With the unprecedented prevalence of Industrial Internet of Things(IIoT)and 5G technology,various applications supported by industrial communication systems have generated exponentially increased processing tasks,whic...With the unprecedented prevalence of Industrial Internet of Things(IIoT)and 5G technology,various applications supported by industrial communication systems have generated exponentially increased processing tasks,which makes task assignment inefficient due to insufficient workers.In this paper,an Intelligent and Trustworthy task assignment method based on Trust and Social relations(ITTS)is proposed for scenarios with many tasks and few workers.Specifically,ITTS first makes initial assignments based on trust and social influences,thereby transforming the complex large-scale industrial task assignment of the platform into the small-scale task assignment for each worker.Then,an intelligent Q-decision mechanism based on workers'social relation is proposed,which adopts the first-exploration-then-utilization principle to allocate tasks.Only when a worker cannot cope with the assigned tasks,it initiates dynamic worker recruitment,thus effectively solving the worker shortage problem as well as the cold start issue.More importantly,we consider trust and security issues,and evaluate the trust and social circles of workers by accumulating task feedback,to provide the platform a reference for worker recruitment,thereby creating a high-quality worker pool.Finally,extensive simulations demonstrate ITTS outperforms two benchmark methods by increasing task completion rates by 56.49%-61.53%and profit by 42.34%-47.19%.展开更多
Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and miss...Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.展开更多
A channel assignment algorithm with awareness of link traffic is proposed in multi-radio multi-channel wireless mesh networks. First, the physical interference model based on the signal-to-interference-plus-noise rati...A channel assignment algorithm with awareness of link traffic is proposed in multi-radio multi-channel wireless mesh networks. First, the physical interference model based on the signal-to-interference-plus-noise ratio and successful transmission condition is described. The model is more suitable for a wireless communication environment than other existing models. Secondly, a pure integer quadratic programming (PIQP) model is used to solve the channel assignment problem and improve the capacity of wireless mesh networks. Consequently, a traffic- aware static channel assignment algorithm(TASC) is designed. The algorithm adopts some network parameters, including the network connectivity, the limitation of the number of radios and the successful transmission conditions in wireless communications. The TASC algorithm can diminish network interference and increase the efficiency of channel assignment while keeping the connectivity of the network. Finally, the feasibility and effectivity of the channel assignment solution are illustrated by the simulation results. Compared witb similar algorithms, the proposed algorithm can increase the capacity of WMNs.展开更多
Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzz...Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzzy Entropy of Discrete Particle Swarm Optimization(IFDPSO) and makes it applied to Dynamic Weapon Target Assignment(WTA). First, the strategy of choosing intuitionistic fuzzy parameters of particle swarm is defined, making intuitionistic fuzzy entropy as a basic parameter for measure and velocity mutation. Second, through analyzing the defects of DPSO, an adjusting parameter for balancing two cognition, velocity mutation mechanism and position mutation strategy are designed, and then two sets of improved and derivative algorithms for IFDPSO are put forward, which ensures the IFDPSO possibly search as much as possible sub-optimal positions and its neighborhood and the algorithm ability of searching global optimal value in solving large scale 0-1 knapsack problem is intensified. Third, focusing on the problem of WTA, some parameters including dynamic parameter for shifting firepower and constraints are designed to solve the problems of weapon target assignment. In addition, WTA Optimization Model with time and resource constraints is finally set up, which also intensifies the algorithm ability of searching global and local best value in the solution of WTA problem. Finally, the superiority of IFDPSO is proved by several simulation experiments. Particularly, IFDPSO, IFDPSO1~IFDPSO3 are respectively effective in solving large scale, medium scale or strict constraint problems such as 0-1 knapsack problem and WTA problem.展开更多
