This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter(EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water sa...This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter(EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water safety and the formation of assimilable organic carbon(AOC). The effects of chlorine dosages, coagulant dosage, reaction time and temperature on the formation of AOC were investigated during the disinfection of M.aeruginosa metabolite solutions. The concentration of AOC followed a decreasing and then increasing pattern with increasing temperature and reaction time. The concentration of AOC decreased and then increased with increasing chlorination dosage, followed by a slight decrease at the highest level of chlorination. However, the concentration of AOC decreased continuously with increasing coagulant dosage. The formation of AOC can be suppressed under appropriate conditions. In this study, chlorination at 4 mg/L, combined with a coagulant dose of 40 mg/L at 20°C over a reaction time of 12 hr, produced the minimum AOC.展开更多
Microbial growth is an issue of concern that may cause hygienic and aesthetic problems during the transportation and usage of reclaimed water. Assimilable organic carbon (AOC) is an important parameter which determi...Microbial growth is an issue of concern that may cause hygienic and aesthetic problems during the transportation and usage of reclaimed water. Assimilable organic carbon (AOC) is an important parameter which determines the heterotrophic bacterial growth potential of water. Pseudomonas fluorescens P17 and Spirillum sp. NOX are widely used to measure AOC in drinking water. The AOC values of various reclaimed water samples determined by P 17 and NOX were compared with those determined by the new strains isolated from reclaimed water in this study. It showed that the conventional test strains were not suitable for AOC measurement of reclaimed water in certain cases. In addition to P17 and NOX, Stenotrophomonas sp. Z J2, Pseudomonas saponi- phila G3 and Enterobacter sp. G6, were selected as test strains for AOC measurement of reclaimed water. Key aspects of the bioassay including inoculum cell density, incubation temperature, incubation time and the pH of samples were evaluated for the newly selected test strains. Higher inoculum density (104 CFU.mL-1) and higher incubation temperature (25℃) could reduce the time required for the tests. The AOC results of various collected samples showed the advantages of the method proposed based on those five strains in evaluating the biologic stability of reclaimed water.展开更多
As water reuse development has increased,biological stability issues associated with reclaimed water have gained attention.This study evaluated assimilable organic carbon(AOC)in effluents from a full-scale membrane bi...As water reuse development has increased,biological stability issues associated with reclaimed water have gained attention.This study evaluated assimilable organic carbon(AOC)in effluents from a full-scale membrane biological reactor(MBR)plant and found that they were generally stable over one year(125-216µg/L),with slight increases in warmer seasons.After additional tertiary treatments,the largest increases in absolute and specific AOCs were detected during ozonation,followed by coagulation-ozonation and coagulation.Moreover,UV254 absorbance is known to be an effective surrogate to predict the AOC changes during ozonation.Applying coagulation prior to ozonation of MBR effluents for removal of large molecules was found to reduce the AOC formation compared with ozonation treatment alone.Finally,the results revealed that attention should be paid to seasonal variations in influent and organic fraction changes during treatment to enable sustainable water reuse.展开更多
Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimila...Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.展开更多
A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study em...A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science(NUIST-CFS 1.0)to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave.The sea surface temperature(SST)nudging scheme assimilates SST only,while the deterministic ensemble Kalman filter(EnKF)scheme assimilates observations from the surface to the deep ocean.The latter notably improves the forecasting skill for subsurface temperature anomalies,especially at the depth of 100-300 m(the lower layer),outperforming the SST nudging scheme.It excels in predicting both horizontal and vertical heat transport in the lower layer,contributing to improved forecasts of the lower-layer warming during the Blob.These improvements stem from the assimilation of subsurface observational data,which are important in predicting the upper-ocean conditions.The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms.展开更多
Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in c...Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.展开更多
Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base ...Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base in China with significant strategic importance,has undergone intensive coal mining activities that have substantially disrupted regional groundwater circulation.This study integrated data from the Gravity Recovery and Climate Experiment Satellite(GRACE)and Famine Early Warning Systems Network(FEWS NET)Land Data Assimilation System(FLDAS)models,combined with weighted downscaling methodology and water balance principles,to reconstruct high-resolution(0.01°)terrestrial water storage(TWS)and GWS changes in the Ordos Mining Region,China from April 2002 to December 2021.The accuracy of GWS variations were validated through pumping test measurements.Subsequently,Geodetector analysis was implemented to quantify the contributions of natural and anthropogenic factors to groundwater storage dynamics.Key findings include:1)TWS in the study area showed a fluctuating but overall decreasing trend,with a total reduction of 8901.11 mm during study period.The most significant annual decrease occurred in 2021,reaching 1696.77 mm.2)GWS exhibited an accelerated decline,with an average annual change rate of 44.35 mm/yr,totaling a decrease of 887.05 mm.The lowest annual groundwater storage level was recorded in 2020,reaching 185.69 mm.3)Precipitation(PRE)contributed the most to GWS variation(q=0.52),followed by coal mining water consumption(MWS)(q=0.41).The interaction between PRE and MWS exhibited a nonlinear enhancement effect on GWS changes(0.54).The synergistic effect of natural hydrological factors has a great influence on the change of GWS,but coal mining water consumption will continue to reduce GWS.These findings provide critical references for the management and regulation of groundwater resource in mining regions.展开更多
Based on the China Meteorological Administration’s Tropical Regional Atmosphere Model for the South China Sea(CMA-TRAMS),the authors conducted a collaborative assimilation forecasting experiment utilizing both Beidou...Based on the China Meteorological Administration’s Tropical Regional Atmosphere Model for the South China Sea(CMA-TRAMS),the authors conducted a collaborative assimilation forecasting experiment utilizing both Beidou radiosonde and drone-dropped(HAIYAN-I)radiosonde data in September 2023.Three assimilation experimental groups were designed as follows:Beidou radiosonde assimilation,drone-dropped radiosonde assimilation,and collaborative assimilation of Beidou and drone-dropped radiosonde data(hereinafter referred to as“Beidoudrop”).Additionally,a control group of operational forecasts without these data assimilations was set up.The results indicate that the operational forecast path in the control group deviated northward from the actual path.Besides,the Beidou-drop group showed the most significant improvement in terms of forecasting the typhoon path at 60 to 90 h lead times.Specifically,the 72 h and 90 h path errors were reduced by 66.8 and 82.4 km,respectively,resulting in a much more accurate forecast of Typhoon Haikui’s landing point,at the coastal junction of Fujian and Guangdong.Furthermore,the collaborative assimilation revealed a notable impact on improving the forecast of wind and rain associated with Haikui’s landfall,aligning more closely with the real case.A marked rise was also seen in the precipitation score of the Beidou-drop group,where the 50 mm TS(threat score)of the 72 h lead time increased from 0.33 in the control experiment to 0.75,and the 100 mm TS rose from 0.18 to 0.39.展开更多
