Reducing raw materials consumption(RMC)in electric arc furnace(EAF)steelmaking process is beneficial to the reduction in resource and energy consumption.The conventional indicator of evaluating RMC only focuses on EAF...Reducing raw materials consumption(RMC)in electric arc furnace(EAF)steelmaking process is beneficial to the reduction in resource and energy consumption.The conventional indicator of evaluating RMC only focuses on EAF inputs and outputs,neglecting the associations between smelting operations and RMC.Traditional methods of reducing RMC rely on manual experience and lack a standard operation guidance.A method based on association rules mining and metallurgical mechanism(ARM-MM)was proposed.ARM-MM proposed an improved evaluation indicator of RMC and the indicator independently showed the associations between smelting operations and RMC.On the basis,1265 heats of real EAF data were used to obtain the operation guidance for RMC reduction.According to the ratio of hot metal(HM)in charge metals,data were divided into all dataset,low HM ratio dataset,medium HM ratio dataset,and high HM ratio dataset.ARM algorithm was used in each dataset to obtain specific operation guidance.The real average RMC under all dataset,medium HM ratio dataset,and high HM ratio dataset was reduced by 279,486,and 252 kg/heat,respectively,when obtained operation guidance was applied.展开更多
An association rules mining method based on semantic relativity is proposed to solve the problem that there are more candidate item sets and higher time complexity in traditional association rules mining.Semantic rela...An association rules mining method based on semantic relativity is proposed to solve the problem that there are more candidate item sets and higher time complexity in traditional association rules mining.Semantic relativity of ontology concepts is used to describe complicated relationships of domains in the method.Candidate item sets with less semantic relativity are filtered to reduce the number of candidate item sets in association rules mining.An ontology hierarchy relationship is regarded as a directed acyclic graph rather than a hierarchy tree in the semantic relativity computation.Not only direct hierarchy relationships,but also non-direct hierarchy relationships and other typical semantic relationships are taken into account.Experimental results show that the proposed method can reduce the number of candidate item sets effectively and improve the efficiency of association rules mining.展开更多
Association rule mining methods, as a set of important data mining tools, could be used for mining spatial association rules of spatial data. However, applications of these methods are limited for mining results conta...Association rule mining methods, as a set of important data mining tools, could be used for mining spatial association rules of spatial data. However, applications of these methods are limited for mining results containing large number of redundant rules. In this paper, a new method named Geo-Filtered Association Rules Mining(GFARM) is proposed to effectively eliminate the redundant rules. An application of GFARM is performed as a case study in which association rules are discovered between building land distribution and potential driving factors in Wuhan, China from 1995 to 2015. Ten sets of regular sampling grids with different sizes are used for detecting the influence of multi-scales on GFARM. Results show that the proposed method can filter 50%–70% of redundant rules. GFARM is also successful in discovering spatial association pattern between building land distribution and driving factors.展开更多
BACKGROUND There is a lack of study on vitamin D and calcium levels in epileptic patients receiving therapy,despite the growing recognition of the importance of bone health in individuals with epilepsy.Associations on...BACKGROUND There is a lack of study on vitamin D and calcium levels in epileptic patients receiving therapy,despite the growing recognition of the importance of bone health in individuals with epilepsy.Associations one statistical method for finding correlations between variables in big datasets is called association rule mining(ARM).This technique finds patterns of common items or events in the data set,including associations.Through the analysis of patient data,including demographics,genetic information,and reactions with previous treatments,ARM can identify harmful drug reactions,possible novel combinations of medicines,and trends which connect particular individual features to treatment outcomes.AIM To investigate the evidence on the effects of anti-epileptic drugs(AEDs)on calcium metabolism and supplementing with vitamin D to help lower the likelihood of bone-related issues using ARM technique.METHODS ARM technique was used to analyze patients’behavior on calcium metabolism,vitamin D and anti-epileptic medicines.Epileptic sufferers of both sexes who attended neurological outpatient and in patient department clinics were recruited for the study.There were three patient groups:Group 1 received one AED,group 2 received two AEDs,and group 3 received more than two AEDs.The researchers analyzed the alkaline phosphatase,ionized calcium,total calcium,phosphorus,vitamin D levels,or parathyroid hormone values.RESULTS A total of 150 patients,aged 12 years to 60 years,were studied,with 50 in each group(1,2,and 3).60%were men,this gender imbalance may affect the study’s findings,as women have different bone metabolism dynamics influenced by hormonal variations,including menopause.The results may not fully capture the distinct effects of AEDs on female patients.A greater equal distribution of women should be the goal of future studies in order to offer a complete comprehension of the metabolic alterations brought on by AEDs.86 patients had generalized epilepsy,64 partial.42%of patients had AEDs for>5 years.Polytherapy reduced calcium and vitamin D levels compared to mono and dual therapy.Polytherapy elevated alkaline phosphatase and phosphorus levels.CONCLUSION ARM revealed the possible effects of variables like age,gender,and polytherapy on parathyroid hormone levels in individuals taking antiepileptic medication.展开更多
Background Traditional Chinese medicine(TCM)is becoming a popular complementary approach in pediatric oncology.However,few or no meta-analyses have focused on clinical studies of the use of TCM in pediatric oncology.O...Background Traditional Chinese medicine(TCM)is becoming a popular complementary approach in pediatric oncology.However,few or no meta-analyses have focused on clinical studies of the use of TCM in pediatric oncology.Objective We explored the patterns of TCM use and its efficacy in children with cancer,using a systematic review,meta-analysis and data mining study.Search strategy We conducted a search of five English(Allied and Complementary Medicine Database,Embase,PubMed,Cochrane Central Register of Controlled Trials,and ClinicalTrials.gov)and four Chinese databases(Wanfang Data,China National Knowledge Infrastructure,Chinese Biomedical Literature Database,and VIP Chinese Science and Technology Periodicals Database)for clinical studies published before October 2021,using keywords related to“pediatric,”“cancer,”and“TCM.”Inclusion criteria We included studies which were randomized controlled trials(RCTs)or observational clinical studies,focused on patients aged<19 years old who had been diagnosed with cancer,and included at least one group of subjects receiving TCM treatment.Data extraction and analysis The methodological quality of RCTs and observational studies was assessed using the six-item Jadad scale and the Effective Public Healthcare Panacea Project Quality Assessment Tool,respectively.Meta-analysis was used to evaluate the efficacy of combining TCM with chemotherapy.Study outcomes included the treatment response rate and occurrence of cancer-related symptoms.Association rule mining(ARM)was