The current mathematical models for the storage assignment problem are generally established based on the traveling salesman problem(TSP),which has been widely applied in the conventional automated storage and retri...The current mathematical models for the storage assignment problem are generally established based on the traveling salesman problem(TSP),which has been widely applied in the conventional automated storage and retrieval system(AS/RS).However,the previous mathematical models in conventional AS/RS do not match multi-tier shuttle warehousing systems(MSWS) because the characteristics of parallel retrieval in multiple tiers and progressive vertical movement destroy the foundation of TSP.In this study,a two-stage open queuing network model in which shuttles and a lift are regarded as servers at different stages is proposed to analyze system performance in the terms of shuttle waiting period(SWP) and lift idle period(LIP) during transaction cycle time.A mean arrival time difference matrix for pairwise stock keeping units(SKUs) is presented to determine the mean waiting time and queue length to optimize the storage assignment problem on the basis of SKU correlation.The decomposition method is applied to analyze the interactions among outbound task time,SWP,and LIP.The ant colony clustering algorithm is designed to determine storage partitions using clustering items.In addition,goods are assigned for storage according to the rearranging permutation and the combination of storage partitions in a 2D plane.This combination is derived based on the analysis results of the queuing network model and on three basic principles.The storage assignment method and its entire optimization algorithm method as applied in a MSWS are verified through a practical engineering project conducted in the tobacco industry.The applying results show that the total SWP and LIP can be reduced effectively to improve the utilization rates of all devices and to increase the throughput of the distribution center.展开更多
A novel Wireless Fidelity (WiFi) over fiber link and a wavelength assignment protocol are proposed to provide sufficient bandwidth and extensive coverage range for the various applications in the Internet of Things (I...A novel Wireless Fidelity (WiFi) over fiber link and a wavelength assignment protocol are proposed to provide sufficient bandwidth and extensive coverage range for the various applications in the Internet of Things (IoT).The performance of the WiFi over fiber-based wireless IoT network is evaluated in terms of error vector magnitude (EVM) and data throughput for both the up and down links between the WiFi central control system and remote radio units (RRUs).The experimental results illustrate the reliability of the fiber transmission of 64 Quadrature Amplitude Modulation (64QAM) WiFi signals by direct analog modulation.In order to efficiently utilize the wavelength resources,we also demonstrated the wavelength assignment protocol by employing optical switching configurations in Central Station (CS) to realize the wavelength switching,and the simulation results indicate the queuing size and the corresponding queue delay for different numbers of available wavelengths.展开更多
In order to solve the problem of efficiently assigning tasks in an ad-hoc mobile cloud( AMC),a task assignment algorithm based on the heuristic algorithm is proposed. The proposed task assignment algorithm based on pa...In order to solve the problem of efficiently assigning tasks in an ad-hoc mobile cloud( AMC),a task assignment algorithm based on the heuristic algorithm is proposed. The proposed task assignment algorithm based on particle swarm optimization and simulated annealing( PSO-SA) transforms the dependencies between tasks into a directed acyclic graph( DAG) model. The number in each node represents the computation workload of each task and the number on each edge represents the workload produced by the transmission. In order to simulate the environment of task assignment in AMC,mathematical models are developed to describe the dependencies between tasks and the costs of each task are defined. PSO-SA is used to make the decision for task assignment and for minimizing the cost of all devices,which includes the energy consumption and time delay of all devices.PSO-SA also takes the advantage of both particle swarm optimization and simulated annealing by selecting an optimal solution with a certain probability to avoid falling into local optimal solution and to guarantee the convergence speed. The simulation results show that compared with other existing algorithms,the PSO-SA has a smaller cost and the result of PSO-SA can be very close to the optimal solution.展开更多
This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical ...This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.展开更多