Recently, a coupled data assimilation system based on the community earth system model(CESM) and ensemble adjustment Kalman filter(EAKF) has been established to assimilate various ocean observations including gridded ...Recently, a coupled data assimilation system based on the community earth system model(CESM) and ensemble adjustment Kalman filter(EAKF) has been established to assimilate various ocean observations including gridded sea surface temperature and in situ temperature and salinity profiles for the initialization of seasonal prediction. The main goal of the present study is to assess the El Nino-Southern Oscillation(ENSO) prediction capability of the newly developed system(CESM-E). We compare it with a benchmark prediction system based on the same model but employing a nudging scheme(CESM-N), which nudged the wind fields and ocean temperature. Results have found that although the initial subsurface temperature are comparable in the two systems, CESM-E outperforms CESM-N in a few aspects. For example, CESM-E exhibits clearly lower root mean square errors in the first few leading months and higher anomaly correlation coefficients in the Nino4 region. In addition, case studies reveal that CESM-E is clearly better in predicting the 2006/2007 El Nino and 2010/2011 La Nina events. Reasons behind the improvement of CESME are studied, which can provide useful insights into the design of a data assimilation system and the further improvement of current ENSO prediction system.展开更多
The role of brassinosteroids(BRs)in enabling plants to respond effectively to adverse conditions is well known,though the precise mechanism of action that helps plants cope with arsenic(As)toxicity is still difficult ...The role of brassinosteroids(BRs)in enabling plants to respond effectively to adverse conditions is well known,though the precise mechanism of action that helps plants cope with arsenic(As)toxicity is still difficult to interpret.Therefore we tested the effect of brassinolide(BL)spray(0,0.5,and 1 mg·L^(-1))on As(0,and 10 mg·L^(-1))stressed tomato defense responses As stress led to the induction of oxidative stress,impaired chlorophyll and nitrogen metabolism,and Fe uptake,in conjunction with a reduction in plant growth and biomass.BL spray,on the contrary,protected the photo synthetic system and helped plants grow better under As stress.This was achieved by controlling the metabolism of chlorophyll and proline and lowering the amounts of methylglyoxal and H_(2)O_(2) through glyoxalaseⅠandⅡand antioxidant enzyme s.BL decreased arsenic accumulation by directing As sequestration towards vacuoles and increased Fe amount in the leaves and roots by regulating the expression of As(Lsil and Lsi2)and Fe(IRT1,IRT2,NRAMP1,and NRAMP3)transporters in As-stressed tomatoes.Furthermore,BL boosted adaptability against As phytotoxicity,while reducing the damaging impacts on photosynthesis,nitrogen metabolism,sulfur asimilation,and Fe absorption.These results offer a solid framework for the development of exogenous BRs-based breeding strategies for safer agricultural development.展开更多
With mineral-melt thermobarometers,reconstruction of P-T-depth history of magmas can be established for vol-canic rocks.The pillow lava of Hantangang River Basalt is suitable for the study as it bears narrow compositi...With mineral-melt thermobarometers,reconstruction of P-T-depth history of magmas can be established for vol-canic rocks.The pillow lava of Hantangang River Basalt is suitable for the study as it bears narrow compositional range resulting from little or no fractional crystallization or crustal assimilation and shows evidence of rapid magma ascent.The established thermodynamic model covers the pathway from the magma source depth to the eruption.The model shows that the pillow lava originated at the depths of~85-100 km by fluid ascent from a stagnant slab.This range corresponds to the depth that encompasses the uppermost asthenosphere to the lowermost lithosphere corresponding to the upper garnet to the lower spinel sta-bility fields of the mantle.Subsequently,the melt rose to~66-71 km depth where a primary magma reservoir was generated possibly due to existence of a possible local discontinuity within the upper mantle.The magma uprose rapidly from~61 to~20 km or even to a shallower depth with crystallization of dendritic clinopyroxene and titano-magnetite,due to dehydration of magma.Magma ascent slowed down near the surface possibly due to the volcanic channel split into two or more toward the vents.The model can be applied to other volcanic areas composed of less evolved rocks.展开更多
High spatiotemporal resolution infrared radiances from FY-4A/AGRI(Advanced Geostationary Radiation Imager)can provide crucial information for rapidly developing severe convective weather.This study established a symme...High spatiotemporal resolution infrared radiances from FY-4A/AGRI(Advanced Geostationary Radiation Imager)can provide crucial information for rapidly developing severe convective weather.This study established a symmetric observation error model that differentiates between land and sea for FY-4A/AGRI all-sky assimilation,developed an all-sky assimilation scheme for FY-4A/AGRI based on hydrometeor control variables,and investigated the impacts of all-sky FY-4A/AGRI water vapor channels at different altitudes and rapid-update assimilation at different frequencies on the assimilation and forecasting of a severe convective weather event.Results show that simultaneous assimilation of two water vapor channels can enhance precipitation forecasts compared to single-channel assimilation,which is mainly attributable to a more accurate analysis of water vapor and hydrometeor information.Experiments with different assimilation frequencies demonstrate that the hourly assimilation frequency,compared to other frequencies,incorporates the high-frequency information from AGRI while reducing the impact of spurious oscillations caused by excessively high-frequency assimilation.This hourly assimilation frequency reduces the incoordination among thermal,dynamical,and water vapor conditions caused by excessively fast or slow assimilation frequencies,thus improving the forecast accuracy compared to other frequencies.展开更多
Numerical models play an important role in convective-scale forecasting,and dual-polarization radar observations can provide detailed microphysical data.In this study,we implement a direct assimilation operator for du...Numerical models play an important role in convective-scale forecasting,and dual-polarization radar observations can provide detailed microphysical data.In this study,we implement a direct assimilation operator for dual-polarization radar data using the hydrometeor background error covariance(HBEC)in the China Meteorological Administration MESO-scale weather forecasting system(CMA-MESO,formerly GRAPES-MESO)and conducted assimilation and forecasting experiments with X-band and S-band dual-polarization radar data on two cases.The results indicate that the direct assimilation of dual-polarization radar data enhanced the microphysical fields and the thermodynamic structure of convective systems to some extent based on the HBEC,thereby improving precipitation forecasts.Among the sensitivity tests of microphysical parameterization schemes,including the LIUMA scheme,the THOMPSON scheme,and the WSM6scheme(WRF Single-Moment 6-class),we find that the greatest improvement in the equivalent potential temperature,relative humidity,wind,and accumulated precipitation forecasts occurred in the experiment using the WSM6 scheme,as the distribution of solid precipitation particles was closer to the hydrometeor classification algorithm from the dualpolarization radar observations in our cases.展开更多