used to investigate the associations among medicinal herbs and patient symptoms.Results The fifty-four studies included in this analysis were comprised of RCTs(63.0%)and observational studies(37.0%).Most RCTs focused on hematological malignancies(41.2%).The study outcomes included chemotherapy-induced toxicities(76.5%),infection rate(35.3%),and response,survival or relapse rate(23.5%).The methodological quality of most of the RCTs(82.4%)and observational studies(80.0%)was rated as“moderate.”In studies of leukemia patients,adding TCM to conventional treatment significantly improved the clinical response rate(odds ratio[OR]=2.55;95%confidence interval[CI]=1.49-4.36),lowered infection rate(OR=0.23;95%CI=0.13-0.40),and reduced nausea and vomiting(OR=0.13;95%CI=0.08-0.23).ARM showed that Radix Astragali,the most commonly used medicinal herb(58.0%),was associated with treating myelosuppression,gastrointestinal complications,and infection.Conclusion There is growing evidence that TCM is an effective adjuvant therapy for children with cancer.We proposed a checklist to improve the quality of TCM trials in pediatric oncology.Future work will examine the use of ARM techniques on real-world data to evaluate the efficacy of medicinal herbs and drug-herb interactions in children receiving TCM as a part of integrated cancer therapy.展开更多
In conjunction with association rules for data mining, the connections between testing indices and strong and weak association rules were determined, and new derivative rules were obtained by further reasoning. Associ...In conjunction with association rules for data mining, the connections between testing indices and strong and weak association rules were determined, and new derivative rules were obtained by further reasoning. Association rules were used to analyze correlation and check consistency between indices. This study shows that the judgment obtained by weak association rules or non-association rules is more accurate and more credible than that obtained by strong association rules. When the testing grades of two indices in the weak association rules are inconsistent, the testing grades of indices are more likely to be erroneous, and the mistakes are often caused by human factors. Clustering data mining technology was used to analyze the reliability of a diagnosis, or to perform health diagnosis directly. Analysis showed that the clustering results are related to the indices selected, and that if the indices selected are more significant, the characteristics of clustering results are also more significant, and the analysis or diagnosis is more credible. The indices and diagnosis analysis function produced by this study provide a necessary theoretical foundation and new ideas for the development of hydraulic metal structure health diagnosis technology.展开更多
Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting corre...Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.展开更多
BACKGROUND It is increasingly common to find patients affected by a combination of type 2 diabetes mellitus(T2DM)and coronary artery disease(CAD),and studies are able to correlate their relationships with available bi...BACKGROUND It is increasingly common to find patients affected by a combination of type 2 diabetes mellitus(T2DM)and coronary artery disease(CAD),and studies are able to correlate their relationships with available biological and clinical evidence.The aim of the current study was to apply association rule mining(ARM)to discover whether there are consistent patterns of clinical features relevant to these diseases.ARM leverages clinical and laboratory data to the meaningful patterns for diabetic CAD by harnessing the power help of data-driven algorithms to optimise the decision-making in patient care.AIM To reinforce the evidence of the T2DM-CAD interplay and demonstrate the ability of ARM to provide new insights into multivariate pattern discovery.METHODS This cross-sectional study was conducted at the Department of Biochemistry in a specialized tertiary care centre in Delhi,involving a total of 300 consented subjects categorized into three groups:CAD with diabetes,CAD without diabetes,and healthy controls,with 100 subjects in each group.The participants were enrolled from the Cardiology IPD&OPD for the sample collection.The study employed ARM technique to extract the meaningful patterns and relationships from the clinical data with its original value.RESULTS The clinical dataset comprised 35 attributes from enrolled subjects.The analysis produced rules with a maximum branching factor of 4 and a rule length of 5,necessitating a 1%probability increase for enhancement.Prominent patterns emerged,highlighting strong links between health indicators and diabetes likelihood,particularly elevated HbA1C and random blood sugar levels.The ARM technique identified individuals with a random blood sugar level>175 and HbA1C>6.6 are likely in the“CAD-with-diabetes”group,offering valuable insights into health indicators and influencing factors on disease outcomes.CONCLUSION The application of this method holds promise for healthcare practitioners to offer valuable insights for enhancing patient treatment targeting specific subtypes of CAD with diabetes.Implying artificial intelligence techniques with medical data,we have shown the potential for personalized healthcare and the development of user-friendly applications aimed at improving cardiovascular health outcomes for this high-risk population to optimise the decision-making in patient care.展开更多
Data mining has been proven as a reliable technique to analyze road accidents and provide productive results. Most of the road accident data analysis use data mining techniques, focusing on identifying factors that af...Data mining has been proven as a reliable technique to analyze road accidents and provide productive results. Most of the road accident data analysis use data mining techniques, focusing on identifying factors that affect the severity of an accident. However, any damage resulting from road accidents is always unacceptable in terms of health, property damage and other economic factors. Sometimes, it is found that road accident occurrences are more frequent at certain specific locations. The analysis of these locations can help in identifying certain road accident features that make a road accident to occur frequently in these locations. Association rule mining is one of the popular data mining techniques that identify the correlation in various attributes of road accident. In this paper, we first applied k-means algorithm to group the accident locations into three categories, high-frequency, moderate-frequency and low-frequency accident locations. k-means algorithm takes accident frequency count as a parameter to cluster the locations. Then we used association rule mining to characterize these locations. The rules revealed different factors associated with road accidents at different locations with varying accident frequencies. Theassociation rules for high-frequency accident location disclosed that intersections on highways are more dangerous for every type of accidents. High-frequency accident locations mostly involved two-wheeler accidents at hilly regions. In moderate-frequency accident locations, colonies near local roads and intersection on highway roads are found dangerous for pedestrian hit accidents. Low-frequency accident locations are scattered throughout the district and the most of the accidents at these locations were not critical. Although the data set was limited to some selected attributes, our approach extracted some useful hidden information from the data which can be utilized to take some preventive efforts in these locations.展开更多