The task assignment problem of robots in a smart warehouse environment (TARSWE) based on cargo-to-person is investigated. Firstly, the sites of warehouse robots and the order picking tasks are given and the task ass...The task assignment problem of robots in a smart warehouse environment (TARSWE) based on cargo-to-person is investigated. Firstly, the sites of warehouse robots and the order picking tasks are given and the task assignment problem for picking one order is formulated into a mathematical model to minimize the total operation cost. Then a heuristic algorithm is designed to solve the task assignment problem for picking multiple orders. Finally, simulations are done by using the orders data of online bookstore A. The results show that using the heuristic algorithm of this paper to assign robots, the cost was reduced by 2% and it can effectively avoid far route and unbalanced workload of robots. The feasibility and validity of the model and algorithm are verified. The model and algorithm in this paper provide a theoretical basis to solve the TARSWE.展开更多
In this paper, we address one of the issues in the frequency assignment problem for cellular mobile networks in which we intend to minimize the interference levels when assigning frequencies from a limited frequency s...In this paper, we address one of the issues in the frequency assignment problem for cellular mobile networks in which we intend to minimize the interference levels when assigning frequencies from a limited frequency spectrum. In order to satisfy the increasing demand in such cellular mobile networks, we use a hybrid approach consisting of a Particle Swarm Optimization(PSO) combined with a Tabu Search(TS) algorithm. This approach takes both advantages of PSO efficiency in global optimization and TS in avoiding the premature convergence that would lead PSO to stagnate in a local minimum. Moreover, we propose a new efficient, simple, and inexpensive model for storing and evaluating solution's assignment. The purpose of this model reduces the solution's storage volume as well as the computations required to evaluate thesesolutions in comparison with the classical model. Our simulation results on the most known benchmarking instances prove the effectiveness of our proposed algorithm in comparison with previous related works in terms of convergence rate, the number of iterations, the solution storage volume and the running time required to converge to the optimal solution.展开更多
Iwagaki oyster,Crassostrea nippona,widely distributes along the seashore of Eastern Asia,and has been considered to be a potential breeding species due to its delicious taste and high commercial value.In order to stud...Iwagaki oyster,Crassostrea nippona,widely distributes along the seashore of Eastern Asia,and has been considered to be a potential breeding species due to its delicious taste and high commercial value.In order to study its genetic background and population structure,we developed 46 novel polymorphic microsatellite markers using next-generation sequencing technique and characterized them in 30 individuals.The number of alleles ranged from 3 to 22,while the observed and expected heterozygosities varied from 0.133 to 1.000 and 0.455 to 0.949,respectively.Fifteen microsatellite markers were selected and grouped into five highly informative multiplex PCRs for C.nippona.We evaluated and validated these multiplex PCRs in a cultured population including 173 candidate parents and 486 offspring.In actual parentage analysis,80%of the offspring were correctly assigned to their parental pairs using three multiplex PCRs.Furthermore,the success rate of parentage assignment reached 96%when the other two multiplex PCRs were added.These 46 microsatellite loci with high variability and the five multiplex PCRs described here provide a powerful tool for pedigree reconstruction,resource conservation and selective breeding program of C.nippona.展开更多
In wavelength division multiplexing (WDM) networks without wavelengthconversion functionality, we convert the dynamic routing and wavelength assignment problem formulti-lightpath demands to the edge-disjoint paths pro...In wavelength division multiplexing (WDM) networks without wavelengthconversion functionality, we convert the dynamic routing and wavelength assignment problem formulti-lightpath demands to the edge-disjoint paths problem, and propose a new algorithm. Thecomputer simulations show that the proposed algorithm has better blocking probability performancethan a sequential algorithm, which first separates a multi-lightpath demand into mutilplesingle-lightpath demands, then uses the fixed-alternate routing-first fit wavelength assignment(AR-FF) algorithm for each single-lightpath demand.展开更多
Solving the absent assignment problem of the shortest time limit in a weighted bipartite graph with the minimal weighted k-matching algorithm is unsuitable for situations in which large numbers of problems need to be ...Solving the absent assignment problem of the shortest time limit in a weighted bipartite graph with the minimal weighted k-matching algorithm is unsuitable for situations in which large numbers of problems need to be addressed by large numbers of parties. This paper simplifies the algorithm of searching for the even alternating path that contains a maximal element using the minimal weighted k-matching theorem and intercept graph. A program for solving the maximal efficiency assignment problem was compiled. As a case study, the program was used to solve the assignment problem of water piping repair in the case of a large number of companies and broken pipes, and the validity of the program was verified.展开更多
