor is fabricated in CSMC-HJ 0.6μm CMOS 2P2M mixed-mode process.At a supply voltage of 5V,when it operates at 20MHz,the power consumption is 75.5mW.The processor has no dynamic power consumption when it awaits an opportunity in sleep mode.The results of performance test of asynchronous 4-bit ACS processor show that the average case response time 19.18ns is only 82% of the worst-case response time 23.37ns.Compared with the synchronous 4-bit ACS processor in power consumption and performance by simulation,it reveals that the asynchronous ACS processor has some advantages than the synchronous one.
基金supported by General Program (No. 60774022)State Key Program (No. 60834001) of National Natural Science Foundation of China
文摘In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchronous dynamical system with rate constraints on events in the iteration domain. The stability condition is provided in the form of linear matrix inequalities (LMIS) depending on the stability of asynchronous dynamical systems. The analysis is supported by simulations.
基金supported in part by the National Natural Science Foundation of China(61873345,61973263)the Youth Talent Support Program of Hebei(BJ2018050,BJ2020031)+2 种基金the Teturned Overseas Chinese Scholar Foundation of Hebei(C201829)the Natural Science Foundation of Hebei(F2020203002)the Postgraduate Innovation Fund Project of Hebei(CXZZSS2019047)。
文摘Location estimation of underwater sensor networks(USNs)has become a critical technology,due to its fundamental role in the sensing,communication and control of ocean volume.However,the asynchronous clock,security attack and mobility characteristics of underwater environment make localization much more challenging as compared with terrestrial sensor networks.This paper is concerned with a privacy-preserving asynchronous localization issue for USNs.Particularly,a hybrid network architecture that includes surface buoys,anchor nodes,active sensor nodes and ordinary sensor nodes is constructed.Then,an asynchronous localization protocol is provided,through which two privacy-preserving localization algorithms are designed to estimate the locations of active and ordinary sensor nodes.It is worth mentioning that,the proposed localization algorithms reveal disguised positions to the network,while they do not adopt any homomorphic encryption technique.More importantly,they can eliminate the effect of asynchronous clock,i.e.,clock skew and offset.The performance analyses for the privacy-preserving asynchronous localization algorithms are also presented.Finally,simulation and experiment results reveal that the proposed localization approach can avoid the leakage of position information,while the location accuracy can be significantly enhanced as compared with the other works.
基金Supported by the National Natural Science Foundation of China under Grant No.51109040
文摘This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficiency when multiple lines are connected to the platform. The numerical model of the platform motion simulation in wave is presented. Additionally, how the asynchronous coupling algorithm is implemented during the dynamic coupling analysis is introduced. Through a comparison of the numerical results of our developed model with commercial software for a SPAR platform, the developed numerical model is checked and validated.
基金supported by the National Natural Science Foundation of China(51705084)the Natural Science Foundation of Guangdong Province of China(2018A030313999,2019A1515011602)+2 种基金the Fundamental Research Funds for the Central Universities(2018MS46,N2003032)the Opening Project of Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing,South China University of Technology(2019kfkt06)the Research Grants of the University of Macao(MYRG2017-00135-FST,MYRG2019-00028-FST)。
文摘This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,the sampleddata Takagi-Sugeno(T-S)fuzzy half-car active suspension(HCAS)system is considered,which is further modelled as a continuous system with an input delay.Firstly,considering that the fuzzy system and the fuzzy controller cannot share the identical premises due to the existence of input delay,a reconstructed method is employed to synchronize the time scales of membership functions between the fuzzy controller and the fuzzy system.Secondly,since external disturbances often belong to a restricted frequency range,a finite frequency control criterion is presented for control synthesis to reduce conservatism.Thirdly,given a full information of state variables is hardly available in practical suspension systems,a two-stage method is proposed to calculate the static output feedback control gains.Moreover,an iterative algorithm is proposed to compute the optimum solution.Finally,numerical simulations verify the effectiveness of the proposed controllers.
文摘This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the predictions of physical designs because of errors in mechanical matching and installation.Therefore,parameter optimization methods such as pointwise scanning,evolutionary algorithms(EAs),and robust conjugate direction search are widely used in beam tuning to compensate for this inconsistency.However,it is difficult for them to deal with a large number of discrete local optima.The A3C algorithm,which has been applied in the automated control field,provides an approach for improving multi-dimensional optimization.The A3C algorithm is introduced and improved for the real-time beam tuning code for accelerators.Experiments in which optimization is achieved by using pointwise scanning,the genetic algorithm(one kind of EAs),and the A3C-algorithm are conducted and compared to optimize the currents of four steering magnets and two solenoids in the low-energy beam transport section(LEBT)of the Xi’an Proton Application Facility.Optimal currents are determined when the highest transmission of a radio frequency quadrupole(RFQ)accelerator downstream of the LEBT is achieved.The optimal work points of the tuned accelerator were obtained with currents of 0 A,0 A,0 A,and 0.1 A,for the four steering magnets,and 107 A and 96 A for the two solenoids.Furthermore,the highest transmission of the RFQ was 91.2%.Meanwhile,the lower time required for the optimization with the A3C algorithm was successfully verified.Optimization with the A3C algorithm consumed 42%and 78%less time than pointwise scanning with random initialization and pre-trained initialization of weights,respectively.
