On the basis of analysis of the research issues and requirement of collaborative design, we propose the overall framework of agent based collaborative design on Internet. Then, we describe the implementation of synchr...On the basis of analysis of the research issues and requirement of collaborative design, we propose the overall framework of agent based collaborative design on Internet. Then, we describe the implementation of synchronous and asynchronous collaborative design process based on standardized design activities under the overall framework. In order to realize design message passing, the DMP Protocol is proposed as well in this paper and described in detail.展开更多
Dense-array ambient noise tomography is a powerful tool for achieving high-resolution subsurface imag-ing,significantly impacting geohazard prevention and control.Conventional dense-array studies,how-ever,require simu...Dense-array ambient noise tomography is a powerful tool for achieving high-resolution subsurface imag-ing,significantly impacting geohazard prevention and control.Conventional dense-array studies,how-ever,require simultaneous observations of numerous stations for extensive coverage.To conduct a comprehensive karst feature investigation with limited stations,we designed a new synchronous-asyn-chronous observation system that facilitates dense array observations.We conducted two rounds of asynchronous observations,each lasting approximately 24 h,in combination with synchronous backbone stations.We achieved wide-ranging coverage of the study area utilizing 197 nodal receivers,with an average station spacing of 7 m.The beamforming results revealed distinct variations in the noise source distributions between day and night.We estimated the source strength in the stationary phase zone and used a weighting scheme for stacking the cross-correlation functions(C ^(1) functions)to suppress the influ-ence of nonuniform noise source distributions.The weights were derived from the similarity coefficients between multicomponent C^(1)functions related to Rayleigh waves.We employed the cross-correlation of C ^(1) functions(C^(2)methods)to obtain the empirical Green’s functions between asynchronous stations.To eliminate artifacts in C ^(2) functions from higher-mode surface waves in C^(1)functions,we filtered the C^(1)functions on the basis of different particle motions linked to multimode Rayleigh waves.The dispersion measurements of Rayleigh waves obtained from both the C^(1)and C^(2)functions were utilized in surface wave tomography.The inverted three-dimensional(3D)shear-wave(S-wave)velocity model reveals two significant low-velocity zones at depths ranging from 40 to 60 m,which align well with the karst caves found in the drilling data.The method of short-term synchronous-asynchronous ambient noise tomography shows promise as a cost-effective and efficient approach for urban geohazard investigations.展开更多
Federated learning combines with fog computing to transform data sharing into model sharing,which solves the issues of data isolation and privacy disclosure in fog computing.However,existing studies focus on centraliz...Federated learning combines with fog computing to transform data sharing into model sharing,which solves the issues of data isolation and privacy disclosure in fog computing.However,existing studies focus on centralized single-layer aggregation federated learning architecture,which lack the consideration of cross-domain and asynchronous robustness of federated learning,and rarely integrate verification mechanisms from the perspective of incentives.To address the above challenges,we propose a Blockchain and Signcryption enabled Asynchronous Federated Learning(BSAFL)framework based on dual aggregation for cross-domain scenarios.In particular,we first design two types of signcryption schemes to secure the interaction and access control of collaborative learning between domains.Second,we construct a differential privacy approach that adaptively adjusts privacy budgets to ensure data privacy and local models'availability of intra-domain user.Furthermore,we propose an asynchronous aggregation solution that incorporates consensus verification and elastic participation using blockchain.Finally,security analysis demonstrates the security and privacy effectiveness of BSAFL,and the evaluation on real datasets further validates the high model accuracy and performance of BSAFL.展开更多
Intelligent blockchain is an emerging field that integrates Artificial Intelligence(AI)techniques with blockchain networks,with a particular emphasis on improving the performance of blockchain,especially in cryptocurr...Intelligent blockchain is an emerging field that integrates Artificial Intelligence(AI)techniques with blockchain networks,with a particular emphasis on improving the performance of blockchain,especially in cryptocurrencies exchanges.Meanwhile,arbitrage bots are widely deployed and increasing in intelligent blockchain.These bots exploit the characteristics of cryptocurrencies exchanges to engage in frontrunning,generating substantial profits at the expense of ordinary users.In this paper,we address this issue by proposing a more efficient asynchronous Byzantine ordered consensus protocol,which can be used to prevent arbitrage bots from changing the order of the transactions for profits in intelligent blockchain-based cryptocurrencies.Specifically,we present two signal asynchronous common subset protocols,the more optimal one with only constant time complexity.We implement both our protocol and the optimal existing solution Chronos with Go language in the same environment.The experiment results indicate that our protocols achieve a threefold improvement over Chronos in consensus latency and nearly a tenfold increase in throughput.展开更多
