The theory of quantum error correcting codes is a primary tool for fighting decoherence and other quantum noise in quantum communication and quantum computation. Recently, the theory of quantum error correcting codes ...The theory of quantum error correcting codes is a primary tool for fighting decoherence and other quantum noise in quantum communication and quantum computation. Recently, the theory of quantum error correcting codes has developed rapidly and been extended to protect quantum information over asymmetric quantum channels, in which phase-shift and qubit-flip errors occur with different probabilities. In this paper, we generalize the construction of symmetric quantum codes via graphs (or matrices) to the asymmetric case, converting the construction of asymmetric quantum codes to finding matrices with some special properties. We also propose some asymmetric quantum Maximal Distance Separable (MDS) codes as examples constructed in this way.展开更多
Stereolithographic(STL)files have been extensively used in rapid prototyping industries as well as many other fields as watermarking algorithms to secure intellectual property and protect three-dimensional models from...Stereolithographic(STL)files have been extensively used in rapid prototyping industries as well as many other fields as watermarking algorithms to secure intellectual property and protect three-dimensional models from theft.However,to the best of our knowledge,few studies have looked at how watermarking can resist attacks that involve vertex-reordering.Here,we present a lossless and robust watermarking scheme for STL files to protect against vertexreordering attacks.Specifically,we designed a novel error-correcting code(ECC)that can correct the error of any one-bit in a bitstream by inserting several check digits.In addition,ECC is designed to make use of redundant information according to the characteristics of STL files,which introduces further robustness for defense against attacks.No modifications are made to the geometric information of the three-dimensional model,which respects the requirements of a highprecision model.The experimental results show that the proposed watermarking scheme can survive numerous kinds of attack,including rotation,scaling and translation(RST),facet reordering,and vertex-reordering attacks.展开更多
In most practical quantum mechanical systems,quantum noise due to decoherence is highly biased towards dephasing.The quantum state suffers from phase flip noise much more seriously than from the bit flip noise.In this...In most practical quantum mechanical systems,quantum noise due to decoherence is highly biased towards dephasing.The quantum state suffers from phase flip noise much more seriously than from the bit flip noise.In this work,we construct new families of asymmetric quantum concatenated codes(AQCCs)to deal with such biased quantum noise.Our construction is based on a novel concatenation scheme for constructing AQCCs with large asymmetries,in which classical tensor product codes and concatenated codes are utilized to correct phase flip noise and bit flip noise,respectively.We generalize the original concatenation scheme to a more general case for better correcting degenerate errors.Moreover,we focus on constructing nonbinary AQCCs that are highly degenerate.Compared to previous literatures,AQCCs constructed in this paper show much better parameter performance than existed ones.Furthermore,we design the specific encoding circuit of the AQCCs.It is shown that our codes can be encoded more efficiently than standard quantum codes.展开更多
This paper proved the statement that a good linear block encoder is in fact a good local-random sequence generator. Furthermore, this statement discovers the deep relationship between the error-correcting coding theor...This paper proved the statement that a good linear block encoder is in fact a good local-random sequence generator. Furthermore, this statement discovers the deep relationship between the error-correcting coding theory and the modern cryptography.展开更多
Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k- 1, 1, k] quantum error-correcting code (QECC) to im...Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k- 1, 1, k] quantum error-correcting code (QECC) to implement a quantum (k, 2k-1) threshold scheme. It also takes advantage of classical enhancement of the [2k-1, 1, k] QECC to establish a QSS scheme which can share classical information and quantum information simultaneously. Because information is encoded into QECC, these schemes can prevent intercept-resend attacks and be implemented on some noisy channels.展开更多
In this paper,we first give the definition of the Euclidean sums of linear codes,and prove that the Euclidean sums of linear codes are Euclidean dual-containing.Then we construct two new classes of optimal asymmetric ...In this paper,we first give the definition of the Euclidean sums of linear codes,and prove that the Euclidean sums of linear codes are Euclidean dual-containing.Then we construct two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of the Reed-Solomon codes,and two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of linear codes generated by Vandermonde matrices over finite fields.Moreover,these optimal asymmetric quantum errorcorrecting codes constructed in this paper are different from the ones in the literature.展开更多
Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum chan...Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum channels by consuming some ebits between the sender(Alice)and the receiver(Bob).It is usually assumed that the preshared ebits of Bob are error free.However,noise on these ebits is unavoidable in many cases.In this work,we evaluate the performance of EAQECCs with noisy ebits over asymmetric quantum channels and quantum channels with memory by computing the exact entanglement fidelity of several EAQECCs.We consider asymmetric errors in both qubits and ebits and show that the performance of EAQECCs in entanglement fidelity gets improved for qubits and ebits over asymmetric channels.In quantum memory channels,we compute the entanglement fidelity of several EAQECCs over Markovian quantum memory channels and show that the performance of EAQECCs is lowered down by the channel memory.Furthermore,we show that the performance of EAQECCs is diverse when the error probabilities of qubits and ebits are different.In both asymmetric and memory quantum channels,we show that the performance of EAQECCs is improved largely when the error probability of ebits is reasonably smaller than that of qubits.展开更多
An optical code generating device for security access system application is presented. The code generating device constructed using asymmetric hollow optical waveguide coupler design provides a unique series of output...An optical code generating device for security access system application is presented. The code generating device constructed using asymmetric hollow optical waveguide coupler design provides a unique series of output light intensities which are successively used as an optical code. The design of the waveguide is made using two major components which are asymmetric Y-junction splitter and a linear taper. Waveguiding is done using a hollow waveguide structure. Construction of higher level 1×N hollow waveguide coupler is done utilizing a basic 1×2 asymmetric waveguide coupler design together with a cascaded design scheme. Non-sequential ray tracing of the asymmetric hollow optical waveguide couplers is performed to predict the optical transmission properties of the waveguide. A representation of the code combination that can be generated from the device is obtained using combinatory number theory.展开更多
In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymm...In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymmetry and node asymmetry. The decision and mapping rule for symmetric and asymmetric cases are studied. The performance in terms of bit error rate for each case will be studied and analysed by computer simulation. Analytical and simulation results show that uplink asymmetry is the worst case;intra-phase asymmetry and unreliable uplink channels will more severely affect the performance degradation, which is caused by channel asymmetry.展开更多
Asymmetric stereoscopic video coding can take advantage of binocular suppression in human vision by representing one of the two views in lower quality.This paper proposes a bit allocation strategy for asymmetric stere...Asymmetric stereoscopic video coding can take advantage of binocular suppression in human vision by representing one of the two views in lower quality.This paper proposes a bit allocation strategy for asymmetric stereoscopic video coding.In order to improve the accuracy of bit allocation and rate control in the left view,a proportionalintegral-derivative controller is adopted.Meanwhile,to control the quality fluctuation between consecutive frames of the left view,a quality controller is adopted.Besides,a fuzzy controller is proposed to control the variation in quality between the left and right views by comparing the PSNR disparity of two views with a fixed threshold,which is used to quantize the binocular psycho-visual redundancy and adjust the quantization parameter (QP) of the right view correspondingly.The proposed algorithm has been implemented in H.264/AVC video codec,and the experimental results show its effectiveness in rate control while keeping a good quality for the left view,and fewer bits are allocated for the right view so that the overall bit rate is saved by 7.2% at most without the loss of subjective visual quality for stereoscopic video.展开更多
In this paper, the cyclic code of the classic circuit is transformed and transplanted; then, the quantum encoding scheme based on cyclic code and quantum error-correction circuit is constructed. The proposed circuit c...In this paper, the cyclic code of the classic circuit is transformed and transplanted; then, the quantum encoding scheme based on cyclic code and quantum error-correction circuit is constructed. The proposed circuit can correct one-bit error, and the use of redundant bits to encode more than one-bit quantum information breaks the previous limitations of many bits encoding a quantum bit. Compared with the existing coding circuits (Shor code, Steane code and five stable subcode), it shows obvious superiority in the quantum coding efficiency and transmission efficiency.展开更多