In this paper, we propose a new multicast wavelength assignment algorithm called NGWA with complexity of O(N), where N is the number of nodes on a multicast tree. The whole procedure of NGWA algorithm is separated int...In this paper, we propose a new multicast wavelength assignment algorithm called NGWA with complexity of O(N), where N is the number of nodes on a multicast tree. The whole procedure of NGWA algorithm is separated into two phases: the partial wavelength assignment phase and the complete wavelength assignment phase. It tries to minimize the total number of wavelength conversions of the multicast tree. Meanwhile, the number of different wavelengths used is minimized locally. Through illustrative example and simulation experiments, it is proved that the NGWA algorithm works well and achieves satisfactory performance in terms of the average number of wavelength conversions and the average blocking probability.展开更多
Given a set of lightpath connection requests in an all-10 Gb/s optical dense wavelength division multiplexed (DWDM) Ethernet network, lightpaths are designed. In addition the wavelength channels are assigned subject t...Given a set of lightpath connection requests in an all-10 Gb/s optical dense wavelength division multiplexed (DWDM) Ethernet network, lightpaths are designed. In addition the wavelength channels are assigned subject to minimization of the channel blocking and provisional requests satisfying the limits due to accumulative linear dispersion effects over the hops. This paper proposes a routing and wavelength assignment scheme for DWDM long-haul optical networks that includes routing, assignment and reservation of different wavelength channels operating under the Generalized Multiprotocol Label Switching (GMPLS) environment. The GMPLS framework can offer an approach to implement IP over DWDM with variable weighting assignments of routes based on the limitations due to residual dispersion accumulated on the lightwave path. The modeling is implemented under the framework of an object-oriented modeling platform OMNeT++. Network performance tests are evaluated based mainly on a long-haul terrestrial fiber mesh network composed of as well as three topologies structured as chain, ring, and mesh configurations. Blocking probability of lightpath connection requests are examined with the average link utilization in the network employing variable number of wavelength channels in association with the limits of route distance due to linear chromatic and polarization mode dispersion effects.展开更多
With the rapid development of civil aviation in recent years,the management and assignment of airport resources are becoming more and more difficult.Among the various airport resources,gates and taxiways are very impo...With the rapid development of civil aviation in recent years,the management and assignment of airport resources are becoming more and more difficult.Among the various airport resources,gates and taxiways are very important,therefore,many researchers focus on the airport gate and taxiway assignment problem.However,the joint assignment algorithm of airport gates and taxiways with realistic airport data has not been well studied.A greedy algorithm based on joint assignment of airport gates and taxiways using the data of a large hub airport in China is proposed.The objective is maximizing the ratio of fixed gates and minimizing the ratio of taxiway collisions.Simulation results show that it outperforms other assignment schemes.展开更多
To solve the routing and wavelength assignment problem in the optical network, this paper put forward the metric model with sparse wavelength conversion and routing algorithm with pruning (RAP) in order to efficient...To solve the routing and wavelength assignment problem in the optical network, this paper put forward the metric model with sparse wavelength conversion and routing algorithm with pruning (RAP) in order to efficiently realize the resource management in the unified way. Related methods with dynamic and adaptation characters considered the link state conditions and certain heuristic information. They can be applied to current network environments. In particular, the simulation was made according to the selfsimilar traffic and the results showed that the corresponding methods not only provided service differentiation but also reduced the overall average blocking Drobabilitv.展开更多