Considering the complexity of plant-wide optimization for large-scale industries, a distributed optimization framework to solve the profit optimization problem in ethylene whole process is proposed. To tackle the dela...Considering the complexity of plant-wide optimization for large-scale industries, a distributed optimization framework to solve the profit optimization problem in ethylene whole process is proposed. To tackle the delays arising from the residence time for materials passing through production units during the process with guaranteed constraint satisfaction, an asynchronous distributed parameter projection algorithm with gradient tracking method is introduced. Besides, the heavy ball momentum and Nesterov momentum are incorporated into the proposed algorithm in order to achieve double acceleration properties. The experimental results show that the proposed asynchronous algorithm can achieve a faster convergence compared with the synchronous algorithm.展开更多
Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned a...Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned aerial vehicles.Localizing moving targets is crucial for analyzing their motion characteristics and dynamic properties.Reconstructing the trajectories of points from asynchronous cameras is a significant challenge.It encompasses two coupled sub-problems:Trajectory reconstruction and camera synchronization.Present methods typically address only one of these sub-problems individually.This paper proposes a 3D trajectory reconstruction method for point targets based on asynchronous cameras,simultaneously solving both sub-problems.Firstly,we extend the trajectory intersection method to asynchronous cameras to resolve the limitation of traditional triangulation that requires camera synchronization.Secondly,we develop models for camera temporal information and target motion,based on imaging mechanisms and target dynamics characteristics.The parameters are optimized simultaneously to achieve trajectory reconstruction without accurate time parameters.Thirdly,we optimize the camera rotations alongside the camera time information and target motion parameters,using tighter and more continuous constraints on moving points.The reconstruction accuracy is significantly improved,especially when the camera rotations are inaccurate.Finally,the simulated and real-world experimental results demonstrate the feasibility and accuracy of the proposed method.The real-world results indicate that the proposed algorithm achieved a localization error of 112.95 m at an observation distance range of 15-20 km.展开更多
To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic ...To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic Algorithm (AGA) to solve multi-agent path planning problems effectively. To enhance the real-time performance and computational efficiency of Multi-Agent Systems (MAS) in path planning, the AGA incorporates an Equal-Size Clustering Algorithm (ESCA) based on the K-means clustering method. The ESCA divides the primary task evenly into a series of subtasks, thereby reducing the gene length in the subsequent GA process. The algorithm then employs GA to solve each subtask sequentially. To evaluate the effectiveness of the proposed method, a simulation program was designed to perform path planning for 100 trajectories, and the results were compared with those of State-Of-The-Art (SOTA) methods. The simulation results demonstrate that, although the solutions provided by AGA are suboptimal, it exhibits significant advantages in terms of execution speed and solution stability compared to other algorithms.展开更多
Federated learning combined with edge computing has greatly facilitated transportation in real-time applications such as intelligent traffic sys-tems.However,synchronous federated learning is in-efficient in terms of ...Federated learning combined with edge computing has greatly facilitated transportation in real-time applications such as intelligent traffic sys-tems.However,synchronous federated learning is in-efficient in terms of time and convergence speed,mak-ing it unsuitable for high real-time requirements.To address these issues,this paper proposes an Adap-tive Waiting time Asynchronous Federated Learn-ing(AWTAFL)based on Dueling Double Deep Q-Network(D3QN).The server dynamically adjusts the waiting time using the D3QN algorithm based on the current task progress and energy consumption,aim-ing to accelerate convergence and save energy.Addi-tionally,this paper presents a new federated learning global aggregation scheme,where the central server performs weighted aggregation based on the freshness and contribution of client parameters.Experimen-tal simulations demonstrate that the proposed algo-rithm significantly reduces the convergence time while ensuring model quality and effectively reducing en-ergy consumption in asynchronous federated learning.Furthermore,the improved global aggregation update method enhances training stability and reduces oscil-lations in the global model convergence.展开更多