With the intelligent transformation of process manufacturing,accurate and comprehensive perception information is fundamental for application of artificial intelligence methods.In zinc smelting,the fluidized bed roast...With the intelligent transformation of process manufacturing,accurate and comprehensive perception information is fundamental for application of artificial intelligence methods.In zinc smelting,the fluidized bed roaster is a key piece of large-scale equipment and plays a critical role in the manufacturing industry;its internal temperature field directly determines the quality of zinc calcine and other related products.However,due to its vast spatial dimensions,the limited observation methods,and the complex multiphase,multifield coupled reaction atmosphere inside it,accurately and timely perceiving its temperature field remains a significant challenge.To address these challenges,a spatial-temporal reduced-order model(STROM)is proposed,which can realize fast and accurate temperature field perception based on sparse observation data.Specifically,to address the difficulty in matching the initial physical field with the sparse observation data,an initial field construction based on data assimilation(IFCDA)method is proposed to ensure that the initial conditions of the model can be matched with the actual operation state,which provides a basis for constructing a high-precision computational fluid dynamics(CFD)model.Then,to address the high simulation cost of high-precision CFD models under full working conditions,a high uniformity(HU)-orthogonal test design(OTD)method with the centered L2 deviation is innovatively proposed to ensure high information coverage of the temperature field dataset under typical working conditions in terms of multiple factors and levels of the component,feed,and blast parameters.Finally,to address the difficulty in real-time and accurate temperature field prediction,considering the spatial correlation between the observed temperature and the temperature field,as well as the dynamic correlation of the observed temperature in the time dimension,a spatial-temporal predictive model(STPM)is established,which realizes rapid prediction of the temperature field through sparse observa-tion data.To verify the accuracy and validity of the proposed method,CFD model validation and reduced-order model prediction experiments are designed,and the results show that the proposed method can realize high-precision and fast prediction of the roaster temperature field under different working conditions through sparse observation data.Compared with the CFD model,the prediction root-mean-square error(RMSE)of STROM is less than 0.038,and the computational efficiency is improved by 3.4184×10^(4)times.In particular,STROM also has a good prediction ability for unmodeled conditions,with a prediction RMSE of less than 0.1089.展开更多
Dabie-type porphyry Mo deposits were proposed as a new type of porphyry Mo deposits,and had unique geological characteristics.It is still poorly understood about the magmatic processes that led to the Dabie-type Mo mi...Dabie-type porphyry Mo deposits were proposed as a new type of porphyry Mo deposits,and had unique geological characteristics.It is still poorly understood about the magmatic processes that led to the Dabie-type Mo mineralization.Here,we present zircon U-Pb and Lu-Hf isotopic,whole-rock and biotite elemental,and whole-rock Sr-Nd isotopic analyses on the Lingshan granitic batholith in the Dabie Orogen.It consists of three units(ⅠtoⅢ)that were emplaced before,genetically accompanied with,and after the Mo mineralization.LA-ICP-MS zircon U-Pb dating yielded crystallization ages of 128.2±1.0 Ma(MSWD=1.14)for UnitⅠand ages of 127.8±1.2 Ma(MSWD=0.28)and 126.6±1.8 Ma(MSWD=1.6)for UnitⅡ,indicating that they were emplaced during 130 to 125 Ma.The granites have high SiO_(2)contents(75.84 wt.%to 78.94 wt.%)and low MgO contents(0.07 wt.%to 0.10 wt.%),and are classified as fractionatedⅠ-type granite.UnitsⅠandⅡhave similar Sr-Nd isotopic ratios(ε_(Nd)(t)=-16.2 to-17.2,(^(87)Sr/^(86)Sr)_(i)=0.70540 to 0.70692)and zirconε_(Hf)(t)values(-17.4 to-20.4),indicating they were derived from partial melting of the ancient Yangtze lower crust.Mo mineralized granite from UnitⅡis characterized by the lower oxygen fugacity,fluorine enrichment and high fractionation.Magmas of unitsⅠandⅡhave experienced fractional crystallization,with the assimilation of supracrustal materials that account for the increased TiO_(2),F and Mo contents,and the decreased fO_(2).We proposed that the assimilation in upper-crustal magmatic processes plays key factors for magmatic systems that led to the Dabie-type porphyry Mo deposits.展开更多
To accurately predict the three-dimensional flow characteristics of the flow field inside a waterjet propulsion pump,data assimilation(DA)method based on unsteady ensemble Kalman filter(EnKF)is used for the reconstruc...To accurately predict the three-dimensional flow characteristics of the flow field inside a waterjet propulsion pump,data assimilation(DA)method based on unsteady ensemble Kalman filter(EnKF)is used for the reconstruction of the flow field of a pump at different flow rates Q/Q_(opt)=0.85,1,1.15,where Q_(opt)is optimal flow rate at the design point.As a compensation to the spatial limitation of planar particle image velocimetry(PIV)measurements,dynamic delayed detached-eddy simulation(DDES)results validated by the PIV data is used to provide the observational data at the optimized probe locations.In DA procedure,the shear stress transport(SST)model constants are optimized by the EnKF approach.The model constants are subsequently rescaled and fitted to form a variation with the flow rate,which is extended to the prediction of the flow field with other flow rates in the vicinity of the design condition.The results show that the SST model with recalibrated constants has improved the prediction of the internal flow field in the waterjet propulsion pump,especially the separation flow in the diffuser section.The modified model constants mainly reduce the eddy viscosity and significantly improve the fluctuation characteristics in the flow field.This study provides a reference for the fast and accurate prediction of the flow field information in the waterjet propulsion pump.展开更多