This paper demonstrates how channel coding can improve the robustness of spatial image watermarks against signal distortion caused by lossy data compression such as the JPEG scheme by taking advantage of the propertie...This paper demonstrates how channel coding can improve the robustness of spatial image watermarks against signal distortion caused by lossy data compression such as the JPEG scheme by taking advantage of the properties of Gray code. Two error-correction coding (ECC) schemes are used here: One scheme, referred to as the vertical ECC (VECC), is to encode information bits in a pixel by error-correction coding where the Gray code is used to improve the performance. The other scheme, referred to as the horizontal ECC (HECC), is to encode information bits in an image plane. In watermarking, HECC generates a codeword representing watermark bits, and each bit of the codeword is encoded by VECC. Simple single-error-correcting block codes are used in VECC and HECC. Several experiments of these schemes were conducted on test images. The result demonstrates that the error-correcting performance of HECC just depends on that of VECC, and accordingly, HECC enhances the capability of VECC. Consequently, HECC with appropriate codes can achieve stronger robustness to JPEG—caused distortions than non-channel-coding watermarking schemes.展开更多
In this paper, error-correction coding (ECC) in Gray codes is considered and its performance in the protecting of spatial image watermarks against lossy data compression is demonstrated. For this purpose, the differen...In this paper, error-correction coding (ECC) in Gray codes is considered and its performance in the protecting of spatial image watermarks against lossy data compression is demonstrated. For this purpose, the differences between bit patterns of two Gray codewords are analyzed in detail. On the basis of the properties, a method for encoding watermark bits in the Gray codewords that represent signal levels by a single-error-correcting (SEC) code is developed, which is referred to as the Gray-ECC method in this paper. The two codewords of the SEC code corresponding to respective watermark bits are determined so as to minimize the expected amount of distortion caused by the watermark embedding. The stochastic analyses show that an error-correcting capacity of the Gray-ECC method is superior to that of the ECC in natural binary codes for changes in signal codewords. Experiments of the Gray-ECC method were conducted on 8-bit monochrome images to evaluate both the features of watermarked images and the performance of robustness for image distortion resulting from the JPEG DCT-baseline coding scheme. The results demonstrate that, compared with a conventional averaging-based method, the Gray-ECC method yields watermarked images with less amount of signal distortion and also makes the watermark comparably robust for lossy data compression.展开更多
Under the condition of asymmetric information,the Spence 's Job Market Signaling Model is generally applied to inspect the design capability of a designer and his labor and efforts to be invested; however,since th...Under the condition of asymmetric information,the Spence 's Job Market Signaling Model is generally applied to inspect the design capability of a designer and his labor and efforts to be invested; however,since the"prior probability"and "posterior probability"have great uncertainties,the practical effect of this model is poor. On the basis of analyzing reverse selection questions,this paper provides a design capability screening model,which can make a designer automatically expose his hidden information so that necessary actions can be taken as required by the owner to realize risk sharing. A calculation example is finally given to demonstrate that the new model is helpful for an owner to select a designer with high professional level and to lead the designer to work hard,so it is of significant application value.展开更多
A novel hashing method based on multiple heterogeneous features is proposed to improve the accuracy of the image retrieval system. First, it leverages the imbalanced distribution of the similar and dissimilar samples ...A novel hashing method based on multiple heterogeneous features is proposed to improve the accuracy of the image retrieval system. First, it leverages the imbalanced distribution of the similar and dissimilar samples in the feature space to boost the performance of each weak classifier in the asymmetric boosting framework. Then, the weak classifier based on a novel linear discriminate analysis (LDA) algorithm which is learned from the subspace of heterogeneous features is integrated into the framework. Finally, the proposed method deals with each bit of the code sequentially, which utilizes the samples misclassified in each round in order to learn compact and balanced code. The heterogeneous information from different modalities can be effectively complementary to each other, which leads to much higher performance. The experimental results based on the two public benchmarks demonstrate that this method is superior to many of the state- of-the-art methods. In conclusion, the performance of the retrieval system can be improved with the help of multiple heterogeneous features and the compact hash codes which can be learned by the imbalanced learning method.展开更多
