Implementing the flyby to Near-Earth Asteroids (NEAs) with the potential impact risks to the Earth allows for obtaining detailed physical parameters, thereby supporting the high-precision orbit prediction and planetar...Implementing the flyby to Near-Earth Asteroids (NEAs) with the potential impact risks to the Earth allows for obtaining detailed physical parameters, thereby supporting the high-precision orbit prediction and planetary defense strategy. Different from those conducted asteroid flyby missions, in the 12th China Trajectory Optimization Competition (CTOC-12), a NEAs flyby trajectory design problem using reusable probes that depart from a Lunar Distant Retrograde Orbit (DRO) station in the cislunar space was released. The objective was flyby to as many NEAs as possible using up to 20 probes within a total of 10 years. The ∑ team proposed a solution that can explore 47 NEAs using 11 probes, ranking the first in the competition. In this paper, the methods and results from the winning team are introduced, including mission analysis and preliminary design, and low-energy transfer trajectory optimization. In particular, a round-trip trajectory is divided into three phases: deep space transfer, indirect transfer between the Earth to DRO, and DRO phasing and rendezvous. With the combination of global optimization and local optimization algorithms, the required velocity increments to change the orbital planes are effectively reduced, thus increasing the number of the explored NEAs. The final solution of our team is presented and the results are compared with those of the top three teams. The competition demonstrates that the regularization of flyby missions from the cislunar space to explore NEAs with the potential impact risks to the Earth is the feasible and promising.展开更多
The SiTian project,with its vast field of view,will become an ideal platform for scientific research on asteroids.In this study,we develop a pipeline to analyze the photometry of asteroids and derive their periods fro...The SiTian project,with its vast field of view,will become an ideal platform for scientific research on asteroids.In this study,we develop a pipeline to analyze the photometry of asteroids and derive their periods from the data collected by the SiTian pathfinder project Mini-SiTian(MST).The pipeline is applied to the MST f02 region,an MST test region with a sky area of 2°.29×1°.53.Rotation periods of 22 asteroids are derived by the obtained light curve analysis.Among them,there are eight asteroids available in the Asteroid Lightcurve Photometry Database(ALCDEF),and six of them with more photometric points(>200)that have similar period parameters as the ones in ALCDEF.Additionally,the periods for 14 of these asteroids are newly obtained and are not listed in ALCDEF.This study demonstrates the feasibility of asteroid photometric research by the SiTian project.It shows that future observations from the SiTian project will provide even more photometry of asteroids,significantly increasing the number of available light curves.The potential vast photometric data on asteroids will help us to further understand the physics of asteroids,their material composition,and the formation and evolution of the solar system.展开更多
Flexible lander,composed of multiple nodes connected by flexible material,can reducethe bouncing and overturning during the asteroid landing.To satisfy the complex constraints inthe node cooperation of the flexible la...Flexible lander,composed of multiple nodes connected by flexible material,can reducethe bouncing and overturning during the asteroid landing.To satisfy the complex constraints inthe node cooperation of the flexible landing,an intelligent cooperative guidance method is pro-posed.The method consists of a double-layer cooperative guidance structure,a guidance parameterdetermination approach,and an action priority strategy.The double-layer contains a basic guid-ance used to satisfy the terminal state constraints,and a compensatory guidance used to satisfythe lander's attitude constraint.For the compensatory guidance,the parameters are determinedby multi-agent system,which are trained according to the performance index of flexible landing tra-jectories.The action priority strategy is used to reduce the detrimental effect of parameter inconsis-tency on the node cooperation.The simulation of flexible landing shows that the cooperativeguidance method is effective in improving the landing accuracy while satisfying the constraints.Meanwhile,the method is robust to the disturbance in the navigation and control.展开更多
This paper investigates a simplified model for describing the gravitational fields of non- axisymmetric elongated asteroids. The connection between the simplified model and the target aster-oid is built by considering...This paper investigates a simplified model for describing the gravitational fields of non- axisymmetric elongated asteroids. The connection between the simplified model and the target aster-oid is built by considering the positions of equilibrium points. To improve the performance of po-sition matching for the equilibrium points associated with these non-axisymmetric asteroids, a non-axisymmetric triple-particle-linkage model is proposed based on two existing axisymmetric particle- linkage models. The unknown parameters of the simplified model are determined by minimizing the matching error using the nonlinear optimization method. The proposed simplified model is applied for three realistic elongated asteroids, 243 Ida, 433 Eros and (8567) 1996 HW1. The simulation re-sults verify that the current particle-linkage model has better matching accuracy than the two existing particle-linkage models. The comparison, between the simplified model and the polyhedral model, on the topological cases of the equilibrium points and the distribution of gravitational potential further validate the rationality and accuracy of the simplified model.展开更多
There are plentiful asteroids moving periodically around their central primaries, such as the Sun. Due to the perturbation of the central primary, the gravitational force of the perturbed asteroid system varies period...There are plentiful asteroids moving periodically around their central primaries, such as the Sun. Due to the perturbation of the central primary, the gravitational force of the perturbed asteroid system varies periodically. In this paper, based on the idea of integrating the solar gravitational force as a part of the system instead of treating it as perturbation, the parametric resonance response is investigated. A novel type of stable parametric resonance orbits has been detected. It is found that the steady-state motion amplitude of parametric resonance orbit is determined by the frequency-response equation. The stability of the novel orbits has also been demonstrated. The new type of orbits may contribute to possible asteroid exploration missions.展开更多