Non-Orthogonal Multiple Access(NOMA)assisted Unmanned Aerial Vehicle(UAV)communication is becoming a promising technique for future B5G/6G networks.However,the security of the NOMA-UAV networks remains critical challe...Non-Orthogonal Multiple Access(NOMA)assisted Unmanned Aerial Vehicle(UAV)communication is becoming a promising technique for future B5G/6G networks.However,the security of the NOMA-UAV networks remains critical challenges due to the shared wireless spectrum and Line-of-Sight(LoS)channel.This paper formulates a joint UAV trajectory design and power allocation problem with the aid of the ground jammer to maximize the sum secrecy rate.First,the joint optimization problem is modeled as a Markov Decision Process(MDP).Then,the Deep Reinforcement Learning(DRL)method is utilized to search the optimal policy from the continuous action space.In order to accelerate the sample accumulation,the Asynchronous Advantage Actor-Critic(A3C)scheme with multiple workers is proposed,which reformulates the action and reward to acquire complete update duration.Simulation results demonstrate that the A3C-based scheme outperforms the baseline schemes in term of the secrecy rate and stability.展开更多
This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(F...This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(FD)in unstable subsystems are developed.The FD challenge is then transformed into an H∞filtering issue.Utilizing the multiple discontinuous Lyapunov function(MDLF)approach and the mode-dependent average dwell time(MDADT)method,sufficient conditions are derived to ensure stability during both fast and slow switching.Furthermore,the existence and solutions for FD filters are provided through linear matrix inequalities(LMIs).The simulation outcomes demonstrated the excellent performance of the developed method in studied cases.展开更多
A novel asynchronous ACS(add-compare-select) processor for Viterbi decoder is described.It is controlled by local handshake signals instead of the globe clock.The circuits of asynchronous adder unit,asynchronous compa...A novel asynchronous ACS(add-compare-select) processor for Viterbi decoder is described.It is controlled by local handshake signals instead of the globe clock.The circuits of asynchronous adder unit,asynchronous comparator unit,and asynchronous selector unit are proposed.A full-custom design of asynchronous 4-bit ACS processor is fabricated in CSMC-HJ 0.6μm CMOS 2P2M mixed-mode process.At a supply voltage of 5V,when it operates at 20MHz,the power consumption is 75.5mW.The processor has no dynamic power consumption when it awaits an opportunity in sleep mode.The results of performance test of asynchronous 4-bit ACS processor show that the average case response time 19.18ns is only 82% of the worst-case response time 23.37ns.Compared with the synchronous 4-bit ACS processor in power consumption and performance by simulation,it reveals that the asynchronous ACS processor has some advantages than the synchronous one.展开更多
Two types of handshaking circuits are proposed to implement the asynchronous communication between two processing elements in the wavefront array processors. After correcting the flaws in the original design, these ci...Two types of handshaking circuits are proposed to implement the asynchronous communication between two processing elements in the wavefront array processors. After correcting the flaws in the original design, these circuits make the system more robust and flexible. These circuits have compact architectures and are of higher performance. Besides, compared with other handshaking circuits, these designs are more suitable for FPGA.展开更多
鉴于农民因信息不对称导致农产品购销渠道不畅,设计开发了一种基于Ajax(Asynchronous JavaScript and XML)的多层体系结构的简单、高效的农产品信息服务平台系统。系统采用异步通信方式实现无刷新下动态页面局部数据更新;提供基于实例...鉴于农民因信息不对称导致农产品购销渠道不畅,设计开发了一种基于Ajax(Asynchronous JavaScript and XML)的多层体系结构的简单、高效的农产品信息服务平台系统。系统采用异步通信方式实现无刷新下动态页面局部数据更新;提供基于实例的信息发布方式;通过自动查询和嵌入手机短信实现信息的配对,从而使系统具有易用性、高效性、便捷性,利于平台的使用推广。展开更多
The cooperative diversity schemes can effectively create a virtual antenna array for path fading combating multiin wireless channels. However, a lot of cooperative diversity schemes require perfect synchronization whi...The cooperative diversity schemes can effectively create a virtual antenna array for path fading combating multiin wireless channels. However, a lot of cooperative diversity schemes require perfect synchronization which is, in practice, difficult and even impossible to be realized. In this paper, we propose an asynchronous cooperative diversity scheme based on the linear dispersion code (LDC). By adding the zero padding (ZP) between linear dispersion codewords, our scheme mitigates the effect of asynchronism effectively. The length of ZP is decided by relative timing errors between different relays. Besides, an easy decoding method of our scheme is given in this paper by restructuring the stacked channel matrix.展开更多