Exploiting the encoding process of the stabilizer quantum code [[n, k, d]], a deterministic quantum communication scheme, in which n - 1 photons are distributed forward and backward in two-way channel, is proposed to ...Exploiting the encoding process of the stabilizer quantum code [[n, k, d]], a deterministic quantum communication scheme, in which n - 1 photons are distributed forward and backward in two-way channel, is proposed to transmit the secret messages with unconditional security. The present scheme can be implemented to distribute the secret quantum (or classical) messages with great capacity in imperfect quantum channel since the utilized code encodes k-qubit messages for each scheme run.展开更多
It is a regular way of constructing quantum error-correcting codes via codes with self-orthogonal property, and whether a classical Bose-Chaudhuri-Hocquenghem (BCH) code is self-orthogonal can be determined by its des...It is a regular way of constructing quantum error-correcting codes via codes with self-orthogonal property, and whether a classical Bose-Chaudhuri-Hocquenghem (BCH) code is self-orthogonal can be determined by its designed distance. In this paper, we give the sufficient and necessary condition for arbitrary classical BCH codes with self-orthogonal property through algorithms. We also give a better upper bound of the designed distance of a classical narrow-sense BCH code which contains its Euclidean dual. Besides these, we also give one algorithm to compute the dimension of these codes. The complexity of all algorithms is analyzed. Then the results can be applied to construct a series of quantum BCH codes via the famous CSS constructions.展开更多
A definition of a self-dual code on graph and a procedure based on factor graphs to judge a self-dual code were presented. Three contributions of this paper were described as follows. To begin with, transform T_ R→L ...A definition of a self-dual code on graph and a procedure based on factor graphs to judge a self-dual code were presented. Three contributions of this paper were described as follows. To begin with, transform T_ R→L were defined, which was the basis of self-dual codes defined on graphs and played a key role in the paper. The second were that a self-dual code could be defined on factor graph, which was much different from conventional algebraic method. The third was that a factor graph approach to judge a self-dual code was illustrated, which took advantage of duality properties of factor graphs and our proposed transform T_ R→L to offer a convenient and geometrically intuitive process to judge a self-dual code.展开更多
We present the construction of quantum error-locating(QEL) codes based on classical error-locating(EL)codes. Similar to classical EL codes, QEL codes lie midway between quantum error-correcting codes and quantum error...We present the construction of quantum error-locating(QEL) codes based on classical error-locating(EL)codes. Similar to classical EL codes, QEL codes lie midway between quantum error-correcting codes and quantum errordetecting codes. Then QEL codes can locate qubit errors within one sub-block of the received qubit symbols but do not need to determine the exact locations of the erroneous qubits. We show that, an e-error-locating code derived from an arbitrary binary cyclic code with generator polynomial g(x), can lead to a QEL code with e error-locating abilities, only if g(x) does not contain the(1 + x)-factor.展开更多
When the time variable in quantum signal processing is discrete, the Fourier transform exists on the vector space of n-tuples over the Galois field F2, which plays an important role in the investigation of quantum sig...When the time variable in quantum signal processing is discrete, the Fourier transform exists on the vector space of n-tuples over the Galois field F2, which plays an important role in the investigation of quantum signals. By using Fourier transforms, the idea of quantum coding theory can be described in a setting that is much different from that seen that far. Quantum BCH codes can be defined as codes whose quantum states have certain specified consecutive spectral components equal to zero and the error-correcting ability is also described by the number of the consecutive zeros. Moreover, the decoding of quantum codes can be described spectrally with more efficiency.展开更多
基金supported by the National High Technology Research and Development Program of China under Grant No. 2011AA010803
文摘The theory of quantum error correcting codes is a primary tool for fighting decoherence and other quantum noise in quantum communication and quantum computation. Recently, the theory of quantum error correcting codes has developed rapidly and been extended to protect quantum information over asymmetric quantum channels, in which phase-shift and qubit-flip errors occur with different probabilities. In this paper, we generalize the construction of symmetric quantum codes via graphs (or matrices) to the asymmetric case, converting the construction of asymmetric quantum codes to finding matrices with some special properties. We also propose some asymmetric quantum Maximal Distance Separable (MDS) codes as examples constructed in this way.