The observed images of the asteroid and the asteroid reference images are used to obtain the probe-to-asteroid direction and the location of the limb features of the asteroid in the inertial coordinate. These informa-...The observed images of the asteroid and the asteroid reference images are used to obtain the probe-to-asteroid direction and the location of the limb features of the asteroid in the inertial coordinate. These informa-tion in combination with the shape model of the asteroid and attitude information of the probe are utilized to ob-tain the position of the probe. The position information is then input to the UKF which determines the real-timeorbit of the probe. Finally, the autonomous orbit determination algorithm is validated using digital simulation.The determination of orbit using UKF is compared with that using extended Kalman filter (EKF), and the resultshows that UKF is superior to EKF.展开更多
The problems of dynamics of celestial bodies are considered which in the literature are explained by instability and randomness of movements. The dynamics of planets orbits on an interval 100 million years was investi...The problems of dynamics of celestial bodies are considered which in the literature are explained by instability and randomness of movements. The dynamics of planets orbits on an interval 100 million years was investigated by new numerical method and its stability is established. The same method is used for computing movements of two asteroids Apophis and 1950DA. The evolution of their movement on an interval of 1000 is investigated. The moments of their closest passages at the Earth are defined. The different ways of transformation of asteroids trajectories into orbits of the Earth’s satellites are considered. The problems of interest are discussed from the different points of view.展开更多
A practical method is proposed to search for periodic orbits of elongated asteroids.The method obtains required initial variables of periodic orbits by using the rotating mass dipole with appropriate parameters,and th...A practical method is proposed to search for periodic orbits of elongated asteroids.The method obtains required initial variables of periodic orbits by using the rotating mass dipole with appropriate parameters,and then implement local iterations to obtain the real orbits over an asteroid in the polyhedral model.In this paper the dipole and polyhedral models,and list detailed procedures of the searching method are introduced.A planar single lobe orbit is presented to evaluate the effectiveness of the method,with the asteroid 216 Kleopatra of the triple asteroid system as a representative elongated body.By applying the above method,ten families of periodic orbits around Kleopatra are identified and discussed with respect to their orbital stabilities and periods.One sample of the sombrero orbit is checked by calculating 1000 hours to examine its orbital behavior.Besides the above orbits,the intriguing head-surrounding orbit is also analyzed.展开更多
The paper describes observations of fast-moving near-Earth asteroids(NEAs) made with the small ground-based telescopes of National Time Service Center of Chinese Academy of Science(NTSC of CAS) and Research Institute ...The paper describes observations of fast-moving near-Earth asteroids(NEAs) made with the small ground-based telescopes of National Time Service Center of Chinese Academy of Science(NTSC of CAS) and Research Institute "Mykolaiv Astronomical Observatory"(RI MAO) by the rotating-drift-scan CCD(RDS CCD) technique. This technique is used to obtain the point images of both the studied objects and reference stars. The results of ongoing follow-up observations of NEAs are discussed. The residual differences(O-C) between the observed and calculated positions from JPL ephemeris were generally small for these asteroids. The standard deviations of these differences were typically ±(0.2′′-0.3′′) in both coordinates for objects with apparent velocity which substantially exceed FWHM for the given exposure time. The results of comparative statistics for such observations from the MPC database show that this is a good level of precision for NEAs. Moreover, the telescopes with the RDS CCD technique implemented can observe the NEAs that closely approach the Earth and with enough observations can improve the precision of determining their orbital elements and impact predictions.展开更多
We carried out low-resolution optical spectroscopy of 51 main-belt asteroids, most of which have highly-inclined orbits. They are selected from D-type candidates in the SDSS-MOC 4 catalog. Using the University of Hawa...We carried out low-resolution optical spectroscopy of 51 main-belt asteroids, most of which have highly-inclined orbits. They are selected from D-type candidates in the SDSS-MOC 4 catalog. Using the University of Hawaii 2.2 m telescope and the Inter-University Centre for Astronomy and Astrophysics 2 m telescope in India, we determined the spectral types of 38 asteroids. Among them, eight asteroids were classified as D-type asteroids. Fractions of D-type asteroids are 3.0 ± 1.1% for low orbital inclination main-belt asteroids and 7.3 ± 2.0% for high orbital inclination main-belt asteroids. The results of our study indicate that some D-type asteroids were formed within the ecliptic region between the main belt and Jupiter, and were then perturbed by Jupiter.展开更多
The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high reso...The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high resolution imaging of asteroids.The ground-based SAR requires a long integration time to achieve a large synthetic aperture,and the echo signal will be seriously affected by temporal-spatial variant troposphere.Traditional spatiotemporal freezing tropospheric models are ineffective.To cope with this,this paper models and analyses the impacts of temporal-spatial variant troposphere on ground-based SAR imaging of asteroids.For the background tropo-sphere,a temporal-spatial variant ray tracing method is proposed to trace the 4D(3D spatial+temporal)refractive index network provided by the numerical weather model,and calculate the error of the background troposphere.For the tropospheric turbulence,the Andrew power spectral model is used in conjunction with multiphase screen theory,and varying errors are obtained by tracking the changing position of the pierce point on the phase screen.Through simulation,the impact of temporal-spatial variant tropospheric errors on image quality is analyzed,and the simulation results show that the X-band echo signal is seriously affected by the troposphere and the echo signal must be compensated.展开更多