Data visualization blends art and science to convey stories from data via graphical representations.Considering different problems,applications,requirements,and design goals,it is challenging to combine these two comp...Data visualization blends art and science to convey stories from data via graphical representations.Considering different problems,applications,requirements,and design goals,it is challenging to combine these two components at their full force.While the art component involves creating visually appealing and easily interpreted graphics for users,the science component requires accurate representations of a large amount of input data.With a lack of the science component,visualization cannot serve its role of creating correct representations of the actual data,thus leading to wrong perception,interpretation,and decision.It might be even worse if incorrect visual representations were intentionally produced to deceive the viewers.To address common pitfalls in graphical representations,this paper focuses on identifying and understanding the root causes of misinformation in graphical representations.We reviewed the misleading data visualization examples in the scientific publications collected from indexing databases and then projected them onto the fundamental units of visual communication such as color,shape,size,and spatial orientation.Moreover,a text mining technique was applied to extract practical insights from common visualization pitfalls.Cochran’s Q test and McNemar’s test were conducted to examine if there is any difference in the proportions of common errors among color,shape,size,and spatial orientation.The findings showed that the pie chart is the most misused graphical representation,and size is the most critical issue.It was also observed that there were statistically significant differences in the proportion of errors among color,shape,size,and spatial orientation.展开更多
Indirect association is a high level relationship between items and frequent item sets in data. There are many potential applications for indirect associations, such as database marketing, intelligent data analysis, w...Indirect association is a high level relationship between items and frequent item sets in data. There are many potential applications for indirect associations, such as database marketing, intelligent data analysis, web -log analysis, recommended system, etc. Existing indirect association mining algorithms are mostly based on the notion of post - processing of discovery of frequent item sets. In the mining process, all frequent item sets need to be generated first, and then they are fihered and joined to form indirect associations. We have presented an indirect association mining algorithm (NIA) based on anti -monotonicity of indirect associations whereas k candidate indirect associations can be generated directly from k - 1 candidate indirect associations, without all frequent item sets generated. We also use the frequent itempair support matrix to reduce the time and memory space needed by the algorithm. In this paper, a novel algorithm (NIA2) is introduced based on the generation of indirect association patterns between itempairs through one item mediator sets from frequent itempair support matrix. A notion of mediator set support threshold is also presented. NIA2 mines indirect association patterns directly from the dataset, without generating all frequent item sets. The frequent itempair support matrix and the notion of using tm as the support threshold for mediator sets can significantly reduce the cost of joint operations and the search process compared with existing algorithms. Results of experiments on a real - word web log dataset have proved NIA2 one order of magnitude faster than existing algorithms.展开更多
The problem of association rule mining has gained considerable prominence in the data mining community for its use as an important tool of knowledge discovery from large scale databases. And there has been a spurt of...The problem of association rule mining has gained considerable prominence in the data mining community for its use as an important tool of knowledge discovery from large scale databases. And there has been a spurt of research activities around this problem. However, traditional association rule mining may often derive many rules in which people are uninterested. This paper reports a generalization of association rule mining called φ association rule mining. It allows people to have different interests on different itemsets that arethe need of real application. Also, it can help to derive interesting rules and substantially reduce the amount of rules. An algorithm based on FP tree for mining φ frequent itemset is presented. It is shown by experiments that the proposed methodis efficient and scalable over large databases.展开更多
Association rule mining is an important issue in data mining. The paper proposed an binary system based method to generate candidate frequent itemsets and corresponding supporting counts efficiently, which needs only ...Association rule mining is an important issue in data mining. The paper proposed an binary system based method to generate candidate frequent itemsets and corresponding supporting counts efficiently, which needs only some operations such as "and", "or" and "xor". Applying this idea in the existed distributed association rule mining al gorithm FDM, the improved algorithm BFDM is proposed. The theoretical analysis and experiment testify that BFDM is effective and efficient.展开更多
Most of the international accreditation bodies in engineering education(e.g.,ABET)and outcome-based educational systems have based their assess-ments on learning outcomes and program educational objectives.However,map...Most of the international accreditation bodies in engineering education(e.g.,ABET)and outcome-based educational systems have based their assess-ments on learning outcomes and program educational objectives.However,map-ping program educational objectives(PEOs)to student outcomes(SOs)is a challenging and time-consuming task,especially for a new program which is applying for ABET-EAC(American Board for Engineering and Technology the American Board for Engineering and Technology—Engineering Accreditation Commission)accreditation.In addition,ABET needs to automatically ensure that the mapping(classification)is reasonable and correct.The classification also plays a vital role in the assessment of students’learning.Since the PEOs are expressed as short text,they do not contain enough semantic meaning and information,and consequently they suffer from high sparseness,multidimensionality and the curse of dimensionality.In this work,a novel associative short text classification tech-nique is proposed to map PEOs to SOs.The datasets are extracted from 152 self-study reports(SSRs)that were produced in operational settings in an engineering program accredited by ABET-EAC.The datasets are processed and transformed into a representational form appropriate for association rule mining.The extracted rules are utilized as delegate classifiers to map PEOs to SOs.The proposed asso-ciative classification of the mapping of PEOs to SOs has shown promising results,which can simplify the classification of short text and avoid many problems caused by enriching short text based on external resources that are not related or relevant to the dataset.展开更多