文摘The advancement of the Internet of Things(IoT)brings new opportunities for collecting real-time data and deploying machine learning models.Nonetheless,an individual IoT device may not have adequate computing resources to train and deploy an entire learning model.At the same time,transmitting continuous real-time data to a central server with high computing resource incurs enormous communication costs and raises issues in data security and privacy.Federated learning,a distributed machine learning framework,is a promising solution to train machine learning models with resource-limited devices and edge servers.Yet,the majority of existing works assume an impractically synchronous parameter update manner with homogeneous IoT nodes under stable communication connections.In this paper,we develop an asynchronous federated learning scheme to improve training efficiency for heterogeneous IoT devices under unstable communication network.Particularly,we formulate an asynchronous federated learning model and develop a lightweight node selection algorithm to carry out learning tasks effectively.The proposed algorithm iteratively selects heterogeneous IoT nodes to participate in the global learning aggregation while considering their local computing resource and communication condition.Extensive experimental results demonstrate that our proposed asynchronous federated learning scheme outperforms the state-of-the-art schemes in various settings on independent and identically distributed(i.i.d.)and non-i.i.d.data distribution.
文摘Soft reduction is known to be one of the best ways to improve the internal quality of slab castings such as center segregation, center porosity, centerline or triangular zone cracks, which is based on a proper adoption of the amount of reduction upon the given final solidification zone through roll gap adjustments. The synchronization of the clamping cylinders for roll gap adjustments should be very important to the application of soft reduction, including the synchronization of the clamping cylinders adjustments in the same and different segments. The synchronization of clamping cylinders adjustments is mainly affected by the adjustable accuracy of the four position-controlled clamping cylinders mounted in the upper frames of the segments according to a predetermined transformation relationship between the signals of displacement sensors and aimed roll gap, which, however, is also influenced by the installation accuracy, the precision of displacement sensors, the deformation of the segment frames and/or its bearing pedestals. Due to the actual asynchronous adjustments of the four clamping cylinders, the dynamic soft reduction operation is normally applied at non-ideal mechanical conditions. Here 7 possible situations of asynchronous adjustments of the local segments which may induce gap deviation have been presented. The roll gap deviation in the soft reduction region of a slab casting has been studied by a 3-D visco-elastic plastic FEM model, through which the additional inter-roll bulging, the related triangular cracks induced by one kind of the possible asynchronous adjustment situation and the effectiveness of soft reduction have been analyzed. A critical tolerance for the gap adjustments has been proposed for better contribution of soft reduction to the internal quality of slabs.
文摘In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.
基金supported by the Programs of the National Science Foundation of China(Nos.51273163 and 30930074)by the Applied Basic Research Project of Yunnan Province(No. S2012FZ0256)
文摘The reaction between urea and formaldehyde in water solution was theoretically investigated by using B3LYP and MP2 methods. It was found that the addition of the nitrogen atom in urea to the carbonyl group in formaldehyde precedes the proton transfer and the proton migration from water to the carbonyl group occurs before the proton abstraction from the nitrogen. With one or two water molecules involved in the TS, the activation energy barrier is lowered compared to the TS of the mechanism with no water participation. The energy change along the reaction coordinate clearly shows that a zwitterionic-like intermediate does not exist on the PES. The reaction between urea and formaldehyde occurs in a concerted mechanism but with asynchronous characters, This is different from the stepwise mechanism recently found for the amination reactions of formaldehyde.
基金co-supported by the National Natural Science Foundation of China(No.61374032)the Aeronautical Science Foundation of China(No.20130753005)
文摘The robust controller design problem for switched polytopic systems under asynchronous switching is addressed.These systems exist in many aviation applications,such as dynamical systems involving rapid variations.A switched polytopic system is established to describe the highly maneuverable technology vehicle within the full flight envelope and a robust dynamic output feedback control method is designed for the switched polytopic system.Combining the Lyapunov-like function method and the average dwell time method,a sufficient condition is derived for the switched polytopic system with asynchronous switching and data dropout to be globally,uniformly and asymptotically stable in terms of linear matrix inequality.The robust dynamic output feedback controller is then applied to the highly maneuverable technology vehicle to illustrate the effectiveness of the proposed approach.The simulation results show that the angle of attack tracking performance is acceptable over the time history and the control surface responses are all satisfying along the full flight trajectory.
基金Supported by the National Natural Science Foundation of China (No.60434020, 60374020)International Cooperation Item of Henan (No.0446650006)Henan Outstanding Youth Science Fund (No.0312001900).
文摘This letter explores the distributed multisensor dynamic system, which has uniform sampling velocity and asynchronous sampling data for different sensors, and puts forward a new gradation fusion algorithm of multisensor dynamic system. As the total forecasted increment value between the two adjacent moments is the forecasted estimate value of the corresponding state increment in the fusion center, the new algorithm models the state and the forecasted estimate value of every moment. Kalman filter and all measurements arriving sequentially in the fusion period are employed to update the evaluation of target state step by step, on the condition that the system has obtained the target state evaluation that is based on the overall information in the previous fusion period. Accordingly, in the present period, the fusion evaluation of the target state at each sampling point on the basis of the overall information can be obtained. This letter elaborates the form of this new algorithm. Computer simulation demonstrates that this new algorithm owns greater precision in estimating target state than the present asynchronous fusion algorithm calibrated in time does.