As the asteroid rotational period is important to the study of the properties of asteroids(e.g.,super-fast rotators have structures owing an internal cohesion(rather than being rubble piles bounded by gravity only) so...As the asteroid rotational period is important to the study of the properties of asteroids(e.g.,super-fast rotators have structures owing an internal cohesion(rather than being rubble piles bounded by gravity only) so as not to fly apart), constructing an effective and fast method used to search the period attracts much researchers' attention. Recently, the Bayesian generalized Lomb–Scargle(BGLS)periodogram was developed to improve the convergence efficiency of the Lomb–Scargle method. However,the result of BGLS varies with the frequency range and cannot meet the two minimum/maximum requirements for a complete rotation of the asteroid. We propose a robust BGLS-based method that efficiently determines rotational periods. The proposed method employs a polynomial series to fit folded light curves with potential periods, initially calculated using the BGLS periodogram, and adopts a merit function to estimate and refine best-fit periods. We estimate the rotational periods of 30 asteroids applying the new method to light curves from the Palomar Transient Factory. Results confirm the effectiveness of the BGLS-based method in deriving rotational periods from ground-based observations of asteroids. Further application of the BGLS-based method to sparse light curves, such as Gaia data, is discussed.展开更多
Asteroids are the most important small bodies in the solar system and the near-earth asteroids (NEAs) are of especial concern to the world. The reason is that they will make close approaches to the earth in the near f...Asteroids are the most important small bodies in the solar system and the near-earth asteroids (NEAs) are of especial concern to the world. The reason is that they will make close approaches to the earth in the near future. We use a reasonable dynamical model and an efficient computing method to calculate the orbits of over 160 Potentially Hazardous Asteroids (PHAs) for two centuries.展开更多
Research about asteroids has recently attracted more and more attention, especially focusing on their physical structures, such as their spin axis, rotation period and shape. The long distance between observers on Ear...Research about asteroids has recently attracted more and more attention, especially focusing on their physical structures, such as their spin axis, rotation period and shape. The long distance between observers on Earth and asteroids makes it impossible to directly calculate the shape and other parameters of asteroids, with the exception of Near Earth Asteroids and others that have passed by some spacecrafts. Photometric measurements are still generally the main way to obtain research data on asteroids, i.e. the lightcurves recording the brightness and positions of asteroids. Supposing that the shape of the asteroid is a triaxial ellipsoid with a stable spin, a new method is presented in this article to reconstruct the shape models of asteroids from the lightcurves, together with other physical parameters. By applying a special curvature function, the method calculates the brightness integration on a unit sphere and Lebedev quadrature is employed for the discretization. Finally, the method searches for the optimal solution by the Levenberg-Marquardt algorithm to minimize the residual of the brightness. By adopting this method, not only can related physical parameters of asteroids be obtained at a reasonable accuracy, but also a simple shape model of an ellipsoid can be generated for reconstructing a more sophisticated shape model.展开更多
A method for classifying orbits near asteroids under a polyhedral gravitational field is presented, and may serve as a valuable reference for spacecraft orbit design for asteroid exploration. The orbital dynamics near...A method for classifying orbits near asteroids under a polyhedral gravitational field is presented, and may serve as a valuable reference for spacecraft orbit design for asteroid exploration. The orbital dynamics near aster- oids are very complex. According to the variation in orbit characteristics after being affected by gravitational perturbation during the periapsis passage, orbits near an as- teroid can be classified into 9 categories: (1) surrounding- to-surrounding, (2) surrounding-to-surface, (3) surrounding- to-infinity, (4) infinity-to-infinity, (5) infinity-to-surface, (6) infinity-to-surrounding, (7) surface-to-surface, (8) surface- to-surrounding, and (9) surface-to- infinity. Assume that the orbital elements are constant near the periapsis, the gravitation potential is expanded into a harmonic series. Then, the influence of the gravitational perturbation on the orbit is studied analytically. The styles of orbits are dependent on the argument of periapsis, the periapsis radius, and the periapsis velocity. Given the argument of periapsis, the orbital energy before and after perturbation can be derived according to the periapsis radius and the periapsis velocity. Simulations have been performed for orbits in the gravitational field of 216 Kleopatra. The numerical results are well consistent with analytic predictions.展开更多
This paper summarizes a few cases of spacecraft orbital motion around asteroid for which averaging method can be applied, i.e., when central body rotates slowly, fast, and when a spacecraft is near to the resonant orb...This paper summarizes a few cases of spacecraft orbital motion around asteroid for which averaging method can be applied, i.e., when central body rotates slowly, fast, and when a spacecraft is near to the resonant orbits between the spacecraft mean motion and the central body's rotation. Averaging conditions for these cases are given. As a major extension, a few classes of near resonant orbits are analyzed by the averaging method. Then some resulted conclusions of these averaging analyses are applied to understand the stabil- ity regions in a numerical experiment. Some stability conclu- sions are obtained. As a typical example, it is shown in detail that near circular 1 : 2 resonant orbit is always unstable.展开更多