基金This work was supported in part by the National Science Foundation of China(No.61772539,6187212,61972405),STITSX(No.201705D131025),1331KITSX,and CiCi3D.
文摘Stereolithographic(STL)files have been extensively used in rapid prototyping industries as well as many other fields as watermarking algorithms to secure intellectual property and protect three-dimensional models from theft.However,to the best of our knowledge,few studies have looked at how watermarking can resist attacks that involve vertex-reordering.Here,we present a lossless and robust watermarking scheme for STL files to protect against vertexreordering attacks.Specifically,we designed a novel error-correcting code(ECC)that can correct the error of any one-bit in a bitstream by inserting several check digits.In addition,ECC is designed to make use of redundant information according to the characteristics of STL files,which introduces further robustness for defense against attacks.No modifications are made to the geometric information of the three-dimensional model,which respects the requirements of a highprecision model.The experimental results show that the proposed watermarking scheme can survive numerous kinds of attack,including rotation,scaling and translation(RST),facet reordering,and vertex-reordering attacks.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61802175,61871120,61872184,and 62071240)the Fundamental Research Funds for the Central Universities,China(Grant No.NZ2020021)。
文摘In most practical quantum mechanical systems,quantum noise due to decoherence is highly biased towards dephasing.The quantum state suffers from phase flip noise much more seriously than from the bit flip noise.In this work,we construct new families of asymmetric quantum concatenated codes(AQCCs)to deal with such biased quantum noise.Our construction is based on a novel concatenation scheme for constructing AQCCs with large asymmetries,in which classical tensor product codes and concatenated codes are utilized to correct phase flip noise and bit flip noise,respectively.We generalize the original concatenation scheme to a more general case for better correcting degenerate errors.Moreover,we focus on constructing nonbinary AQCCs that are highly degenerate.Compared to previous literatures,AQCCs constructed in this paper show much better parameter performance than existed ones.Furthermore,we design the specific encoding circuit of the AQCCs.It is shown that our codes can be encoded more efficiently than standard quantum codes.
基金Supported by Trans-century Training Program Foundation for the Talents by the State Education Commission
文摘This paper proved the statement that a good linear block encoder is in fact a good local-random sequence generator. Furthermore, this statement discovers the deep relationship between the error-correcting coding theory and the modern cryptography.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61072071)
文摘Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k- 1, 1, k] quantum error-correcting code (QECC) to implement a quantum (k, 2k-1) threshold scheme. It also takes advantage of classical enhancement of the [2k-1, 1, k] QECC to establish a QSS scheme which can share classical information and quantum information simultaneously. Because information is encoded into QECC, these schemes can prevent intercept-resend attacks and be implemented on some noisy channels.
基金Supported by the Scientific Research Foundation of Hubei Provincial Education Department of China(Q20174503)the National Science Foundation of Hubei Polytechnic University of China(12xjz14A and 17xjz03A)。
文摘In this paper,we first give the definition of the Euclidean sums of linear codes,and prove that the Euclidean sums of linear codes are Euclidean dual-containing.Then we construct two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of the Reed-Solomon codes,and two new classes of optimal asymmetric quantum error-correcting codes based on Euclidean sums of linear codes generated by Vandermonde matrices over finite fields.Moreover,these optimal asymmetric quantum errorcorrecting codes constructed in this paper are different from the ones in the literature.