Site index(SI)is determined from the top height development and is a proxy for forest productivity,defined as the expected top height for a given species at a certain index age.In Norway,an index age of 40 years is us...Site index(SI)is determined from the top height development and is a proxy for forest productivity,defined as the expected top height for a given species at a certain index age.In Norway,an index age of 40 years is used.By using bi-temporal airborne laser scanning(ALS)data,SI can be determined using models estimated from SI observed on field plots(the direct approach)or from predicted top heights at two points in time(the height differential approach).Time series of ALS data may enhance SI determination compared to conventional methods used in operational forest inventory by providing more detailed information about the top height development.We used longitudinal data comprising spatially consistent field and ALS data collected from training plots in 1999,2010,and 2022 to determine SI using the direct and height differential approaches using all combinations of years and performed an external validation.We also evaluated the use of data assimilation.Values of root mean square error obtained from external validation were in the ranges of 16.3%–21.4%and 12.8%–20.6%of the mean fieldregistered SI for the direct approach and the height differential approach,respectively.There were no statistically significant effects of time series length or the number of points in time on the obtained accuracies.Data assimilation did not result in any substantial improvement in the obtained accuracies.Although a time series of ALS data did not yield greater accuracies compared to using only two points in time,a larger proportion of the study area could be used in ALS-based determination of SI when a time series was available.This was because areas that were unsuitable for SI determination between two points in time could be subject to SI determination based on data from another part of the time series.展开更多
For all-sky infrared radiance assimilation,the heteroscedasticity and non-Gaussian behavior of observation-minusbackground(OMB)departures are two major difficulties.The Geer–Bauer observation error inflation(GBOEI)sc...For all-sky infrared radiance assimilation,the heteroscedasticity and non-Gaussian behavior of observation-minusbackground(OMB)departures are two major difficulties.The Geer–Bauer observation error inflation(GBOEI)scheme is a universal way to handle the issues.However,it fails to take into account the consistency between model and observation,resulting in unreasonably large observation errors where the simulations agree with the observations.Thus,this study modifies the GBOEI scheme to rationalize the observation errors in such areas.With Advanced Himawari Imager water vapor channel data,the test results show that the normalized OMB with the new observation error approach leads to more Gaussian form than the GBOEI method and constant observation errors.Hence,the assimilation experiments with the new scheme produce better brightness temperature analysis than other methods,and also improve temperature and humidity analysis.Furthermore,a real case experiment of Typhoon Lekima(2019)with the new observation error scheme exhibits more accuracy,especially in track prediction,and substantial error reductions in wind,temperature,and humidity forecasts are also obtained.Meanwhile,5-day 6-hour cycling experiments in the real case of Typhoon Lekima(2019)with the new observation error scheme confirm that the new method does not introduce extra imbalance compared to the experiment with constant observation errors;plus,more accurate typhoon forecasts can also be obtained in both the analysis and forecast,especially in track prediction.展开更多
Composite granitic pluton with distinct units is a potential target for identifying its detailed magma evolution.Here,we present zircon U-Pb ages and Hf isotope,whole-rock major and trace element compositions and Nd-P...Composite granitic pluton with distinct units is a potential target for identifying its detailed magma evolution.Here,we present zircon U-Pb ages and Hf isotope,whole-rock major and trace element compositions and Nd-Pb isotopes of the Wangxiang composite pluton,South China.New ages obtained show that these rocks were generated in Late Jurassic(ca.156–158 Ma).The rocks are divided into low silica(SiO_(2)<67 wt.%,biotite granodiorites and their dioritic enclaves)and high silica ones(SiO_(2)>71 wt.%,two-mica granites,garnet-bearing muscovite granites and muscovite granites).The high silica rocks are enriched in light rare earth elements(LREEs)relative to heavy REEs(HREEs)((La/Yb)_(N)=15.6–41.9,while the low silica rocks are not(0.7–76.6).All rocks show various negative Ti,Sr,Eu and strong positive Pb anomalies.The low silica rocks have less negative values ofε_(Nd)(t)(-8.79 to-6.99),similar values of~((206)Pb/^(204)Pb)_(i)(18.155–18.346)andε_(Hf)(t)(-9.51 to-3.47,except one-12.84),compared to the high silica rocks(ε_(Nd)(t)=-11.14 to-10.26;^((206)Pb/^(204)Pb)_(i)=17.935–19.093;ε_(Hf)(t)=-12.03 to-7.15,except one-2.41).Data suggest that the parental magma of the studied rocks(represented by enclaves)was produced by partial melting of a garnet-free crustal source.Subsequently those crustal magmas formed the more evolved units through assimilation and fractional crystallization processes,and fluid enrichment during the final magmatic activity.Combining our results with previous multidisciplinary studies,we propose that the key factor to control the evolution of Wangxiang composite pluton is discrete emplacement of crustal magmas by dyking.展开更多
Moisture conditions are crucial for the maintenance and development of severe convection.In the indirect assimilation of radar reflectivity,hydrometeors and water vapor retrieved from reflectivity are assimilated to a...Moisture conditions are crucial for the maintenance and development of severe convection.In the indirect assimilation of radar reflectivity,hydrometeors and water vapor retrieved from reflectivity are assimilated to avoid the nonlinearity issues associated with the observation operator.In a widely applied water vapor retrieval scheme,a cloud is assumed to be saturated when the radar reflectivity exceeds a certain threshold.This study replaces the traditional retrieval scheme with the“Z-RH”(radar reflectivity and relative humidity)linear statistical relationship for estimating the water vapor content,which is implemented to reduce the uncertainty caused by empirical relationships.The“Z-RH”relationship is statistically obtained from the humidity and the observations for rainfall rate at different temperature intervals with the use of the Z-R(radar reflectivity-rain rate)relationship.The impacts of these two retrieval approaches are investigated in the analyses and forecasts based on the radar reflectivity.The results suggest that both water vapor retrieval schemes yield similar reflectivity analyses,with“Z-RH”showing slightly stronger reflectivity intensities.Utilizing a“Z-RH”scheme contributes significantly to the improved analyses and forecasts of humidity and wind fields,resulting in more reasonable thermodynamic and dynamic structures.As the“Z-RH”relationship obtained by real-time statistics in a specific area provides a scientific basis for the retrieval of water vapor,a“Z-RH”scheme is beneficial to obtain more accurate reflectivity forecasts.The overall scores for the predicted precipitation of a“Z-RH”scheme are roughly 10%-20%higher compared to those of the traditional scheme.展开更多
基金supported by the National Natural Science Foundation of China (No. 503780262)the Supporting Certificate of China Postdoctoral Science Foundation (No. 20070420882)the National Natural Science Foundation of Heilongjiang Province of China (No. E200812)
文摘This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter(EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water safety and the formation of assimilable organic carbon(AOC). The effects of chlorine dosages, coagulant dosage, reaction time and temperature on the formation of AOC were investigated during the disinfection of M.aeruginosa metabolite solutions. The concentration of AOC followed a decreasing and then increasing pattern with increasing temperature and reaction time. The concentration of AOC decreased and then increased with increasing chlorination dosage, followed by a slight decrease at the highest level of chlorination. However, the concentration of AOC decreased continuously with increasing coagulant dosage. The formation of AOC can be suppressed under appropriate conditions. In this study, chlorination at 4 mg/L, combined with a coagulant dose of 40 mg/L at 20°C over a reaction time of 12 hr, produced the minimum AOC.