Some evidences of possible duplicities of five asteroids are presented. A satellite of (279) Thule was convincingly detected by a stellar occultation on 2008 April 3 by Thule and also from follow-up light curve observ...Some evidences of possible duplicities of five asteroids are presented. A satellite of (279) Thule was convincingly detected by a stellar occultation on 2008 April 3 by Thule and also from follow-up light curve observations. The orbital period of the satellite is 3.007 or 6.014 days, and the minimum diameter is estimated to be 52 km. A satellite of (324) Bamberga was detected by secondary drops of the light curve in 2007. The rotation period of the primary is 1.22625 days, and the revolution period of the secondary is 3.00 or 6.00 days. Presumed contact duplicity of the main body of the L4 Trojan (624) Hektor was detected by a stellar occultation by Hektor on 2008 January 24. A possible satellite of (657) Gunl?d was suggested from a secondary occultation by Gunl?d on 2008 November 29. The minimum of the diameter is 7 km. A possible satellite of (739) Mandeville was suggested by stellar occultation observations on 1980 December 10.展开更多
Asteroid research is of global security interest, we are more afraid about any impact of these asteroids on Earth. We seek through this work to provide a study on the effect of the asteroid’s shape on the gravity asp...Asteroid research is of global security interest, we are more afraid about any impact of these asteroids on Earth. We seek through this work to provide a study on the effect of the asteroid’s shape on the gravity aspect. Knowledge of the potential is crucial to bodies approaching the asteroid. There is a range of asteroid shapes to consider. Some well-known asteroids such Ceres, Vesta, Iris and Oumuamua are considered in this study. After determining the moment of inertia of the asteroids depending on their materials, the gravity fields and the potential gravity of the asteroids are established when varying their shapes. A representation of the gravity field is given in three dimensional coordinate systems. Also, the behavior of the potential gravity is drawing in the function of the object’s location. The second part is dealing with the interpretation of all the obtained results in order to deduce some rules and features which would be useful for the identification of the asteroids. Thus, by the best knowledge of the effect of the asteroid’s shape, we would be more informed in the survey of the hazardous near earth objects.展开更多
Kinetic impact is an effective approach for studying and defending against asteroids.Impact missions have focused on asteroids with diameters larger than 100 m,whereas smaller missions have not been explored.Terminal ...Kinetic impact is an effective approach for studying and defending against asteroids.Impact missions have focused on asteroids with diameters larger than 100 m,whereas smaller missions have not been explored.Terminal guidance and control algorithms for small asteroids have received limited attention.China plans to conduct its first asteroid defense demonstration mission around 2025 on a 30-m-diameter asteroid.This paper presents the guidance and control algorithms for the terminal phase of this mission.The guidance formulas for impact missions are derived in this study using predictive and proportional guidance laws.Three maneuver criteria are proposed to determine the optimal timing for orbit correction,considering fuel consumption,impact accuracy,and computational cost.A continuous thrust control strategy was introduced to achieve incremental changes in velocity based on the relative motion of the impactor and target.The performance of the guidance and control algorithms was evaluated using Monte Carlo simulation,which demonstrated their effectiveness in handling uncertainties and achieving a high success rate.The results indicate that the proposed algorithm can be applied to future impact missions targeting small asteroids.展开更多
Understanding the internal structure of asteroids is crucial for deciphering their formation and establishing defenses against potential hazards.The Daocheng Radio Telescope(DART),a recently constructed interferometri...Understanding the internal structure of asteroids is crucial for deciphering their formation and establishing defenses against potential hazards.The Daocheng Radio Telescope(DART),a recently constructed interferometric array designed for low-frequency Sun imaging,presents a promising tool for probing asteroid interiors.With a substantial 1-km array aperture and an equivalent receiving area of approximately 8,850 m2,DART plays a vital role in diagnosing asteroid internal structures.This study introduces an electromagnetic wave scattering model tailored to asteroids within DART’s operational frequency range(150 to 450 MHz).Ground-based radar detection can unveil multiple facets of these celestial bodies by leveraging low-frequency waves’penetrating capabilities and capitalizing on asteroids’rotational dynamics.Through simulations capturing the characteristics of low-frequency waves traversing a layered model and interacting with internal structures,we propose an electromagnetic scattering model of asteroids.Our results underscore DART’s potential as a crucial instrument for discerning the internal structure of near-Earth objects.We first formulate an asteroid model through celestial impact models,dimensional analysis,and data fitting to achieve this.Subsequently,we derive an electromagnetic scattering model using geometric optics and a propagation model for lossy mediums.Simulations demonstrate that morphology and internal structure dictate the distribution of scattered waves,with forward and backscattered waves providing comprehensive internal structure information over a rotation cycle.Furthermore,we observe that alterations in electromagnetic wave frequency induce changes in the scattering characteristics,prompting the convenience of employing multiple frequencies for retrieving detailed information about an asteroid’s internal medium and structure.This multidimensional approach positions DART as a promising asset in advancing our understanding of asteroid interiors,offering valuable insights for scientific inquiry and hazard mitigation strategies.展开更多