Routing and wavelength assignment for online real-time multicast connection setup is a difficult task due to the dynamic change of availabilities of wavelengths on links and the consideration of wavelength conversion ...Routing and wavelength assignment for online real-time multicast connection setup is a difficult task due to the dynamic change of availabilities of wavelengths on links and the consideration of wavelength conversion delay in WDM networks.This paper presents a distributed routing and wavelength assignment scheme for the setup of real-time multicast connections.It integrates routing and wavelength assignment as a single process,which greatly reduces the connection setup time.The proposed routing method is based on the Prim’s MST(Minimum Spanning Tree)algorithm and the K-restricted breadth-first search method,which can produce a sub-minimal cost tree under a given delay bound.The wave-length assignment uses the least-conversion and load balancing strategies.Simulation results show that the proposed algorithm is suitable for online multicast connection establishment in WDM networks.展开更多
As feature sizes shrink,low energy consumption,high reliability and high performance become key objectives of network-on-chip(NoC) design.In this paper,an integrated approach is presented to map IP cores onto NoC arch...As feature sizes shrink,low energy consumption,high reliability and high performance become key objectives of network-on-chip(NoC) design.In this paper,an integrated approach is presented to map IP cores onto NoC architecture and assign voltage levels for each link,such that the communication energy is minimized under constraints of bandwidth and reliability.The design space is explored using tabu search.In order to select optimal voltage level for the links,an energy-efficiency driven heuristic algorithm is proposed to perform energy/reliability trade-off by exploiting communication slack.Experimental results show that the ordinary energy optimization techniques ignoring the influence of voltage on fault rates could lead to drastically decreased communication reliability of NoCs,and the proposed approach can produce reliable and energy-efficient implementations.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.62072475 and No.62302062in part by the Hunan Provincial Natural Science Foundation of China under Grant Number 2023JJ40081。
文摘With the unprecedented prevalence of Industrial Internet of Things(IIoT)and 5G technology,various applications supported by industrial communication systems have generated exponentially increased processing tasks,which makes task assignment inefficient due to insufficient workers.In this paper,an Intelligent and Trustworthy task assignment method based on Trust and Social relations(ITTS)is proposed for scenarios with many tasks and few workers.Specifically,ITTS first makes initial assignments based on trust and social influences,thereby transforming the complex large-scale industrial task assignment of the platform into the small-scale task assignment for each worker.Then,an intelligent Q-decision mechanism based on workers'social relation is proposed,which adopts the first-exploration-then-utilization principle to allocate tasks.Only when a worker cannot cope with the assigned tasks,it initiates dynamic worker recruitment,thus effectively solving the worker shortage problem as well as the cold start issue.More importantly,we consider trust and security issues,and evaluate the trust and social circles of workers by accumulating task feedback,to provide the platform a reference for worker recruitment,thereby creating a high-quality worker pool.Finally,extensive simulations demonstrate ITTS outperforms two benchmark methods by increasing task completion rates by 56.49%-61.53%and profit by 42.34%-47.19%.
文摘Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.
基金The National Basic Research Program of China(973Program)(No.2009CB320501)the Natural Science Foundation of Jiangsu Province(No.BK2010414)+1 种基金China Postdoctoral Science Foundation(No.20100480071)Specialized Research Fund for the Doctoral Program of Higher Education(No.20090092120029)
文摘A channel assignment algorithm with awareness of link traffic is proposed in multi-radio multi-channel wireless mesh networks. First, the physical interference model based on the signal-to-interference-plus-noise ratio and successful transmission condition is described. The model is more suitable for a wireless communication environment than other existing models. Secondly, a pure integer quadratic programming (PIQP) model is used to solve the channel assignment problem and improve the capacity of wireless mesh networks. Consequently, a traffic- aware static channel assignment algorithm(TASC) is designed. The algorithm adopts some network parameters, including the network connectivity, the limitation of the number of radios and the successful transmission conditions in wireless communications. The TASC algorithm can diminish network interference and increase the efficiency of channel assignment while keeping the connectivity of the network. Finally, the feasibility and effectivity of the channel assignment solution are illustrated by the simulation results. Compared witb similar algorithms, the proposed algorithm can increase the capacity of WMNs.