文摘Microbial growth is an issue of concern that may cause hygienic and aesthetic problems during the transportation and usage of reclaimed water. Assimilable organic carbon (AOC) is an important parameter which determines the heterotrophic bacterial growth potential of water. Pseudomonas fluorescens P17 and Spirillum sp. NOX are widely used to measure AOC in drinking water. The AOC values of various reclaimed water samples determined by P 17 and NOX were compared with those determined by the new strains isolated from reclaimed water in this study. It showed that the conventional test strains were not suitable for AOC measurement of reclaimed water in certain cases. In addition to P17 and NOX, Stenotrophomonas sp. Z J2, Pseudomonas saponi- phila G3 and Enterobacter sp. G6, were selected as test strains for AOC measurement of reclaimed water. Key aspects of the bioassay including inoculum cell density, incubation temperature, incubation time and the pH of samples were evaluated for the newly selected test strains. Higher inoculum density (104 CFU.mL-1) and higher incubation temperature (25℃) could reduce the time required for the tests. The AOC results of various collected samples showed the advantages of the method proposed based on those five strains in evaluating the biologic stability of reclaimed water.
基金This work was supported by the Key Program of the National Natural Science Foundation of China(No.51738005)the Youth Program of National Natural Science Foundation of China(No.51908317).
文摘As water reuse development has increased,biological stability issues associated with reclaimed water have gained attention.This study evaluated assimilable organic carbon(AOC)in effluents from a full-scale membrane biological reactor(MBR)plant and found that they were generally stable over one year(125-216µg/L),with slight increases in warmer seasons.After additional tertiary treatments,the largest increases in absolute and specific AOCs were detected during ozonation,followed by coagulation-ozonation and coagulation.Moreover,UV254 absorbance is known to be an effective surrogate to predict the AOC changes during ozonation.Applying coagulation prior to ozonation of MBR effluents for removal of large molecules was found to reduce the AOC formation compared with ozonation treatment alone.Finally,the results revealed that attention should be paid to seasonal variations in influent and organic fraction changes during treatment to enable sustainable water reuse.
基金sponsored by the National Natural Science Foundation of China[grant number U2442218]。
文摘Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.
基金supported by the National Natural Science Foundation of China [grant number 42030605]the National Key R&D Program of China [grant number 2020YFA0608004]。
文摘A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science(NUIST-CFS 1.0)to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave.The sea surface temperature(SST)nudging scheme assimilates SST only,while the deterministic ensemble Kalman filter(EnKF)scheme assimilates observations from the surface to the deep ocean.The latter notably improves the forecasting skill for subsurface temperature anomalies,especially at the depth of 100-300 m(the lower layer),outperforming the SST nudging scheme.It excels in predicting both horizontal and vertical heat transport in the lower layer,contributing to improved forecasts of the lower-layer warming during the Blob.These improvements stem from the assimilation of subsurface observational data,which are important in predicting the upper-ocean conditions.The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms.
基金supported by the National Key R&D Program of China [grant number 2023YFF0805202]the National Natural Science Foun-dation of China [grant number 42175045]the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDB42000000]。
文摘Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.
基金Under the National Key R&D Program Key Project(No.2021YFC3201201)National Natural Science Foundation of China(No.52360032)+2 种基金Basic Scientific Research Business Fee Project of Colleges And Universities Directly Under the Inner Mongolia Autonomous Region(No.JBYYWF2022001)Development Plan of Innovation Team of Colleges And Universities in Inner Mongolia Autonomous Region(No.NMGIRT2313)the Innovation Team of‘Grassland Talents’。
文摘Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base in China with significant strategic importance,has undergone intensive coal mining activities that have substantially disrupted regional groundwater circulation.This study integrated data from the Gravity Recovery and Climate Experiment Satellite(GRACE)and Famine Early Warning Systems Network(FEWS NET)Land Data Assimilation System(FLDAS)models,combined with weighted downscaling methodology and water balance principles,to reconstruct high-resolution(0.01°)terrestrial water storage(TWS)and GWS changes in the Ordos Mining Region,China from April 2002 to December 2021.The accuracy of GWS variations were validated through pumping test measurements.Subsequently,Geodetector analysis was implemented to quantify the contributions of natural and anthropogenic factors to groundwater storage dynamics.Key findings include:1)TWS in the study area showed a fluctuating but overall decreasing trend,with a total reduction of 8901.11 mm during study period.The most significant annual decrease occurred in 2021,reaching 1696.77 mm.2)GWS exhibited an accelerated decline,with an average annual change rate of 44.35 mm/yr,totaling a decrease of 887.05 mm.The lowest annual groundwater storage level was recorded in 2020,reaching 185.69 mm.3)Precipitation(PRE)contributed the most to GWS variation(q=0.52),followed by coal mining water consumption(MWS)(q=0.41).The interaction between PRE and MWS exhibited a nonlinear enhancement effect on GWS changes(0.54).The synergistic effect of natural hydrological factors has a great influence on the change of GWS,but coal mining water consumption will continue to reduce GWS.These findings provide critical references for the management and regulation of groundwater resource in mining regions.
文摘Based on the China Meteorological Administration’s Tropical Regional Atmosphere Model for the South China Sea(CMA-TRAMS),the authors conducted a collaborative assimilation forecasting experiment utilizing both Beidou radiosonde and drone-dropped(HAIYAN-I)radiosonde data in September 2023.Three assimilation experimental groups were designed as follows:Beidou radiosonde assimilation,drone-dropped radiosonde assimilation,and collaborative assimilation of Beidou and drone-dropped radiosonde data(hereinafter referred to as“Beidoudrop”).Additionally,a control group of operational forecasts without these data assimilations was set up.The results indicate that the operational forecast path in the control group deviated northward from the actual path.Besides,the Beidou-drop group showed the most significant improvement in terms of forecasting the typhoon path at 60 to 90 h lead times.Specifically,the 72 h and 90 h path errors were reduced by 66.8 and 82.4 km,respectively,resulting in a much more accurate forecast of Typhoon Haikui’s landing point,at the coastal junction of Fujian and Guangdong.Furthermore,the collaborative assimilation revealed a notable impact on improving the forecast of wind and rain associated with Haikui’s landfall,aligning more closely with the real case.A marked rise was also seen in the precipitation score of the Beidou-drop group,where the 50 mm TS(threat score)of the 72 h lead time increased from 0.33 in the control experiment to 0.75,and the 100 mm TS rose from 0.18 to 0.39.