基金supported by the Special Funding Project for Space Debris and Near-Earth Asteroids Defense Research, China (No. KJSP2023020303)Beijing Municipal Science and Technology Commission, China (No. Z181100002918004)the Youth Innovation Promotion Association, Chinese Academy of Sciences (No. 2022146)
文摘Implementing the flyby to Near-Earth Asteroids (NEAs) with the potential impact risks to the Earth allows for obtaining detailed physical parameters, thereby supporting the high-precision orbit prediction and planetary defense strategy. Different from those conducted asteroid flyby missions, in the 12th China Trajectory Optimization Competition (CTOC-12), a NEAs flyby trajectory design problem using reusable probes that depart from a Lunar Distant Retrograde Orbit (DRO) station in the cislunar space was released. The objective was flyby to as many NEAs as possible using up to 20 probes within a total of 10 years. The ∑ team proposed a solution that can explore 47 NEAs using 11 probes, ranking the first in the competition. In this paper, the methods and results from the winning team are introduced, including mission analysis and preliminary design, and low-energy transfer trajectory optimization. In particular, a round-trip trajectory is divided into three phases: deep space transfer, indirect transfer between the Earth to DRO, and DRO phasing and rendezvous. With the combination of global optimization and local optimization algorithms, the required velocity increments to change the orbital planes are effectively reduced, thus increasing the number of the explored NEAs. The final solution of our team is presented and the results are compared with those of the top three teams. The competition demonstrates that the regularization of flyby missions from the cislunar space to explore NEAs with the potential impact risks to the Earth is the feasible and promising.
基金supports from the National Natural Science Foundation of China(NSFC,grant Nos.12203002 and 11973015)supports from the National Key Basic R&D Program of China via 2023YFA1608303 and the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550103)+6 种基金supports from the National Natural Science Foundation of China(NSFCgrant No.12373015)supports from the National Natural Science Foundation of China(NSFCgrant Nos.12120101003 and 12373010)National Key R&D Program of China(grant Nos.2023YFA1607800,2023YFA1607804,2022YFA1602902)Beijing Municipal Natural Science Foundation(grant No.1222028)Strategic Priority Research Program of the Chinese Academy of Science(grant Nos.XDB0550100 and XDB0550000).
文摘The SiTian project,with its vast field of view,will become an ideal platform for scientific research on asteroids.In this study,we develop a pipeline to analyze the photometry of asteroids and derive their periods from the data collected by the SiTian pathfinder project Mini-SiTian(MST).The pipeline is applied to the MST f02 region,an MST test region with a sky area of 2°.29×1°.53.Rotation periods of 22 asteroids are derived by the obtained light curve analysis.Among them,there are eight asteroids available in the Asteroid Lightcurve Photometry Database(ALCDEF),and six of them with more photometric points(>200)that have similar period parameters as the ones in ALCDEF.Additionally,the periods for 14 of these asteroids are newly obtained and are not listed in ALCDEF.This study demonstrates the feasibility of asteroid photometric research by the SiTian project.It shows that future observations from the SiTian project will provide even more photometry of asteroids,significantly increasing the number of available light curves.The potential vast photometric data on asteroids will help us to further understand the physics of asteroids,their material composition,and the formation and evolution of the solar system.
基金supported by the National Key Research and Development Program of China(No.2019YFA0706500)。
文摘Flexible lander,composed of multiple nodes connected by flexible material,can reducethe bouncing and overturning during the asteroid landing.To satisfy the complex constraints inthe node cooperation of the flexible landing,an intelligent cooperative guidance method is pro-posed.The method consists of a double-layer cooperative guidance structure,a guidance parameterdetermination approach,and an action priority strategy.The double-layer contains a basic guid-ance used to satisfy the terminal state constraints,and a compensatory guidance used to satisfythe lander's attitude constraint.For the compensatory guidance,the parameters are determinedby multi-agent system,which are trained according to the performance index of flexible landing tra-jectories.The action priority strategy is used to reduce the detrimental effect of parameter inconsis-tency on the node cooperation.The simulation of flexible landing shows that the cooperativeguidance method is effective in improving the landing accuracy while satisfying the constraints.Meanwhile,the method is robust to the disturbance in the navigation and control.
基金supported by the National Natural Science Foundation of China (Grant No.11672126)the Innovation Funded Project of Shanghai Aerospace Science and Technology (Grant Nos.SAST2017032 and SAST2015036)the Scientific Research Foundation for New Staffs of Nanjing University of Aeronautics and Astronautics (Grant No.1011-YAH17071)
文摘This paper investigates a simplified model for describing the gravitational fields of non- axisymmetric elongated asteroids. The connection between the simplified model and the target aster-oid is built by considering the positions of equilibrium points. To improve the performance of po-sition matching for the equilibrium points associated with these non-axisymmetric asteroids, a non-axisymmetric triple-particle-linkage model is proposed based on two existing axisymmetric particle- linkage models. The unknown parameters of the simplified model are determined by minimizing the matching error using the nonlinear optimization method. The proposed simplified model is applied for three realistic elongated asteroids, 243 Ida, 433 Eros and (8567) 1996 HW1. The simulation re-sults verify that the current particle-linkage model has better matching accuracy than the two existing particle-linkage models. The comparison, between the simplified model and the polyhedral model, on the topological cases of the equilibrium points and the distribution of gravitational potential further validate the rationality and accuracy of the simplified model.