基金Project supported by the National Key R&D Program of China (Grant No.2022YFB3103802)the National Natural Science Foundation of China (Grant Nos.62371240 and 61802175)the Fundamental Research Funds for the Central Universities (Grant No.30923011014)。
文摘Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum channels by consuming some ebits between the sender(Alice)and the receiver(Bob).It is usually assumed that the preshared ebits of Bob are error free.However,noise on these ebits is unavoidable in many cases.In this work,we evaluate the performance of EAQECCs with noisy ebits over asymmetric quantum channels and quantum channels with memory by computing the exact entanglement fidelity of several EAQECCs.We consider asymmetric errors in both qubits and ebits and show that the performance of EAQECCs in entanglement fidelity gets improved for qubits and ebits over asymmetric channels.In quantum memory channels,we compute the entanglement fidelity of several EAQECCs over Markovian quantum memory channels and show that the performance of EAQECCs is lowered down by the channel memory.Furthermore,we show that the performance of EAQECCs is diverse when the error probabilities of qubits and ebits are different.In both asymmetric and memory quantum channels,we show that the performance of EAQECCs is improved largely when the error probability of ebits is reasonably smaller than that of qubits.
基金Universiti Teknologi MARA for the financial support on this project.
文摘An optical code generating device for security access system application is presented. The code generating device constructed using asymmetric hollow optical waveguide coupler design provides a unique series of output light intensities which are successively used as an optical code. The design of the waveguide is made using two major components which are asymmetric Y-junction splitter and a linear taper. Waveguiding is done using a hollow waveguide structure. Construction of higher level 1×N hollow waveguide coupler is done utilizing a basic 1×2 asymmetric waveguide coupler design together with a cascaded design scheme. Non-sequential ray tracing of the asymmetric hollow optical waveguide couplers is performed to predict the optical transmission properties of the waveguide. A representation of the code combination that can be generated from the device is obtained using combinatory number theory.
基金supported by the National Natural Science Foundation of China under Grant No.61101248the Equipment Advance Research Projectof"Twelfth Five-Year"Plan under Grant No.51306040202And this work has been performed in the Project"Advanced Communication Research Program(ACRP)"supported by the Directorate of Research and Development,Defense Science and Technology Agency,Singapore under Grant No.DSOCL04020
文摘In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymmetry and node asymmetry. The decision and mapping rule for symmetric and asymmetric cases are studied. The performance in terms of bit error rate for each case will be studied and analysed by computer simulation. Analytical and simulation results show that uplink asymmetry is the worst case;intra-phase asymmetry and unreliable uplink channels will more severely affect the performance degradation, which is caused by channel asymmetry.
基金Supported by National Natural Science Foundation of China(No.60972054)National High Technology Research and Development Program of China("863"Program,No.2009AA011507)
文摘Asymmetric stereoscopic video coding can take advantage of binocular suppression in human vision by representing one of the two views in lower quality.This paper proposes a bit allocation strategy for asymmetric stereoscopic video coding.In order to improve the accuracy of bit allocation and rate control in the left view,a proportionalintegral-derivative controller is adopted.Meanwhile,to control the quality fluctuation between consecutive frames of the left view,a quality controller is adopted.Besides,a fuzzy controller is proposed to control the variation in quality between the left and right views by comparing the PSNR disparity of two views with a fixed threshold,which is used to quantize the binocular psycho-visual redundancy and adjust the quantization parameter (QP) of the right view correspondingly.The proposed algorithm has been implemented in H.264/AVC video codec,and the experimental results show its effectiveness in rate control while keeping a good quality for the left view,and fewer bits are allocated for the right view so that the overall bit rate is saved by 7.2% at most without the loss of subjective visual quality for stereoscopic video.