针对传统的Portlet之间通信机制访问流量小、速度慢、效率低下所带来的信息获取瓶颈,运用AJAX(Asyn-chronous Javascript and XML)和DWR(Direct Web Remoting)网络技术,在传统的Portlet之间通信机制的基础上,设计出一种通过DWR运用AJAX...针对传统的Portlet之间通信机制访问流量小、速度慢、效率低下所带来的信息获取瓶颈,运用AJAX(Asyn-chronous Javascript and XML)和DWR(Direct Web Remoting)网络技术,在传统的Portlet之间通信机制的基础上,设计出一种通过DWR运用AJAX技术的改进型Portlet之间的通信机制。给出了改进型信息门户系统实现及其性能测评。展开更多
An atmospheric general circulation model (AGCM) and an oceanic general circulation model (OGCM) are asynchronously coupled to simulate the climate of the mid-Holocene period. The role of the solar radiation and ocean ...An atmospheric general circulation model (AGCM) and an oceanic general circulation model (OGCM) are asynchronously coupled to simulate the climate of the mid-Holocene period. The role of the solar radiation and ocean in the mid-Holocene East Asian monsoon climate is analyzed and some mechanisms are revealed. At the forcing of changed solar radiation induced by the changed orbital parameters and the changed SST simulated by the OGCM, compared with when there is orbital forcing alone, there is more precipitation and the monsoon is stronger in the summer of East Asia, and the winter temperature increases over China. These agree better with the reconstructed data. It is revealed that the change of solar radiation can displace northward the ITCZ and the East Asia subtropical jet, which bring more precipitation over the south of Tibet and North and Northeast China. By analyzing the summer meridional latent heat transport, it is found that the influence of solar radiation change is mainly to increase the convergence of atmosphere toward the land, and the influence of SST change is mainly to transport more moisture to the sea surface atmosphere. Their synergistic effect on East Asian precipitation is much stronger than the sum of their respective effects.展开更多
A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures an...A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.展开更多
In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchr...In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchronous dynamical system with rate constraints on events in the iteration domain. The stability condition is provided in the form of linear matrix inequalities (LMIS) depending on the stability of asynchronous dynamical systems. The analysis is supported by simulations.展开更多
文摘On the basis of analysis of the research issues and requirement of collaborative design, we propose the overall framework of agent based collaborative design on Internet. Then, we describe the implementation of synchronous and asynchronous collaborative design process based on standardized design activities under the overall framework. In order to realize design message passing, the DMP Protocol is proposed as well in this paper and described in detail.
基金supported by the National Natural Science Foundation of China(41830103)the Project of Nanjing Center of China Geological Survey(DD20190281).
文摘Dense-array ambient noise tomography is a powerful tool for achieving high-resolution subsurface imag-ing,significantly impacting geohazard prevention and control.Conventional dense-array studies,how-ever,require simultaneous observations of numerous stations for extensive coverage.To conduct a comprehensive karst feature investigation with limited stations,we designed a new synchronous-asyn-chronous observation system that facilitates dense array observations.We conducted two rounds of asynchronous observations,each lasting approximately 24 h,in combination with synchronous backbone stations.We achieved wide-ranging coverage of the study area utilizing 197 nodal receivers,with an average station spacing of 7 m.The beamforming results revealed distinct variations in the noise source distributions between day and night.We estimated the source strength in the stationary phase zone and used a weighting scheme for stacking the cross-correlation functions(C ^(1) functions)to suppress the influ-ence of nonuniform noise source distributions.The weights were derived from the similarity coefficients between multicomponent C^(1)functions related to Rayleigh waves.We employed the cross-correlation of C ^(1) functions(C^(2)methods)to obtain the empirical Green’s functions between asynchronous stations.To eliminate artifacts in C ^(2) functions from higher-mode surface waves in C^(1)functions,we filtered the C^(1)functions on the basis of different particle motions linked to multimode Rayleigh waves.The dispersion measurements of Rayleigh waves obtained from both the C^(1)and C^(2)functions were utilized in surface wave tomography.The inverted three-dimensional(3D)shear-wave(S-wave)velocity model reveals two significant low-velocity zones at depths ranging from 40 to 60 m,which align well with the karst caves found in the drilling data.The method of short-term synchronous-asynchronous ambient noise tomography shows promise as a cost-effective and efficient approach for urban geohazard investigations.