基金supported in part by the National Natural Science Foundation of China(Project Nos.11772009,11972007 and 11832002)the Beijing Municipal Natural Science Foundation(Project No.1192002)the International Research Cooperation Seed Fund of Beijing University of Technology(No.2018B15)。
文摘There are plentiful asteroids moving periodically around their central primaries, such as the Sun. Due to the perturbation of the central primary, the gravitational force of the perturbed asteroid system varies periodically. In this paper, based on the idea of integrating the solar gravitational force as a part of the system instead of treating it as perturbation, the parametric resonance response is investigated. A novel type of stable parametric resonance orbits has been detected. It is found that the steady-state motion amplitude of parametric resonance orbit is determined by the frequency-response equation. The stability of the novel orbits has also been demonstrated. The new type of orbits may contribute to possible asteroid exploration missions.
文摘The observed images of the asteroid and the asteroid reference images are used to obtain the probe-to-asteroid direction and the location of the limb features of the asteroid in the inertial coordinate. These informa-tion in combination with the shape model of the asteroid and attitude information of the probe are utilized to ob-tain the position of the probe. The position information is then input to the UKF which determines the real-timeorbit of the probe. Finally, the autonomous orbit determination algorithm is validated using digital simulation.The determination of orbit using UKF is compared with that using extended Kalman filter (EKF), and the resultshows that UKF is superior to EKF.
文摘The problems of dynamics of celestial bodies are considered which in the literature are explained by instability and randomness of movements. The dynamics of planets orbits on an interval 100 million years was investigated by new numerical method and its stability is established. The same method is used for computing movements of two asteroids Apophis and 1950DA. The evolution of their movement on an interval of 1000 is investigated. The moments of their closest passages at the Earth are defined. The different ways of transformation of asteroids trajectories into orbits of the Earth’s satellites are considered. The problems of interest are discussed from the different points of view.
基金Supported by the National Natural Science Foundation of China(11602019)。
文摘A practical method is proposed to search for periodic orbits of elongated asteroids.The method obtains required initial variables of periodic orbits by using the rotating mass dipole with appropriate parameters,and then implement local iterations to obtain the real orbits over an asteroid in the polyhedral model.In this paper the dipole and polyhedral models,and list detailed procedures of the searching method are introduced.A planar single lobe orbit is presented to evaluate the effectiveness of the method,with the asteroid 216 Kleopatra of the triple asteroid system as a representative elongated body.By applying the above method,ten families of periodic orbits around Kleopatra are identified and discussed with respect to their orbital stabilities and periods.One sample of the sombrero orbit is checked by calculating 1000 hours to examine its orbital behavior.Besides the above orbits,the intriguing head-surrounding orbit is also analyzed.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1831133 and 12073062)National Astronomical Data Center of China。
文摘The paper describes observations of fast-moving near-Earth asteroids(NEAs) made with the small ground-based telescopes of National Time Service Center of Chinese Academy of Science(NTSC of CAS) and Research Institute "Mykolaiv Astronomical Observatory"(RI MAO) by the rotating-drift-scan CCD(RDS CCD) technique. This technique is used to obtain the point images of both the studied objects and reference stars. The results of ongoing follow-up observations of NEAs are discussed. The residual differences(O-C) between the observed and calculated positions from JPL ephemeris were generally small for these asteroids. The standard deviations of these differences were typically ±(0.2′′-0.3′′) in both coordinates for objects with apparent velocity which substantially exceed FWHM for the given exposure time. The results of comparative statistics for such observations from the MPC database show that this is a good level of precision for NEAs. Moreover, the telescopes with the RDS CCD technique implemented can observe the NEAs that closely approach the Earth and with enough observations can improve the precision of determining their orbital elements and impact predictions.
基金partially supported by“the Japan-India Cooperative Science Program”carried out by the Japan Society for the Promotion of Science(JSPS)the Department of Science and Technology(DST),Government of India
文摘We carried out low-resolution optical spectroscopy of 51 main-belt asteroids, most of which have highly-inclined orbits. They are selected from D-type candidates in the SDSS-MOC 4 catalog. Using the University of Hawaii 2.2 m telescope and the Inter-University Centre for Astronomy and Astrophysics 2 m telescope in India, we determined the spectral types of 38 asteroids. Among them, eight asteroids were classified as D-type asteroids. Fractions of D-type asteroids are 3.0 ± 1.1% for low orbital inclination main-belt asteroids and 7.3 ± 2.0% for high orbital inclination main-belt asteroids. The results of our study indicate that some D-type asteroids were formed within the ecliptic region between the main belt and Jupiter, and were then perturbed by Jupiter.
基金supported in part by the National Natural Science Foundation of China(Nos.62101039,62201051)in part by the Shandong Excellent Young Scientists Fund Program(Overseas)in part by China Postdoctoral Science Foundation(No.2022M720443).