One of the leading cancers for both genders worldwide is lung cancer.The occurrence of lung cancer has fully augmented since the early 19th century.In this manuscript,we have discussed various data mining techniques t...One of the leading cancers for both genders worldwide is lung cancer.The occurrence of lung cancer has fully augmented since the early 19th century.In this manuscript,we have discussed various data mining techniques that have been employed for cancer diagnosis.Exposure to air pollution has been related to various adverse health effects.This work is subject to analysis of various air pollutants and associated health hazards and intends to evaluate the impact of air pollution caused by lung cancer.We have introduced data mining in lung cancer to air pollution,and our approach includes preprocessing,data mining,testing and evaluation,and knowledge discovery.Initially,we will eradicate the noise and irrelevant data,and following that,we will join the multiple informed sources into a common source.From that source,we will designate the information relevant to our investigation to be regained from that assortment.Following that,we will convert the designated data into a suitable mining process.The patterns are abstracted by utilizing a relational suggestion rule mining process.These patterns have revealed information,and this information is categorized with the help of an Auto Associative Neural Network classification method(AANN).The proposed method is compared with the existing method in various factors.In conclusion,the projected Auto associative neural network and relational suggestion rule mining methods accomplish a high accuracy status.展开更多
This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfac...This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals.展开更多
Objective To determine the correlation between traditional Chinese medicine(TCM)inspec-tion of spirit classification and the severity grade of depression based on facial features,offer-ing insights for intelligent int...Objective To determine the correlation between traditional Chinese medicine(TCM)inspec-tion of spirit classification and the severity grade of depression based on facial features,offer-ing insights for intelligent intergrated TCM and western medicine diagnosis of depression.Methods Using the Audio-Visual Emotion Challenge and Workshop(AVEC 2014)public dataset on depression,which conclude 150 interview videos,the samples were classified ac-cording to the TCM inspection of spirit classification:Deshen(得神,presence of spirit),Shaoshen(少神,insufficiency of spirit),and Shenluan(神乱,confusion of spirit).Meanwhile,based on Beck Depression Inventory-II(BDI-II)score for the severity grade of depression,the samples were divided into minimal(0-13,Q1),mild(14-19,Q2),moderate(20-28,Q3),and severe(29-63,Q4).Sixty-eight landmarks were extracted with a ResNet-50 network,and the feature extracion mode was stadardized.Random forest and support vectior machine(SVM)classifiers were used to predict TCM inspection of spirit classification and the severity grade of depression,respectively.A Chi-square test and Apriori association rule mining were then applied to quantify and explore the relationships.Results The analysis revealed a statistically significant and moderately strong association be-tween TCM spirit classification and the severity grade of depression,as confirmed by a Chi-square test(χ^(2)=14.04,P=0.029)with a Cramer’s V effect size of 0.243.Further exploration us-ing association rule mining identified the most compelling rule:“moderate depression(Q3)→Shenluan”.This rule demonstrated a support level of 5%,indicating this specific co-occur-rence was present in 5%of the cohort.Crucially,it achieved a high Confidence of 86%,mean-ing that among patients diagnosed with Q3,86%exhibited the Shenluan pattern according to TCM assessment.The substantial Lift of 2.37 signifies that the observed likelihood of Shenlu-an manifesting in Q3 patients is 2.37 times higher than would be expected by chance if these states were independent-compelling evidence of a highly non-random association.Conse-quently,Shenluan emerges as a distinct and core TCM diagnostic manifestation strongly linked to Q3,forming a clinically significant phenotype within this patient subgroup.展开更多
This paper focuses on improving decision tree induction algorithms when a kind of tie appears during the rule generation procedure for specific training datasets. The tie occurs when there are equal proportions of the...This paper focuses on improving decision tree induction algorithms when a kind of tie appears during the rule generation procedure for specific training datasets. The tie occurs when there are equal proportions of the target class outcome in the leaf node's records that leads to a situation where majority voting cannot be applied. To solve the above mentioned exception, we propose to base the prediction of the result on the naive Bayes (NB) estimate, k-nearest neighbour (k-NN) and association rule mining (ARM). The other features used for splitting the parent nodes are also taken into consideration.展开更多
The severity of traffic accidents is a serious global concern,particularly in developing nations.Knowing the main causes and contributing circumstances may reduce the severity of traffic accidents.There exist many mac...The severity of traffic accidents is a serious global concern,particularly in developing nations.Knowing the main causes and contributing circumstances may reduce the severity of traffic accidents.There exist many machine learning models and decision support systems to predict road accidents by using datasets from different social media forums such as Twitter,blogs and Facebook.Although such approaches are popular,there exists an issue of data management and low prediction accuracy.This article presented a deep learning-based sentiment analytic model known as Extra-large Network Bi-directional long short term memory(XLNet-Bi-LSTM)to predict traffic collisions based on data collected from social media.Initially,a Tweet dataset has been formed by using an exhaustive keyword-based searching strategy.In the next phase,two different types of features named as individual tokens and pair tokens have been obtained by using POS tagging and association rule mining.The output of this phase has been forwarded to a three-layer deep learning model for final prediction.Numerous experiment has been performed to test the efficiency of the proposed XLNet-Bi-LSTM model.It has been shown that the proposed model achieved 94.2%prediction accuracy.展开更多
Professional drivers are more frequently exposed to longer driving distance and travel time,leading to a higher possibility of safety risk for distraction and fatigue.The widespread and common use of commercial driver...Professional drivers are more frequently exposed to longer driving distance and travel time,leading to a higher possibility of safety risk for distraction and fatigue.The widespread and common use of commercial driver monitoring systems(DMS)provides a potential for data collection.It increases the amount of data characterizing driver behavior that can be used for further safety research.This study utilized DMS warning-based data and applied an association rule mining approach to explore risk factors contributing to hazardous materials(HAZMAT)truck driver inattention.A total of 499 HAZMAT truck driver inattentive warning events were used to find rules that will predict the occurrence of driver’s fatigue and distraction.First,Fisher’s exact tests were performed to examine the association between the frequency of driver inattentive behavior warnings and risk factors.Second,support,confidence,and lift values were used as measurements to quantify the relative strength of the association rules generated by the Apriori algorithm.Results show that speed between 40and 49 km/h,relatively longer travel time(3-6 h),freeway,tangent section,off-peak hour and clear weather condition are found to be highly associated with fatigue driving,while nighttime during 18:00 to 23:59,speed between 70 and 80 km/h,travel time between 1 and 3 h,freeways,acceleration less than 0.5 m/s^(2),visibility greater than 1000 m,and tangent roadway section are found to be highly associated with distracted driving.By focusing on the specific feature groups,these association rules would help in the development of mitigating distraction and fatigue driving countermeasures and enforcement approaches.展开更多
基金supported by National Natural Science Foundation of China(Nos.52174328 and 52474368)Fundamental Research Funds for Central Universities of Central South University(Nos.2022ZZTS0084 and 2024ZZTS0062).