基金supported in part by the National Key Research and Development Program of China under Grant No.2021YFB3101100in part by the National Natural Science Foundation of China under Grant 62272123,62272102,62272124+2 种基金in part by the Project of High-level Innovative Talents of Guizhou Province under Grant[2020]6008in part by the Science and Technology Program of Guizhou Province under Grant No.[2020]5017,No.[2022]065in part by the Guangxi Key Laboratory of Cryptography and Information Security under Grant GCIS202105。
文摘Federated learning combines with fog computing to transform data sharing into model sharing,which solves the issues of data isolation and privacy disclosure in fog computing.However,existing studies focus on centralized single-layer aggregation federated learning architecture,which lack the consideration of cross-domain and asynchronous robustness of federated learning,and rarely integrate verification mechanisms from the perspective of incentives.To address the above challenges,we propose a Blockchain and Signcryption enabled Asynchronous Federated Learning(BSAFL)framework based on dual aggregation for cross-domain scenarios.In particular,we first design two types of signcryption schemes to secure the interaction and access control of collaborative learning between domains.Second,we construct a differential privacy approach that adaptively adjusts privacy budgets to ensure data privacy and local models'availability of intra-domain user.Furthermore,we propose an asynchronous aggregation solution that incorporates consensus verification and elastic participation using blockchain.Finally,security analysis demonstrates the security and privacy effectiveness of BSAFL,and the evaluation on real datasets further validates the high model accuracy and performance of BSAFL.
基金supported by the National Key R&D Program of China under Grant(2022YFB2702702)in part by the National Natural Science Foundation of China under Grants(62372020,72031001)+1 种基金in part by the Beijing Natural Science Foundation under Grants(L222050)in part by the Fundamental Research Funds for the Central Universities under Grant(YWF-23-L-1032).
文摘Intelligent blockchain is an emerging field that integrates Artificial Intelligence(AI)techniques with blockchain networks,with a particular emphasis on improving the performance of blockchain,especially in cryptocurrencies exchanges.Meanwhile,arbitrage bots are widely deployed and increasing in intelligent blockchain.These bots exploit the characteristics of cryptocurrencies exchanges to engage in frontrunning,generating substantial profits at the expense of ordinary users.In this paper,we address this issue by proposing a more efficient asynchronous Byzantine ordered consensus protocol,which can be used to prevent arbitrage bots from changing the order of the transactions for profits in intelligent blockchain-based cryptocurrencies.Specifically,we present two signal asynchronous common subset protocols,the more optimal one with only constant time complexity.We implement both our protocol and the optimal existing solution Chronos with Go language in the same environment.The experiment results indicate that our protocols achieve a threefold improvement over Chronos in consensus latency and nearly a tenfold increase in throughput.
基金supported by National Key Research and Development Program of China(2022YFB3305900)National Natural Science Foundation of China(62394343,62394345)+1 种基金Major Science and Technology Projects of Longmen Laboratory(NO.LMZDXM202206)Shanghai Rising-Star Program under Grant 24QA2706100.
文摘Considering the complexity of plant-wide optimization for large-scale industries, a distributed optimization framework to solve the profit optimization problem in ethylene whole process is proposed. To tackle the delays arising from the residence time for materials passing through production units during the process with guaranteed constraint satisfaction, an asynchronous distributed parameter projection algorithm with gradient tracking method is introduced. Besides, the heavy ball momentum and Nesterov momentum are incorporated into the proposed algorithm in order to achieve double acceleration properties. The experimental results show that the proposed asynchronous algorithm can achieve a faster convergence compared with the synchronous algorithm.
基金supported by the Hunan Provin〓〓cial Natural Science Foundation for Excellent Young Scholars(Grant No.2023JJ20045)the National Natural Science Foundation of China(Grant No.12372189)。
文摘Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned aerial vehicles.Localizing moving targets is crucial for analyzing their motion characteristics and dynamic properties.Reconstructing the trajectories of points from asynchronous cameras is a significant challenge.It encompasses two coupled sub-problems:Trajectory reconstruction and camera synchronization.Present methods typically address only one of these sub-problems individually.This paper proposes a 3D trajectory reconstruction method for point targets based on asynchronous cameras,simultaneously solving both sub-problems.Firstly,we extend the trajectory intersection method to asynchronous cameras to resolve the limitation of traditional triangulation that requires camera synchronization.Secondly,we develop models for camera temporal information and target motion,based on imaging mechanisms and target dynamics characteristics.The parameters are optimized simultaneously to achieve trajectory reconstruction without accurate time parameters.Thirdly,we optimize the camera rotations alongside the camera time information and target motion parameters,using tighter and more continuous constraints on moving points.The reconstruction accuracy is significantly improved,especially when the camera rotations are inaccurate.Finally,the simulated and real-world experimental results demonstrate the feasibility and accuracy of the proposed method.The real-world results indicate that the proposed algorithm achieved a localization error of 112.95 m at an observation distance range of 15-20 km.