基金The National Natural Science Foundation of China under contract Nos 42450178 and 42176003。
文摘Recently, a coupled data assimilation system based on the community earth system model(CESM) and ensemble adjustment Kalman filter(EAKF) has been established to assimilate various ocean observations including gridded sea surface temperature and in situ temperature and salinity profiles for the initialization of seasonal prediction. The main goal of the present study is to assess the El Nino-Southern Oscillation(ENSO) prediction capability of the newly developed system(CESM-E). We compare it with a benchmark prediction system based on the same model but employing a nudging scheme(CESM-N), which nudged the wind fields and ocean temperature. Results have found that although the initial subsurface temperature are comparable in the two systems, CESM-E outperforms CESM-N in a few aspects. For example, CESM-E exhibits clearly lower root mean square errors in the first few leading months and higher anomaly correlation coefficients in the Nino4 region. In addition, case studies reveal that CESM-E is clearly better in predicting the 2006/2007 El Nino and 2010/2011 La Nina events. Reasons behind the improvement of CESME are studied, which can provide useful insights into the design of a data assimilation system and the further improvement of current ENSO prediction system.
基金financial support from the National Key Research and Development Program of China(Grant No.2023YFD220120302)supported by RUDN University Strategic Academic Leadership Program。
文摘The role of brassinosteroids(BRs)in enabling plants to respond effectively to adverse conditions is well known,though the precise mechanism of action that helps plants cope with arsenic(As)toxicity is still difficult to interpret.Therefore we tested the effect of brassinolide(BL)spray(0,0.5,and 1 mg·L^(-1))on As(0,and 10 mg·L^(-1))stressed tomato defense responses As stress led to the induction of oxidative stress,impaired chlorophyll and nitrogen metabolism,and Fe uptake,in conjunction with a reduction in plant growth and biomass.BL spray,on the contrary,protected the photo synthetic system and helped plants grow better under As stress.This was achieved by controlling the metabolism of chlorophyll and proline and lowering the amounts of methylglyoxal and H_(2)O_(2) through glyoxalaseⅠandⅡand antioxidant enzyme s.BL decreased arsenic accumulation by directing As sequestration towards vacuoles and increased Fe amount in the leaves and roots by regulating the expression of As(Lsil and Lsi2)and Fe(IRT1,IRT2,NRAMP1,and NRAMP3)transporters in As-stressed tomatoes.Furthermore,BL boosted adaptability against As phytotoxicity,while reducing the damaging impacts on photosynthesis,nitrogen metabolism,sulfur asimilation,and Fe absorption.These results offer a solid framework for the development of exogenous BRs-based breeding strategies for safer agricultural development.
基金supported by the 2021 Research Project for UNESCO Hantangang River Global Geopark supported by Gyeonggi Provincial Office(Grant No.20210606641-00)Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2019R1A6A1A03033167).
文摘With mineral-melt thermobarometers,reconstruction of P-T-depth history of magmas can be established for vol-canic rocks.The pillow lava of Hantangang River Basalt is suitable for the study as it bears narrow compositional range resulting from little or no fractional crystallization or crustal assimilation and shows evidence of rapid magma ascent.The established thermodynamic model covers the pathway from the magma source depth to the eruption.The model shows that the pillow lava originated at the depths of~85-100 km by fluid ascent from a stagnant slab.This range corresponds to the depth that encompasses the uppermost asthenosphere to the lowermost lithosphere corresponding to the upper garnet to the lower spinel sta-bility fields of the mantle.Subsequently,the melt rose to~66-71 km depth where a primary magma reservoir was generated possibly due to existence of a possible local discontinuity within the upper mantle.The magma uprose rapidly from~61 to~20 km or even to a shallower depth with crystallization of dendritic clinopyroxene and titano-magnetite,due to dehydration of magma.Magma ascent slowed down near the surface possibly due to the volcanic channel split into two or more toward the vents.The model can be applied to other volcanic areas composed of less evolved rocks.
基金supported by the National Key R&D Program of China(Grant No.2022YFC3080500)the National Natural Science Foundation of China(Grant Nos.U2142208,42475158,and 42105149)the High-Performance Computing Center of Nanjing University of Information Science&Technology for supporting this work。
文摘High spatiotemporal resolution infrared radiances from FY-4A/AGRI(Advanced Geostationary Radiation Imager)can provide crucial information for rapidly developing severe convective weather.This study established a symmetric observation error model that differentiates between land and sea for FY-4A/AGRI all-sky assimilation,developed an all-sky assimilation scheme for FY-4A/AGRI based on hydrometeor control variables,and investigated the impacts of all-sky FY-4A/AGRI water vapor channels at different altitudes and rapid-update assimilation at different frequencies on the assimilation and forecasting of a severe convective weather event.Results show that simultaneous assimilation of two water vapor channels can enhance precipitation forecasts compared to single-channel assimilation,which is mainly attributable to a more accurate analysis of water vapor and hydrometeor information.Experiments with different assimilation frequencies demonstrate that the hourly assimilation frequency,compared to other frequencies,incorporates the high-frequency information from AGRI while reducing the impact of spurious oscillations caused by excessively high-frequency assimilation.This hourly assimilation frequency reduces the incoordination among thermal,dynamical,and water vapor conditions caused by excessively fast or slow assimilation frequencies,thus improving the forecast accuracy compared to other frequencies.
基金sponsored by the National Natural Science Foundation of China(U2442601 and U2442218)the High Performance Computing Platform of Nanjing University of Information Science&Technology(NUIST)for their support of this work。
文摘Numerical models play an important role in convective-scale forecasting,and dual-polarization radar observations can provide detailed microphysical data.In this study,we implement a direct assimilation operator for dual-polarization radar data using the hydrometeor background error covariance(HBEC)in the China Meteorological Administration MESO-scale weather forecasting system(CMA-MESO,formerly GRAPES-MESO)and conducted assimilation and forecasting experiments with X-band and S-band dual-polarization radar data on two cases.The results indicate that the direct assimilation of dual-polarization radar data enhanced the microphysical fields and the thermodynamic structure of convective systems to some extent based on the HBEC,thereby improving precipitation forecasts.Among the sensitivity tests of microphysical parameterization schemes,including the LIUMA scheme,the THOMPSON scheme,and the WSM6scheme(WRF Single-Moment 6-class),we find that the greatest improvement in the equivalent potential temperature,relative humidity,wind,and accumulated precipitation forecasts occurred in the experiment using the WSM6 scheme,as the distribution of solid precipitation particles was closer to the hydrometeor classification algorithm from the dualpolarization radar observations in our cases.