文摘Reducing raw materials consumption(RMC)in electric arc furnace(EAF)steelmaking process is beneficial to the reduction in resource and energy consumption.The conventional indicator of evaluating RMC only focuses on EAF inputs and outputs,neglecting the associations between smelting operations and RMC.Traditional methods of reducing RMC rely on manual experience and lack a standard operation guidance.A method based on association rules mining and metallurgical mechanism(ARM-MM)was proposed.ARM-MM proposed an improved evaluation indicator of RMC and the indicator independently showed the associations between smelting operations and RMC.On the basis,1265 heats of real EAF data were used to obtain the operation guidance for RMC reduction.According to the ratio of hot metal(HM)in charge metals,data were divided into all dataset,low HM ratio dataset,medium HM ratio dataset,and high HM ratio dataset.ARM algorithm was used in each dataset to obtain specific operation guidance.The real average RMC under all dataset,medium HM ratio dataset,and high HM ratio dataset was reduced by 279,486,and 252 kg/heat,respectively,when obtained operation guidance was applied.
基金The National Natural Science Foundation of China(No.50674086)Specialized Research Fund for the Doctoral Program of Higher Education(No.20060290508)the Science and Technology Fund of China University of Mining and Technology(No.2007B016)
文摘An association rules mining method based on semantic relativity is proposed to solve the problem that there are more candidate item sets and higher time complexity in traditional association rules mining.Semantic relativity of ontology concepts is used to describe complicated relationships of domains in the method.Candidate item sets with less semantic relativity are filtered to reduce the number of candidate item sets in association rules mining.An ontology hierarchy relationship is regarded as a directed acyclic graph rather than a hierarchy tree in the semantic relativity computation.Not only direct hierarchy relationships,but also non-direct hierarchy relationships and other typical semantic relationships are taken into account.Experimental results show that the proposed method can reduce the number of candidate item sets effectively and improve the efficiency of association rules mining.
基金Under the auspices of Special Fund of Ministry of Land and Resources of China in Public Interest(No.201511001)
文摘Association rule mining methods, as a set of important data mining tools, could be used for mining spatial association rules of spatial data. However, applications of these methods are limited for mining results containing large number of redundant rules. In this paper, a new method named Geo-Filtered Association Rules Mining(GFARM) is proposed to effectively eliminate the redundant rules. An application of GFARM is performed as a case study in which association rules are discovered between building land distribution and potential driving factors in Wuhan, China from 1995 to 2015. Ten sets of regular sampling grids with different sizes are used for detecting the influence of multi-scales on GFARM. Results show that the proposed method can filter 50%–70% of redundant rules. GFARM is also successful in discovering spatial association pattern between building land distribution and driving factors.
文摘BACKGROUND There is a lack of study on vitamin D and calcium levels in epileptic patients receiving therapy,despite the growing recognition of the importance of bone health in individuals with epilepsy.Associations one statistical method for finding correlations between variables in big datasets is called association rule mining(ARM).This technique finds patterns of common items or events in the data set,including associations.Through the analysis of patient data,including demographics,genetic information,and reactions with previous treatments,ARM can identify harmful drug reactions,possible novel combinations of medicines,and trends which connect particular individual features to treatment outcomes.AIM To investigate the evidence on the effects of anti-epileptic drugs(AEDs)on calcium metabolism and supplementing with vitamin D to help lower the likelihood of bone-related issues using ARM technique.METHODS ARM technique was used to analyze patients’behavior on calcium metabolism,vitamin D and anti-epileptic medicines.Epileptic sufferers of both sexes who attended neurological outpatient and in patient department clinics were recruited for the study.There were three patient groups:Group 1 received one AED,group 2 received two AEDs,and group 3 received more than two AEDs.The researchers analyzed the alkaline phosphatase,ionized calcium,total calcium,phosphorus,vitamin D levels,or parathyroid hormone values.RESULTS A total of 150 patients,aged 12 years to 60 years,were studied,with 50 in each group(1,2,and 3).60%were men,this gender imbalance may affect the study’s findings,as women have different bone metabolism dynamics influenced by hormonal variations,including menopause.The results may not fully capture the distinct effects of AEDs on female patients.A greater equal distribution of women should be the goal of future studies in order to offer a complete comprehension of the metabolic alterations brought on by AEDs.86 patients had generalized epilepsy,64 partial.42%of patients had AEDs for>5 years.Polytherapy reduced calcium and vitamin D levels compared to mono and dual therapy.Polytherapy elevated alkaline phosphatase and phosphorus levels.CONCLUSION ARM revealed the possible effects of variables like age,gender,and polytherapy on parathyroid hormone levels in individuals taking antiepileptic medication.