文摘To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic Algorithm (AGA) to solve multi-agent path planning problems effectively. To enhance the real-time performance and computational efficiency of Multi-Agent Systems (MAS) in path planning, the AGA incorporates an Equal-Size Clustering Algorithm (ESCA) based on the K-means clustering method. The ESCA divides the primary task evenly into a series of subtasks, thereby reducing the gene length in the subsequent GA process. The algorithm then employs GA to solve each subtask sequentially. To evaluate the effectiveness of the proposed method, a simulation program was designed to perform path planning for 100 trajectories, and the results were compared with those of State-Of-The-Art (SOTA) methods. The simulation results demonstrate that, although the solutions provided by AGA are suboptimal, it exhibits significant advantages in terms of execution speed and solution stability compared to other algorithms.
基金supported by the National Natural Science Foundation of China(62371082)Guangxi Science and Technology Project(AB24010317)+1 种基金Science and Technology Project of Chongqing Education Commission(KJZD-K202400606)Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0726,CSTB2023NSCQ-LZX0014).
文摘Federated learning combined with edge computing has greatly facilitated transportation in real-time applications such as intelligent traffic sys-tems.However,synchronous federated learning is in-efficient in terms of time and convergence speed,mak-ing it unsuitable for high real-time requirements.To address these issues,this paper proposes an Adap-tive Waiting time Asynchronous Federated Learn-ing(AWTAFL)based on Dueling Double Deep Q-Network(D3QN).The server dynamically adjusts the waiting time using the D3QN algorithm based on the current task progress and energy consumption,aim-ing to accelerate convergence and save energy.Addi-tionally,this paper presents a new federated learning global aggregation scheme,where the central server performs weighted aggregation based on the freshness and contribution of client parameters.Experimen-tal simulations demonstrate that the proposed algo-rithm significantly reduces the convergence time while ensuring model quality and effectively reducing en-ergy consumption in asynchronous federated learning.Furthermore,the improved global aggregation update method enhances training stability and reduces oscil-lations in the global model convergence.
基金supported by the Fundamental Research Funds for the Central Universities,China(No.2024MS115).
文摘Non-Orthogonal Multiple Access(NOMA)assisted Unmanned Aerial Vehicle(UAV)communication is becoming a promising technique for future B5G/6G networks.However,the security of the NOMA-UAV networks remains critical challenges due to the shared wireless spectrum and Line-of-Sight(LoS)channel.This paper formulates a joint UAV trajectory design and power allocation problem with the aid of the ground jammer to maximize the sum secrecy rate.First,the joint optimization problem is modeled as a Markov Decision Process(MDP).Then,the Deep Reinforcement Learning(DRL)method is utilized to search the optimal policy from the continuous action space.In order to accelerate the sample accumulation,the Asynchronous Advantage Actor-Critic(A3C)scheme with multiple workers is proposed,which reformulates the action and reward to acquire complete update duration.Simulation results demonstrate that the A3C-based scheme outperforms the baseline schemes in term of the secrecy rate and stability.
基金the National Natural Science Foundation of China(Grant Nos.62303380,62176214,62101590,62003268)the Aeronautical Science Foundation of China(Grant No.201907053001).
文摘This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(FD)in unstable subsystems are developed.The FD challenge is then transformed into an H∞filtering issue.Utilizing the multiple discontinuous Lyapunov function(MDLF)approach and the mode-dependent average dwell time(MDADT)method,sufficient conditions are derived to ensure stability during both fast and slow switching.Furthermore,the existence and solutions for FD filters are provided through linear matrix inequalities(LMIs).The simulation outcomes demonstrated the excellent performance of the developed method in studied cases.