文摘The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high resolution imaging of asteroids.The ground-based SAR requires a long integration time to achieve a large synthetic aperture,and the echo signal will be seriously affected by temporal-spatial variant troposphere.Traditional spatiotemporal freezing tropospheric models are ineffective.To cope with this,this paper models and analyses the impacts of temporal-spatial variant troposphere on ground-based SAR imaging of asteroids.For the background tropo-sphere,a temporal-spatial variant ray tracing method is proposed to trace the 4D(3D spatial+temporal)refractive index network provided by the numerical weather model,and calculate the error of the background troposphere.For the tropospheric turbulence,the Andrew power spectral model is used in conjunction with multiphase screen theory,and varying errors are obtained by tracking the changing position of the pierce point on the phase screen.Through simulation,the impact of temporal-spatial variant tropospheric errors on image quality is analyzed,and the simulation results show that the X-band echo signal is seriously affected by the troposphere and the echo signal must be compensated.
基金supported by The Science and Technology Development Fund,Macao SAR(File No.0158/2019/A3)funded by The Science and Technology Development Fund,Macao SAR(File No.0073/2019/A2)。
文摘As the asteroid rotational period is important to the study of the properties of asteroids(e.g.,super-fast rotators have structures owing an internal cohesion(rather than being rubble piles bounded by gravity only) so as not to fly apart), constructing an effective and fast method used to search the period attracts much researchers' attention. Recently, the Bayesian generalized Lomb–Scargle(BGLS)periodogram was developed to improve the convergence efficiency of the Lomb–Scargle method. However,the result of BGLS varies with the frequency range and cannot meet the two minimum/maximum requirements for a complete rotation of the asteroid. We propose a robust BGLS-based method that efficiently determines rotational periods. The proposed method employs a polynomial series to fit folded light curves with potential periods, initially calculated using the BGLS periodogram, and adopts a merit function to estimate and refine best-fit periods. We estimate the rotational periods of 30 asteroids applying the new method to light curves from the Palomar Transient Factory. Results confirm the effectiveness of the BGLS-based method in deriving rotational periods from ground-based observations of asteroids. Further application of the BGLS-based method to sparse light curves, such as Gaia data, is discussed.
基金Tfor wor wassupported by the National Natural Science Fotalations of China (Gran No. 19873020)theFoundation of the Postd
文摘Asteroids are the most important small bodies in the solar system and the near-earth asteroids (NEAs) are of especial concern to the world. The reason is that they will make close approaches to the earth in the near future. We use a reasonable dynamical model and an efficient computing method to calculate the orbits of over 160 Potentially Hazardous Asteroids (PHAs) for two centuries.
基金funded by grant No. 019/2010/A2 from the Science and Technology Development Fund, MSARthe support of the National Natural Science Foundation of China (Grant Nos. 10503013, 11078006 and 10933004)the Minor Planet Foundation of Purple Mountain Observatory
文摘Research about asteroids has recently attracted more and more attention, especially focusing on their physical structures, such as their spin axis, rotation period and shape. The long distance between observers on Earth and asteroids makes it impossible to directly calculate the shape and other parameters of asteroids, with the exception of Near Earth Asteroids and others that have passed by some spacecrafts. Photometric measurements are still generally the main way to obtain research data on asteroids, i.e. the lightcurves recording the brightness and positions of asteroids. Supposing that the shape of the asteroid is a triaxial ellipsoid with a stable spin, a new method is presented in this article to reconstruct the shape models of asteroids from the lightcurves, together with other physical parameters. By applying a special curvature function, the method calculates the brightness integration on a unit sphere and Lebedev quadrature is employed for the discretization. Finally, the method searches for the optimal solution by the Levenberg-Marquardt algorithm to minimize the residual of the brightness. By adopting this method, not only can related physical parameters of asteroids be obtained at a reasonable accuracy, but also a simple shape model of an ellipsoid can be generated for reconstructing a more sophisticated shape model.
文摘A method for classifying orbits near asteroids under a polyhedral gravitational field is presented, and may serve as a valuable reference for spacecraft orbit design for asteroid exploration. The orbital dynamics near aster- oids are very complex. According to the variation in orbit characteristics after being affected by gravitational perturbation during the periapsis passage, orbits near an as- teroid can be classified into 9 categories: (1) surrounding- to-surrounding, (2) surrounding-to-surface, (3) surrounding- to-infinity, (4) infinity-to-infinity, (5) infinity-to-surface, (6) infinity-to-surrounding, (7) surface-to-surface, (8) surface- to-surrounding, and (9) surface-to- infinity. Assume that the orbital elements are constant near the periapsis, the gravitation potential is expanded into a harmonic series. Then, the influence of the gravitational perturbation on the orbit is studied analytically. The styles of orbits are dependent on the argument of periapsis, the periapsis radius, and the periapsis velocity. Given the argument of periapsis, the orbital energy before and after perturbation can be derived according to the periapsis radius and the periapsis velocity. Simulations have been performed for orbits in the gravitational field of 216 Kleopatra. The numerical results are well consistent with analytic predictions.