文摘Background Traditional Chinese medicine(TCM)is becoming a popular complementary approach in pediatric oncology.However,few or no meta-analyses have focused on clinical studies of the use of TCM in pediatric oncology.Objective We explored the patterns of TCM use and its efficacy in children with cancer,using a systematic review,meta-analysis and data mining study.Search strategy We conducted a search of five English(Allied and Complementary Medicine Database,Embase,PubMed,Cochrane Central Register of Controlled Trials,and ClinicalTrials.gov)and four Chinese databases(Wanfang Data,China National Knowledge Infrastructure,Chinese Biomedical Literature Database,and VIP Chinese Science and Technology Periodicals Database)for clinical studies published before October 2021,using keywords related to“pediatric,”“cancer,”and“TCM.”Inclusion criteria We included studies which were randomized controlled trials(RCTs)or observational clinical studies,focused on patients aged<19 years old who had been diagnosed with cancer,and included at least one group of subjects receiving TCM treatment.Data extraction and analysis The methodological quality of RCTs and observational studies was assessed using the six-item Jadad scale and the Effective Public Healthcare Panacea Project Quality Assessment Tool,respectively.Meta-analysis was used to evaluate the efficacy of combining TCM with chemotherapy.Study outcomes included the treatment response rate and occurrence of cancer-related symptoms.Association rule mining(ARM)was used to investigate the associations among medicinal herbs and patient symptoms.Results The fifty-four studies included in this analysis were comprised of RCTs(63.0%)and observational studies(37.0%).Most RCTs focused on hematological malignancies(41.2%).The study outcomes included chemotherapy-induced toxicities(76.5%),infection rate(35.3%),and response,survival or relapse rate(23.5%).The methodological quality of most of the RCTs(82.4%)and observational studies(80.0%)was rated as“moderate.”In studies of leukemia patients,adding TCM to conventional treatment significantly improved the clinical response rate(odds ratio[OR]=2.55;95%confidence interval[CI]=1.49-4.36),lowered infection rate(OR=0.23;95%CI=0.13-0.40),and reduced nausea and vomiting(OR=0.13;95%CI=0.08-0.23).ARM showed that Radix Astragali,the most commonly used medicinal herb(58.0%),was associated with treating myelosuppression,gastrointestinal complications,and infection.Conclusion There is growing evidence that TCM is an effective adjuvant therapy for children with cancer.We proposed a checklist to improve the quality of TCM trials in pediatric oncology.Future work will examine the use of ARM techniques on real-world data to evaluate the efficacy of medicinal herbs and drug-herb interactions in children receiving TCM as a part of integrated cancer therapy.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.50539010)the Special Fund for Public Welfare Industry of the Ministry of Water Resources of China(Grant No.200801019)
文摘In conjunction with association rules for data mining, the connections between testing indices and strong and weak association rules were determined, and new derivative rules were obtained by further reasoning. Association rules were used to analyze correlation and check consistency between indices. This study shows that the judgment obtained by weak association rules or non-association rules is more accurate and more credible than that obtained by strong association rules. When the testing grades of two indices in the weak association rules are inconsistent, the testing grades of indices are more likely to be erroneous, and the mistakes are often caused by human factors. Clustering data mining technology was used to analyze the reliability of a diagnosis, or to perform health diagnosis directly. Analysis showed that the clustering results are related to the indices selected, and that if the indices selected are more significant, the characteristics of clustering results are also more significant, and the analysis or diagnosis is more credible. The indices and diagnosis analysis function produced by this study provide a necessary theoretical foundation and new ideas for the development of hydraulic metal structure health diagnosis technology.
文摘Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.
文摘BACKGROUND It is increasingly common to find patients affected by a combination of type 2 diabetes mellitus(T2DM)and coronary artery disease(CAD),and studies are able to correlate their relationships with available biological and clinical evidence.The aim of the current study was to apply association rule mining(ARM)to discover whether there are consistent patterns of clinical features relevant to these diseases.ARM leverages clinical and laboratory data to the meaningful patterns for diabetic CAD by harnessing the power help of data-driven algorithms to optimise the decision-making in patient care.AIM To reinforce the evidence of the T2DM-CAD interplay and demonstrate the ability of ARM to provide new insights into multivariate pattern discovery.METHODS This cross-sectional study was conducted at the Department of Biochemistry in a specialized tertiary care centre in Delhi,involving a total of 300 consented subjects categorized into three groups:CAD with diabetes,CAD without diabetes,and healthy controls,with 100 subjects in each group.The participants were enrolled from the Cardiology IPD&OPD for the sample collection.The study employed ARM technique to extract the meaningful patterns and relationships from the clinical data with its original value.RESULTS The clinical dataset comprised 35 attributes from enrolled subjects.The analysis produced rules with a maximum branching factor of 4 and a rule length of 5,necessitating a 1%probability increase for enhancement.Prominent patterns emerged,highlighting strong links between health indicators and diabetes likelihood,particularly elevated HbA1C and random blood sugar levels.The ARM technique identified individuals with a random blood sugar level>175 and HbA1C>6.6 are likely in the“CAD-with-diabetes”group,offering valuable insights into health indicators and influencing factors on disease outcomes.CONCLUSION The application of this method holds promise for healthcare practitioners to offer valuable insights for enhancing patient treatment targeting specific subtypes of CAD with diabetes.Implying artificial intelligence techniques with medical data,we have shown the potential for personalized healthcare and the development of user-friendly applications aimed at improving cardiovascular health outcomes for this high-risk population to optimise the decision-making in patient care.