文摘A novel asynchronous ACS(add-compare-select) processor for Viterbi decoder is described.It is controlled by local handshake signals instead of the globe clock.The circuits of asynchronous adder unit,asynchronous comparator unit,and asynchronous selector unit are proposed.A full-custom design of asynchronous 4-bit ACS processor is fabricated in CSMC-HJ 0.6μm CMOS 2P2M mixed-mode process.At a supply voltage of 5V,when it operates at 20MHz,the power consumption is 75.5mW.The processor has no dynamic power consumption when it awaits an opportunity in sleep mode.The results of performance test of asynchronous 4-bit ACS processor show that the average case response time 19.18ns is only 82% of the worst-case response time 23.37ns.Compared with the synchronous 4-bit ACS processor in power consumption and performance by simulation,it reveals that the asynchronous ACS processor has some advantages than the synchronous one.
文摘Two types of handshaking circuits are proposed to implement the asynchronous communication between two processing elements in the wavefront array processors. After correcting the flaws in the original design, these circuits make the system more robust and flexible. These circuits have compact architectures and are of higher performance. Besides, compared with other handshaking circuits, these designs are more suitable for FPGA.
文摘鉴于农民因信息不对称导致农产品购销渠道不畅,设计开发了一种基于Ajax(Asynchronous JavaScript and XML)的多层体系结构的简单、高效的农产品信息服务平台系统。系统采用异步通信方式实现无刷新下动态页面局部数据更新;提供基于实例的信息发布方式;通过自动查询和嵌入手机短信实现信息的配对,从而使系统具有易用性、高效性、便捷性,利于平台的使用推广。
基金Supported by the National High Technology Research and Development Program of China ( No. 2006AA01Z270), the Programane of Introducing Talents of Discipline to University of China (No. B08038) and the Joint Funds of National Natural Science Foundation of China-Guangdong Province (No. U0635003).
文摘The cooperative diversity schemes can effectively create a virtual antenna array for path fading combating multiin wireless channels. However, a lot of cooperative diversity schemes require perfect synchronization which is, in practice, difficult and even impossible to be realized. In this paper, we propose an asynchronous cooperative diversity scheme based on the linear dispersion code (LDC). By adding the zero padding (ZP) between linear dispersion codewords, our scheme mitigates the effect of asynchronism effectively. The length of ZP is decided by relative timing errors between different relays. Besides, an easy decoding method of our scheme is given in this paper by restructuring the stacked channel matrix.
文摘针对传统的Portlet之间通信机制访问流量小、速度慢、效率低下所带来的信息获取瓶颈,运用AJAX(Asyn-chronous Javascript and XML)和DWR(Direct Web Remoting)网络技术,在传统的Portlet之间通信机制的基础上,设计出一种通过DWR运用AJAX技术的改进型Portlet之间的通信机制。给出了改进型信息门户系统实现及其性能测评。
基金supported by the National Outstanding Youth Foundation under Grant No.40125014the Chinese Academy of Sciences Key Project under Grant KZCX3-AW-133.
文摘An atmospheric general circulation model (AGCM) and an oceanic general circulation model (OGCM) are asynchronously coupled to simulate the climate of the mid-Holocene period. The role of the solar radiation and ocean in the mid-Holocene East Asian monsoon climate is analyzed and some mechanisms are revealed. At the forcing of changed solar radiation induced by the changed orbital parameters and the changed SST simulated by the OGCM, compared with when there is orbital forcing alone, there is more precipitation and the monsoon is stronger in the summer of East Asia, and the winter temperature increases over China. These agree better with the reconstructed data. It is revealed that the change of solar radiation can displace northward the ITCZ and the East Asia subtropical jet, which bring more precipitation over the south of Tibet and North and Northeast China. By analyzing the summer meridional latent heat transport, it is found that the influence of solar radiation change is mainly to increase the convergence of atmosphere toward the land, and the influence of SST change is mainly to transport more moisture to the sea surface atmosphere. Their synergistic effect on East Asian precipitation is much stronger than the sum of their respective effects.
基金This project was supported by the National Natural Science Foundation of China (60274014)Doctor Foundation of China Education Ministry (20020487006).
文摘A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.
基金supported by General Program (No. 60774022)State Key Program (No. 60834001) of National Natural Science Foundation of China
文摘In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchronous dynamical system with rate constraints on events in the iteration domain. The stability condition is provided in the form of linear matrix inequalities (LMIS) depending on the stability of asynchronous dynamical systems. The analysis is supported by simulations.