基金partially supported by an innovation fund from Chinese academy of space technology and a grant from the Jet Propulsion Laboratory
文摘This paper summarizes a few cases of spacecraft orbital motion around asteroid for which averaging method can be applied, i.e., when central body rotates slowly, fast, and when a spacecraft is near to the resonant orbits between the spacecraft mean motion and the central body's rotation. Averaging conditions for these cases are given. As a major extension, a few classes of near resonant orbits are analyzed by the averaging method. Then some resulted conclusions of these averaging analyses are applied to understand the stabil- ity regions in a numerical experiment. Some stability conclu- sions are obtained. As a typical example, it is shown in detail that near circular 1 : 2 resonant orbit is always unstable.
文摘Some evidences of possible duplicities of five asteroids are presented. A satellite of (279) Thule was convincingly detected by a stellar occultation on 2008 April 3 by Thule and also from follow-up light curve observations. The orbital period of the satellite is 3.007 or 6.014 days, and the minimum diameter is estimated to be 52 km. A satellite of (324) Bamberga was detected by secondary drops of the light curve in 2007. The rotation period of the primary is 1.22625 days, and the revolution period of the secondary is 3.00 or 6.00 days. Presumed contact duplicity of the main body of the L4 Trojan (624) Hektor was detected by a stellar occultation by Hektor on 2008 January 24. A possible satellite of (657) Gunl?d was suggested from a secondary occultation by Gunl?d on 2008 November 29. The minimum of the diameter is 7 km. A possible satellite of (739) Mandeville was suggested by stellar occultation observations on 1980 December 10.
文摘Asteroid research is of global security interest, we are more afraid about any impact of these asteroids on Earth. We seek through this work to provide a study on the effect of the asteroid’s shape on the gravity aspect. Knowledge of the potential is crucial to bodies approaching the asteroid. There is a range of asteroid shapes to consider. Some well-known asteroids such Ceres, Vesta, Iris and Oumuamua are considered in this study. After determining the moment of inertia of the asteroids depending on their materials, the gravity fields and the potential gravity of the asteroids are established when varying their shapes. A representation of the gravity field is given in three dimensional coordinate systems. Also, the behavior of the potential gravity is drawing in the function of the object’s location. The second part is dealing with the interpretation of all the obtained results in order to deduce some rules and features which would be useful for the identification of the asteroids. Thus, by the best knowledge of the effect of the asteroid’s shape, we would be more informed in the survey of the hazardous near earth objects.
文摘Kinetic impact is an effective approach for studying and defending against asteroids.Impact missions have focused on asteroids with diameters larger than 100 m,whereas smaller missions have not been explored.Terminal guidance and control algorithms for small asteroids have received limited attention.China plans to conduct its first asteroid defense demonstration mission around 2025 on a 30-m-diameter asteroid.This paper presents the guidance and control algorithms for the terminal phase of this mission.The guidance formulas for impact missions are derived in this study using predictive and proportional guidance laws.Three maneuver criteria are proposed to determine the optimal timing for orbit correction,considering fuel consumption,impact accuracy,and computational cost.A continuous thrust control strategy was introduced to achieve incremental changes in velocity based on the relative motion of the impactor and target.The performance of the guidance and control algorithms was evaluated using Monte Carlo simulation,which demonstrated their effectiveness in handling uncertainties and achieving a high success rate.The results indicate that the proposed algorithm can be applied to future impact missions targeting small asteroids.
基金supported by the National Nature Science Foundation of China(grant no.42004139)High-Precision Localization Method for Near-Earth Asteroids(grant no.E32623A0)the Research Project of Civil Aerospace Technologies(grant no.KJSP2023020106).
文摘Understanding the internal structure of asteroids is crucial for deciphering their formation and establishing defenses against potential hazards.The Daocheng Radio Telescope(DART),a recently constructed interferometric array designed for low-frequency Sun imaging,presents a promising tool for probing asteroid interiors.With a substantial 1-km array aperture and an equivalent receiving area of approximately 8,850 m2,DART plays a vital role in diagnosing asteroid internal structures.This study introduces an electromagnetic wave scattering model tailored to asteroids within DART’s operational frequency range(150 to 450 MHz).Ground-based radar detection can unveil multiple facets of these celestial bodies by leveraging low-frequency waves’penetrating capabilities and capitalizing on asteroids’rotational dynamics.Through simulations capturing the characteristics of low-frequency waves traversing a layered model and interacting with internal structures,we propose an electromagnetic scattering model of asteroids.Our results underscore DART’s potential as a crucial instrument for discerning the internal structure of near-Earth objects.We first formulate an asteroid model through celestial impact models,dimensional analysis,and data fitting to achieve this.Subsequently,we derive an electromagnetic scattering model using geometric optics and a propagation model for lossy mediums.Simulations demonstrate that morphology and internal structure dictate the distribution of scattered waves,with forward and backscattered waves providing comprehensive internal structure information over a rotation cycle.Furthermore,we observe that alterations in electromagnetic wave frequency induce changes in the scattering characteristics,prompting the convenience of employing multiple frequencies for retrieving detailed information about an asteroid’s internal medium and structure.This multidimensional approach positions DART as a promising asset in advancing our understanding of asteroid interiors,offering valuable insights for scientific inquiry and hazard mitigation strategies.