文摘Data mining has been proven as a reliable technique to analyze road accidents and provide productive results. Most of the road accident data analysis use data mining techniques, focusing on identifying factors that affect the severity of an accident. However, any damage resulting from road accidents is always unacceptable in terms of health, property damage and other economic factors. Sometimes, it is found that road accident occurrences are more frequent at certain specific locations. The analysis of these locations can help in identifying certain road accident features that make a road accident to occur frequently in these locations. Association rule mining is one of the popular data mining techniques that identify the correlation in various attributes of road accident. In this paper, we first applied k-means algorithm to group the accident locations into three categories, high-frequency, moderate-frequency and low-frequency accident locations. k-means algorithm takes accident frequency count as a parameter to cluster the locations. Then we used association rule mining to characterize these locations. The rules revealed different factors associated with road accidents at different locations with varying accident frequencies. Theassociation rules for high-frequency accident location disclosed that intersections on highways are more dangerous for every type of accidents. High-frequency accident locations mostly involved two-wheeler accidents at hilly regions. In moderate-frequency accident locations, colonies near local roads and intersection on highway roads are found dangerous for pedestrian hit accidents. Low-frequency accident locations are scattered throughout the district and the most of the accidents at these locations were not critical. Although the data set was limited to some selected attributes, our approach extracted some useful hidden information from the data which can be utilized to take some preventive efforts in these locations.
文摘Data visualization blends art and science to convey stories from data via graphical representations.Considering different problems,applications,requirements,and design goals,it is challenging to combine these two components at their full force.While the art component involves creating visually appealing and easily interpreted graphics for users,the science component requires accurate representations of a large amount of input data.With a lack of the science component,visualization cannot serve its role of creating correct representations of the actual data,thus leading to wrong perception,interpretation,and decision.It might be even worse if incorrect visual representations were intentionally produced to deceive the viewers.To address common pitfalls in graphical representations,this paper focuses on identifying and understanding the root causes of misinformation in graphical representations.We reviewed the misleading data visualization examples in the scientific publications collected from indexing databases and then projected them onto the fundamental units of visual communication such as color,shape,size,and spatial orientation.Moreover,a text mining technique was applied to extract practical insights from common visualization pitfalls.Cochran’s Q test and McNemar’s test were conducted to examine if there is any difference in the proportions of common errors among color,shape,size,and spatial orientation.The findings showed that the pie chart is the most misused graphical representation,and size is the most critical issue.It was also observed that there were statistically significant differences in the proportion of errors among color,shape,size,and spatial orientation.
文摘Indirect association is a high level relationship between items and frequent item sets in data. There are many potential applications for indirect associations, such as database marketing, intelligent data analysis, web -log analysis, recommended system, etc. Existing indirect association mining algorithms are mostly based on the notion of post - processing of discovery of frequent item sets. In the mining process, all frequent item sets need to be generated first, and then they are fihered and joined to form indirect associations. We have presented an indirect association mining algorithm (NIA) based on anti -monotonicity of indirect associations whereas k candidate indirect associations can be generated directly from k - 1 candidate indirect associations, without all frequent item sets generated. We also use the frequent itempair support matrix to reduce the time and memory space needed by the algorithm. In this paper, a novel algorithm (NIA2) is introduced based on the generation of indirect association patterns between itempairs through one item mediator sets from frequent itempair support matrix. A notion of mediator set support threshold is also presented. NIA2 mines indirect association patterns directly from the dataset, without generating all frequent item sets. The frequent itempair support matrix and the notion of using tm as the support threshold for mediator sets can significantly reduce the cost of joint operations and the search process compared with existing algorithms. Results of experiments on a real - word web log dataset have proved NIA2 one order of magnitude faster than existing algorithms.
文摘The problem of association rule mining has gained considerable prominence in the data mining community for its use as an important tool of knowledge discovery from large scale databases. And there has been a spurt of research activities around this problem. However, traditional association rule mining may often derive many rules in which people are uninterested. This paper reports a generalization of association rule mining called φ association rule mining. It allows people to have different interests on different itemsets that arethe need of real application. Also, it can help to derive interesting rules and substantially reduce the amount of rules. An algorithm based on FP tree for mining φ frequent itemset is presented. It is shown by experiments that the proposed methodis efficient and scalable over large databases.
基金Supported by the National Natural Science Foun-dation of China (70371015)
文摘Association rule mining is an important issue in data mining. The paper proposed an binary system based method to generate candidate frequent itemsets and corresponding supporting counts efficiently, which needs only some operations such as "and", "or" and "xor". Applying this idea in the existed distributed association rule mining al gorithm FDM, the improved algorithm BFDM is proposed. The theoretical analysis and experiment testify that BFDM is effective and efficient.
文摘Most of the international accreditation bodies in engineering education(e.g.,ABET)and outcome-based educational systems have based their assess-ments on learning outcomes and program educational objectives.However,map-ping program educational objectives(PEOs)to student outcomes(SOs)is a challenging and time-consuming task,especially for a new program which is applying for ABET-EAC(American Board for Engineering and Technology the American Board for Engineering and Technology—Engineering Accreditation Commission)accreditation.In addition,ABET needs to automatically ensure that the mapping(classification)is reasonable and correct.The classification also plays a vital role in the assessment of students’learning.Since the PEOs are expressed as short text,they do not contain enough semantic meaning and information,and consequently they suffer from high sparseness,multidimensionality and the curse of dimensionality.In this work,a novel associative short text classification tech-nique is proposed to map PEOs to SOs.The datasets are extracted from 152 self-study reports(SSRs)that were produced in operational settings in an engineering program accredited by ABET-EAC.The datasets are processed and transformed into a representational form appropriate for association rule mining.The extracted rules are utilized as delegate classifiers to map PEOs to SOs.The proposed asso-ciative classification of the mapping of PEOs to SOs has shown promising results,which can simplify the classification of short text and avoid many problems caused by enriching short text based on external resources that are not related or relevant to the dataset.
基金support from Taif University Researchers supporting Project Number(TURSP-2020/215),Taif University,Taif,Saudi Arabia.