基金supported in part by the National Key Research and Development Program of China(2022YFB3304900)in part by the National Natural Science Foundation of China(62394340 and 62073340)in part by the Science and Technology Innovation Program of Hunan Province(2022JJ10083).
文摘With the intelligent transformation of process manufacturing,accurate and comprehensive perception information is fundamental for application of artificial intelligence methods.In zinc smelting,the fluidized bed roaster is a key piece of large-scale equipment and plays a critical role in the manufacturing industry;its internal temperature field directly determines the quality of zinc calcine and other related products.However,due to its vast spatial dimensions,the limited observation methods,and the complex multiphase,multifield coupled reaction atmosphere inside it,accurately and timely perceiving its temperature field remains a significant challenge.To address these challenges,a spatial-temporal reduced-order model(STROM)is proposed,which can realize fast and accurate temperature field perception based on sparse observation data.Specifically,to address the difficulty in matching the initial physical field with the sparse observation data,an initial field construction based on data assimilation(IFCDA)method is proposed to ensure that the initial conditions of the model can be matched with the actual operation state,which provides a basis for constructing a high-precision computational fluid dynamics(CFD)model.Then,to address the high simulation cost of high-precision CFD models under full working conditions,a high uniformity(HU)-orthogonal test design(OTD)method with the centered L2 deviation is innovatively proposed to ensure high information coverage of the temperature field dataset under typical working conditions in terms of multiple factors and levels of the component,feed,and blast parameters.Finally,to address the difficulty in real-time and accurate temperature field prediction,considering the spatial correlation between the observed temperature and the temperature field,as well as the dynamic correlation of the observed temperature in the time dimension,a spatial-temporal predictive model(STPM)is established,which realizes rapid prediction of the temperature field through sparse observa-tion data.To verify the accuracy and validity of the proposed method,CFD model validation and reduced-order model prediction experiments are designed,and the results show that the proposed method can realize high-precision and fast prediction of the roaster temperature field under different working conditions through sparse observation data.Compared with the CFD model,the prediction root-mean-square error(RMSE)of STROM is less than 0.038,and the computational efficiency is improved by 3.4184×10^(4)times.In particular,STROM also has a good prediction ability for unmodeled conditions,with a prediction RMSE of less than 0.1089.
基金supported by the National Science and Technology Major Project(No.2024ZD1001005)the National Natural Science Foundation of China(No.42172103)+2 种基金the Natural Science Foundation of Hubei Province(Nos.2023AFD206,2024AFD401,2025AFD439,2025AFD452)the Research Fund Program of Hubei Key Laboratory of Resources and Eco-Environment Geology(Nos.HBREGKFJJ-202302,HBREGKFJJ-202402)the State Key Laboratory of Geological Processes and Mineral Resources(No.GPMR202424)。
文摘Dabie-type porphyry Mo deposits were proposed as a new type of porphyry Mo deposits,and had unique geological characteristics.It is still poorly understood about the magmatic processes that led to the Dabie-type Mo mineralization.Here,we present zircon U-Pb and Lu-Hf isotopic,whole-rock and biotite elemental,and whole-rock Sr-Nd isotopic analyses on the Lingshan granitic batholith in the Dabie Orogen.It consists of three units(ⅠtoⅢ)that were emplaced before,genetically accompanied with,and after the Mo mineralization.LA-ICP-MS zircon U-Pb dating yielded crystallization ages of 128.2±1.0 Ma(MSWD=1.14)for UnitⅠand ages of 127.8±1.2 Ma(MSWD=0.28)and 126.6±1.8 Ma(MSWD=1.6)for UnitⅡ,indicating that they were emplaced during 130 to 125 Ma.The granites have high SiO_(2)contents(75.84 wt.%to 78.94 wt.%)and low MgO contents(0.07 wt.%to 0.10 wt.%),and are classified as fractionatedⅠ-type granite.UnitsⅠandⅡhave similar Sr-Nd isotopic ratios(ε_(Nd)(t)=-16.2 to-17.2,(^(87)Sr/^(86)Sr)_(i)=0.70540 to 0.70692)and zirconε_(Hf)(t)values(-17.4 to-20.4),indicating they were derived from partial melting of the ancient Yangtze lower crust.Mo mineralized granite from UnitⅡis characterized by the lower oxygen fugacity,fluorine enrichment and high fractionation.Magmas of unitsⅠandⅡhave experienced fractional crystallization,with the assimilation of supracrustal materials that account for the increased TiO_(2),F and Mo contents,and the decreased fO_(2).We proposed that the assimilation in upper-crustal magmatic processes plays key factors for magmatic systems that led to the Dabie-type porphyry Mo deposits.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272231 and 12227803).
文摘To accurately predict the three-dimensional flow characteristics of the flow field inside a waterjet propulsion pump,data assimilation(DA)method based on unsteady ensemble Kalman filter(EnKF)is used for the reconstruction of the flow field of a pump at different flow rates Q/Q_(opt)=0.85,1,1.15,where Q_(opt)is optimal flow rate at the design point.As a compensation to the spatial limitation of planar particle image velocimetry(PIV)measurements,dynamic delayed detached-eddy simulation(DDES)results validated by the PIV data is used to provide the observational data at the optimized probe locations.In DA procedure,the shear stress transport(SST)model constants are optimized by the EnKF approach.The model constants are subsequently rescaled and fitted to form a variation with the flow rate,which is extended to the prediction of the flow field with other flow rates in the vicinity of the design condition.The results show that the SST model with recalibrated constants has improved the prediction of the internal flow field in the waterjet propulsion pump,especially the separation flow in the diffuser section.The modified model constants mainly reduce the eddy viscosity and significantly improve the fluctuation characteristics in the flow field.This study provides a reference for the fast and accurate prediction of the flow field information in the waterjet propulsion pump.
基金part of the Centre for Research-based Innovation SmartForest:Bringing Industry 4.0 to the Norwegian forest sector(NFR SFI project no.309671,smartforest.no)。
文摘Site index(SI)is determined from the top height development and is a proxy for forest productivity,defined as the expected top height for a given species at a certain index age.In Norway,an index age of 40 years is used.By using bi-temporal airborne laser scanning(ALS)data,SI can be determined using models estimated from SI observed on field plots(the direct approach)or from predicted top heights at two points in time(the height differential approach).Time series of ALS data may enhance SI determination compared to conventional methods used in operational forest inventory by providing more detailed information about the top height development.We used longitudinal data comprising spatially consistent field and ALS data collected from training plots in 1999,2010,and 2022 to determine SI using the direct and height differential approaches using all combinations of years and performed an external validation.We also evaluated the use of data assimilation.Values of root mean square error obtained from external validation were in the ranges of 16.3%–21.4%and 12.8%–20.6%of the mean fieldregistered SI for the direct approach and the height differential approach,respectively.There were no statistically significant effects of time series length or the number of points in time on the obtained accuracies.Data assimilation did not result in any substantial improvement in the obtained accuracies.Although a time series of ALS data did not yield greater accuracies compared to using only two points in time,a larger proportion of the study area could be used in ALS-based determination of SI when a time series was available.This was because areas that were unsuitable for SI determination between two points in time could be subject to SI determination based on data from another part of the time series.