基金Supported by the National Natural Science Foundation of China (61271122)the Natural Science Foundation of Anhui Province(1208085MF102)
文摘In this paper, the cyclic code of the classic circuit is transformed and transplanted; then, the quantum encoding scheme based on cyclic code and quantum error-correction circuit is constructed. The proposed circuit can correct one-bit error, and the use of redundant bits to encode more than one-bit quantum information breaks the previous limitations of many bits encoding a quantum bit. Compared with the existing coding circuits (Shor code, Steane code and five stable subcode), it shows obvious superiority in the quantum coding efficiency and transmission efficiency.
文摘This paper demonstrates how channel coding can improve the robustness of spatial image watermarks against signal distortion caused by lossy data compression such as the JPEG scheme by taking advantage of the properties of Gray code. Two error-correction coding (ECC) schemes are used here: One scheme, referred to as the vertical ECC (VECC), is to encode information bits in a pixel by error-correction coding where the Gray code is used to improve the performance. The other scheme, referred to as the horizontal ECC (HECC), is to encode information bits in an image plane. In watermarking, HECC generates a codeword representing watermark bits, and each bit of the codeword is encoded by VECC. Simple single-error-correcting block codes are used in VECC and HECC. Several experiments of these schemes were conducted on test images. The result demonstrates that the error-correcting performance of HECC just depends on that of VECC, and accordingly, HECC enhances the capability of VECC. Consequently, HECC with appropriate codes can achieve stronger robustness to JPEG—caused distortions than non-channel-coding watermarking schemes.
文摘In this paper, error-correction coding (ECC) in Gray codes is considered and its performance in the protecting of spatial image watermarks against lossy data compression is demonstrated. For this purpose, the differences between bit patterns of two Gray codewords are analyzed in detail. On the basis of the properties, a method for encoding watermark bits in the Gray codewords that represent signal levels by a single-error-correcting (SEC) code is developed, which is referred to as the Gray-ECC method in this paper. The two codewords of the SEC code corresponding to respective watermark bits are determined so as to minimize the expected amount of distortion caused by the watermark embedding. The stochastic analyses show that an error-correcting capacity of the Gray-ECC method is superior to that of the ECC in natural binary codes for changes in signal codewords. Experiments of the Gray-ECC method were conducted on 8-bit monochrome images to evaluate both the features of watermarked images and the performance of robustness for image distortion resulting from the JPEG DCT-baseline coding scheme. The results demonstrate that, compared with a conventional averaging-based method, the Gray-ECC method yields watermarked images with less amount of signal distortion and also makes the watermark comparably robust for lossy data compression.
基金Sponsored by State Key Laboratory of Subtropical Building Science,Autonomous Research Topics(Grant No.x2tjc7100870)
文摘Under the condition of asymmetric information,the Spence 's Job Market Signaling Model is generally applied to inspect the design capability of a designer and his labor and efforts to be invested; however,since the"prior probability"and "posterior probability"have great uncertainties,the practical effect of this model is poor. On the basis of analyzing reverse selection questions,this paper provides a design capability screening model,which can make a designer automatically expose his hidden information so that necessary actions can be taken as required by the owner to realize risk sharing. A calculation example is finally given to demonstrate that the new model is helpful for an owner to select a designer with high professional level and to lead the designer to work hard,so it is of significant application value.