文摘One of the leading cancers for both genders worldwide is lung cancer.The occurrence of lung cancer has fully augmented since the early 19th century.In this manuscript,we have discussed various data mining techniques that have been employed for cancer diagnosis.Exposure to air pollution has been related to various adverse health effects.This work is subject to analysis of various air pollutants and associated health hazards and intends to evaluate the impact of air pollution caused by lung cancer.We have introduced data mining in lung cancer to air pollution,and our approach includes preprocessing,data mining,testing and evaluation,and knowledge discovery.Initially,we will eradicate the noise and irrelevant data,and following that,we will join the multiple informed sources into a common source.From that source,we will designate the information relevant to our investigation to be regained from that assortment.Following that,we will convert the designated data into a suitable mining process.The patterns are abstracted by utilizing a relational suggestion rule mining process.These patterns have revealed information,and this information is categorized with the help of an Auto Associative Neural Network classification method(AANN).The proposed method is compared with the existing method in various factors.In conclusion,the projected Auto associative neural network and relational suggestion rule mining methods accomplish a high accuracy status.
文摘This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals.
基金Research and Development Plan of Key Areas of Hunan Science and Technology Department (2022SK2044)Clinical Research Center for Depressive Disorder in Hunan Province (2021SK4022)。
文摘Objective To determine the correlation between traditional Chinese medicine(TCM)inspec-tion of spirit classification and the severity grade of depression based on facial features,offer-ing insights for intelligent intergrated TCM and western medicine diagnosis of depression.Methods Using the Audio-Visual Emotion Challenge and Workshop(AVEC 2014)public dataset on depression,which conclude 150 interview videos,the samples were classified ac-cording to the TCM inspection of spirit classification:Deshen(得神,presence of spirit),Shaoshen(少神,insufficiency of spirit),and Shenluan(神乱,confusion of spirit).Meanwhile,based on Beck Depression Inventory-II(BDI-II)score for the severity grade of depression,the samples were divided into minimal(0-13,Q1),mild(14-19,Q2),moderate(20-28,Q3),and severe(29-63,Q4).Sixty-eight landmarks were extracted with a ResNet-50 network,and the feature extracion mode was stadardized.Random forest and support vectior machine(SVM)classifiers were used to predict TCM inspection of spirit classification and the severity grade of depression,respectively.A Chi-square test and Apriori association rule mining were then applied to quantify and explore the relationships.Results The analysis revealed a statistically significant and moderately strong association be-tween TCM spirit classification and the severity grade of depression,as confirmed by a Chi-square test(χ^(2)=14.04,P=0.029)with a Cramer’s V effect size of 0.243.Further exploration us-ing association rule mining identified the most compelling rule:“moderate depression(Q3)→Shenluan”.This rule demonstrated a support level of 5%,indicating this specific co-occur-rence was present in 5%of the cohort.Crucially,it achieved a high Confidence of 86%,mean-ing that among patients diagnosed with Q3,86%exhibited the Shenluan pattern according to TCM assessment.The substantial Lift of 2.37 signifies that the observed likelihood of Shenlu-an manifesting in Q3 patients is 2.37 times higher than would be expected by chance if these states were independent-compelling evidence of a highly non-random association.Conse-quently,Shenluan emerges as a distinct and core TCM diagnostic manifestation strongly linked to Q3,forming a clinically significant phenotype within this patient subgroup.
文摘This paper focuses on improving decision tree induction algorithms when a kind of tie appears during the rule generation procedure for specific training datasets. The tie occurs when there are equal proportions of the target class outcome in the leaf node's records that leads to a situation where majority voting cannot be applied. To solve the above mentioned exception, we propose to base the prediction of the result on the naive Bayes (NB) estimate, k-nearest neighbour (k-NN) and association rule mining (ARM). The other features used for splitting the parent nodes are also taken into consideration.
文摘The severity of traffic accidents is a serious global concern,particularly in developing nations.Knowing the main causes and contributing circumstances may reduce the severity of traffic accidents.There exist many machine learning models and decision support systems to predict road accidents by using datasets from different social media forums such as Twitter,blogs and Facebook.Although such approaches are popular,there exists an issue of data management and low prediction accuracy.This article presented a deep learning-based sentiment analytic model known as Extra-large Network Bi-directional long short term memory(XLNet-Bi-LSTM)to predict traffic collisions based on data collected from social media.Initially,a Tweet dataset has been formed by using an exhaustive keyword-based searching strategy.In the next phase,two different types of features named as individual tokens and pair tokens have been obtained by using POS tagging and association rule mining.The output of this phase has been forwarded to a three-layer deep learning model for final prediction.Numerous experiment has been performed to test the efficiency of the proposed XLNet-Bi-LSTM model.It has been shown that the proposed model achieved 94.2%prediction accuracy.
基金supported by National Key R&D Program of China(2021YFC3001500).
文摘Professional drivers are more frequently exposed to longer driving distance and travel time,leading to a higher possibility of safety risk for distraction and fatigue.The widespread and common use of commercial driver monitoring systems(DMS)provides a potential for data collection.It increases the amount of data characterizing driver behavior that can be used for further safety research.This study utilized DMS warning-based data and applied an association rule mining approach to explore risk factors contributing to hazardous materials(HAZMAT)truck driver inattention.A total of 499 HAZMAT truck driver inattentive warning events were used to find rules that will predict the occurrence of driver’s fatigue and distraction.First,Fisher’s exact tests were performed to examine the association between the frequency of driver inattentive behavior warnings and risk factors.Second,support,confidence,and lift values were used as measurements to quantify the relative strength of the association rules generated by the Apriori algorithm.Results show that speed between 40and 49 km/h,relatively longer travel time(3-6 h),freeway,tangent section,off-peak hour and clear weather condition are found to be highly associated with fatigue driving,while nighttime during 18:00 to 23:59,speed between 70 and 80 km/h,travel time between 1 and 3 h,freeways,acceleration less than 0.5 m/s^(2),visibility greater than 1000 m,and tangent roadway section are found to be highly associated with distracted driving.By focusing on the specific feature groups,these association rules would help in the development of mitigating distraction and fatigue driving countermeasures and enforcement approaches.