基金funded by the National Natural Science Foundation of China(Grant Nos.42192553 and 41805071)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_1413)the High Performance Computing Center of Nanjing University of Information Science&Technology for their support of this work。
文摘For all-sky infrared radiance assimilation,the heteroscedasticity and non-Gaussian behavior of observation-minusbackground(OMB)departures are two major difficulties.The Geer–Bauer observation error inflation(GBOEI)scheme is a universal way to handle the issues.However,it fails to take into account the consistency between model and observation,resulting in unreasonably large observation errors where the simulations agree with the observations.Thus,this study modifies the GBOEI scheme to rationalize the observation errors in such areas.With Advanced Himawari Imager water vapor channel data,the test results show that the normalized OMB with the new observation error approach leads to more Gaussian form than the GBOEI method and constant observation errors.Hence,the assimilation experiments with the new scheme produce better brightness temperature analysis than other methods,and also improve temperature and humidity analysis.Furthermore,a real case experiment of Typhoon Lekima(2019)with the new observation error scheme exhibits more accuracy,especially in track prediction,and substantial error reductions in wind,temperature,and humidity forecasts are also obtained.Meanwhile,5-day 6-hour cycling experiments in the real case of Typhoon Lekima(2019)with the new observation error scheme confirm that the new method does not introduce extra imbalance compared to the experiment with constant observation errors;plus,more accurate typhoon forecasts can also be obtained in both the analysis and forecast,especially in track prediction.
基金provided by the National Natural Science Foundation of China(No.41002022)the National Key R&D Program of China(No.2017YFC0602402)+3 种基金the Provincial Natural Science Foundation of Hunan(No.2019JJ50831)the Opening Foundation of State Key Laboratory of Continental Dynamics,Northwest University(No.20LCD08)the Funded by Open Research Fund Programme of the Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education(No.2018YSJS07)Bruna B.Carvalho is thankful to MIUR(Ministero dell’Istruzione,dell’Universitàe della Ricerca)for the award of a grant(No.PNRA18_00103)。
文摘Composite granitic pluton with distinct units is a potential target for identifying its detailed magma evolution.Here,we present zircon U-Pb ages and Hf isotope,whole-rock major and trace element compositions and Nd-Pb isotopes of the Wangxiang composite pluton,South China.New ages obtained show that these rocks were generated in Late Jurassic(ca.156–158 Ma).The rocks are divided into low silica(SiO_(2)<67 wt.%,biotite granodiorites and their dioritic enclaves)and high silica ones(SiO_(2)>71 wt.%,two-mica granites,garnet-bearing muscovite granites and muscovite granites).The high silica rocks are enriched in light rare earth elements(LREEs)relative to heavy REEs(HREEs)((La/Yb)_(N)=15.6–41.9,while the low silica rocks are not(0.7–76.6).All rocks show various negative Ti,Sr,Eu and strong positive Pb anomalies.The low silica rocks have less negative values ofε_(Nd)(t)(-8.79 to-6.99),similar values of~((206)Pb/^(204)Pb)_(i)(18.155–18.346)andε_(Hf)(t)(-9.51 to-3.47,except one-12.84),compared to the high silica rocks(ε_(Nd)(t)=-11.14 to-10.26;^((206)Pb/^(204)Pb)_(i)=17.935–19.093;ε_(Hf)(t)=-12.03 to-7.15,except one-2.41).Data suggest that the parental magma of the studied rocks(represented by enclaves)was produced by partial melting of a garnet-free crustal source.Subsequently those crustal magmas formed the more evolved units through assimilation and fractional crystallization processes,and fluid enrichment during the final magmatic activity.Combining our results with previous multidisciplinary studies,we propose that the key factor to control the evolution of Wangxiang composite pluton is discrete emplacement of crustal magmas by dyking.
基金supported by the National Natural Science Foundation of China(Grant No.42192553,Grant No.41805070)Open Grants of the State Key Laboratory of Severe Weather(2024LASW-B05)+7 种基金Natural Science Fund of Anhui Province of China under grant(2308085MD127)the China Meteorological Administration Tornado Key Laboratory(TKL202306)Beijige Funding from Jiangsu Research Institute of Meteorological Science(BJG202503)the Open Grants of China Meteorological Administration Radar Meteorology Key Laboratory(2023LRM-B03)the Open Project Fund of China Meteorological Administration Basin Heavy Rainfall Key Laboratory(2023BHRY20)the Shanghai Typhoon Research Foundation(TFJJ202107)Innovation and Development Projects of Anhui Provincial Meteorological Bureau(CXM202205)the High Performance Computing Center of Nanjing University of Information Science&Technology for their support of this work.
文摘Moisture conditions are crucial for the maintenance and development of severe convection.In the indirect assimilation of radar reflectivity,hydrometeors and water vapor retrieved from reflectivity are assimilated to avoid the nonlinearity issues associated with the observation operator.In a widely applied water vapor retrieval scheme,a cloud is assumed to be saturated when the radar reflectivity exceeds a certain threshold.This study replaces the traditional retrieval scheme with the“Z-RH”(radar reflectivity and relative humidity)linear statistical relationship for estimating the water vapor content,which is implemented to reduce the uncertainty caused by empirical relationships.The“Z-RH”relationship is statistically obtained from the humidity and the observations for rainfall rate at different temperature intervals with the use of the Z-R(radar reflectivity-rain rate)relationship.The impacts of these two retrieval approaches are investigated in the analyses and forecasts based on the radar reflectivity.The results suggest that both water vapor retrieval schemes yield similar reflectivity analyses,with“Z-RH”showing slightly stronger reflectivity intensities.Utilizing a“Z-RH”scheme contributes significantly to the improved analyses and forecasts of humidity and wind fields,resulting in more reasonable thermodynamic and dynamic structures.As the“Z-RH”relationship obtained by real-time statistics in a specific area provides a scientific basis for the retrieval of water vapor,a“Z-RH”scheme is beneficial to obtain more accurate reflectivity forecasts.The overall scores for the predicted precipitation of a“Z-RH”scheme are roughly 10%-20%higher compared to those of the traditional scheme.