基金The National Natural Science Foundation of China(No.61305058)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.12KJB520003)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20130471)the Scientific Research Foundation for Advanced Talents by Jiangsu University(No.13JDG093)
文摘A novel hashing method based on multiple heterogeneous features is proposed to improve the accuracy of the image retrieval system. First, it leverages the imbalanced distribution of the similar and dissimilar samples in the feature space to boost the performance of each weak classifier in the asymmetric boosting framework. Then, the weak classifier based on a novel linear discriminate analysis (LDA) algorithm which is learned from the subspace of heterogeneous features is integrated into the framework. Finally, the proposed method deals with each bit of the code sequentially, which utilizes the samples misclassified in each round in order to learn compact and balanced code. The heterogeneous information from different modalities can be effectively complementary to each other, which leads to much higher performance. The experimental results based on the two public benchmarks demonstrate that this method is superior to many of the state- of-the-art methods. In conclusion, the performance of the retrieval system can be improved with the help of multiple heterogeneous features and the compact hash codes which can be learned by the imbalanced learning method.
基金The project supported by National Natural Science Foundation of China under Grant Nos.60472018 and 60573127partly supported by the Postdoctoral Science Foundation of Central South University
文摘Exploiting the encoding process of the stabilizer quantum code [[n, k, d]], a deterministic quantum communication scheme, in which n - 1 photons are distributed forward and backward in two-way channel, is proposed to transmit the secret messages with unconditional security. The present scheme can be implemented to distribute the secret quantum (or classical) messages with great capacity in imperfect quantum channel since the utilized code encodes k-qubit messages for each scheme run.
基金Supported by the National Natural Science Foundation of China (No.60403004)the Outstanding Youth Foundation of China (No.0612000500)
文摘It is a regular way of constructing quantum error-correcting codes via codes with self-orthogonal property, and whether a classical Bose-Chaudhuri-Hocquenghem (BCH) code is self-orthogonal can be determined by its designed distance. In this paper, we give the sufficient and necessary condition for arbitrary classical BCH codes with self-orthogonal property through algorithms. We also give a better upper bound of the designed distance of a classical narrow-sense BCH code which contains its Euclidean dual. Besides these, we also give one algorithm to compute the dimension of these codes. The complexity of all algorithms is analyzed. Then the results can be applied to construct a series of quantum BCH codes via the famous CSS constructions.
基金The National Natural Science Foundation of China (No60472018)
文摘A definition of a self-dual code on graph and a procedure based on factor graphs to judge a self-dual code were presented. Three contributions of this paper were described as follows. To begin with, transform T_ R→L were defined, which was the basis of self-dual codes defined on graphs and played a key role in the paper. The second were that a self-dual code could be defined on factor graph, which was much different from conventional algebraic method. The third was that a factor graph approach to judge a self-dual code was illustrated, which took advantage of duality properties of factor graphs and our proposed transform T_ R→L to offer a convenient and geometrically intuitive process to judge a self-dual code.
基金Supported by the National Natural Science Foundation of China under Grant No.61170321the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20110092110024the Scientific Research Innovation Plan for College Graduates of Jiangsu Province under Grant No.CXZZ13 0105
文摘We present the construction of quantum error-locating(QEL) codes based on classical error-locating(EL)codes. Similar to classical EL codes, QEL codes lie midway between quantum error-correcting codes and quantum errordetecting codes. Then QEL codes can locate qubit errors within one sub-block of the received qubit symbols but do not need to determine the exact locations of the erroneous qubits. We show that, an e-error-locating code derived from an arbitrary binary cyclic code with generator polynomial g(x), can lead to a QEL code with e error-locating abilities, only if g(x) does not contain the(1 + x)-factor.
基金The project supported by National Natural Science Foundation of China under Grant No. 60472018, and the Foundation of National Laboratory for Modern Communications
文摘When the time variable in quantum signal processing is discrete, the Fourier transform exists on the vector space of n-tuples over the Galois field F2, which plays an important role in the investigation of quantum signals. By using Fourier transforms, the idea of quantum coding theory can be described in a setting that is much different from that seen that far. Quantum BCH codes can be defined as codes whose quantum states have certain specified consecutive spectral components equal to zero and the error-correcting ability is also described by the number of the consecutive zeros. Moreover, the decoding of quantum codes can be described spectrally with more efficiency.