基金supported by The National Natural Science Foundation of China under Grant Nos.61402517, 61573375The Foundation of State Key Laboratory of Astronautic Dynamics of China under Grant No. 2016ADL-DW0302+2 种基金The Postdoctoral Science Foundation of China under Grant Nos. 2013M542331, 2015M572778The Natural Science Foundation of Shaanxi Province of China under Grant No. 2013JQ8035The Aviation Science Foundation of China under Grant No. 20151996015
文摘Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzzy Entropy of Discrete Particle Swarm Optimization(IFDPSO) and makes it applied to Dynamic Weapon Target Assignment(WTA). First, the strategy of choosing intuitionistic fuzzy parameters of particle swarm is defined, making intuitionistic fuzzy entropy as a basic parameter for measure and velocity mutation. Second, through analyzing the defects of DPSO, an adjusting parameter for balancing two cognition, velocity mutation mechanism and position mutation strategy are designed, and then two sets of improved and derivative algorithms for IFDPSO are put forward, which ensures the IFDPSO possibly search as much as possible sub-optimal positions and its neighborhood and the algorithm ability of searching global optimal value in solving large scale 0-1 knapsack problem is intensified. Third, focusing on the problem of WTA, some parameters including dynamic parameter for shifting firepower and constraints are designed to solve the problems of weapon target assignment. In addition, WTA Optimization Model with time and resource constraints is finally set up, which also intensifies the algorithm ability of searching global and local best value in the solution of WTA problem. Finally, the superiority of IFDPSO is proved by several simulation experiments. Particularly, IFDPSO, IFDPSO1~IFDPSO3 are respectively effective in solving large scale, medium scale or strict constraint problems such as 0-1 knapsack problem and WTA problem.
基金Supported by National Natural Science Foundation of China(Grant No.661403234)Shandong Provincial Science and Techhnology Development Plan of China(Grant No.2014GGX106009)
文摘The current mathematical models for the storage assignment problem are generally established based on the traveling salesman problem(TSP),which has been widely applied in the conventional automated storage and retrieval system(AS/RS).However,the previous mathematical models in conventional AS/RS do not match multi-tier shuttle warehousing systems(MSWS) because the characteristics of parallel retrieval in multiple tiers and progressive vertical movement destroy the foundation of TSP.In this study,a two-stage open queuing network model in which shuttles and a lift are regarded as servers at different stages is proposed to analyze system performance in the terms of shuttle waiting period(SWP) and lift idle period(LIP) during transaction cycle time.A mean arrival time difference matrix for pairwise stock keeping units(SKUs) is presented to determine the mean waiting time and queue length to optimize the storage assignment problem on the basis of SKU correlation.The decomposition method is applied to analyze the interactions among outbound task time,SWP,and LIP.The ant colony clustering algorithm is designed to determine storage partitions using clustering items.In addition,goods are assigned for storage according to the rearranging permutation and the combination of storage partitions in a 2D plane.This combination is derived based on the analysis results of the queuing network model and on three basic principles.The storage assignment method and its entire optimization algorithm method as applied in a MSWS are verified through a practical engineering project conducted in the tobacco industry.The applying results show that the total SWP and LIP can be reduced effectively to improve the utilization rates of all devices and to increase the throughput of the distribution center.
基金supported by the National Natural Science Foundation of China (Nos.60702006,60736002,60837004,60736036,60932004and61001121)the MOST International Cooperation Program(No.2008DFA11670)+1 种基金the 111 Project(No.B07005)the project funded by State Key Laboratory of AOCSN,China
文摘A novel Wireless Fidelity (WiFi) over fiber link and a wavelength assignment protocol are proposed to provide sufficient bandwidth and extensive coverage range for the various applications in the Internet of Things (IoT).The performance of the WiFi over fiber-based wireless IoT network is evaluated in terms of error vector magnitude (EVM) and data throughput for both the up and down links between the WiFi central control system and remote radio units (RRUs).The experimental results illustrate the reliability of the fiber transmission of 64 Quadrature Amplitude Modulation (64QAM) WiFi signals by direct analog modulation.In order to efficiently utilize the wavelength resources,we also demonstrated the wavelength assignment protocol by employing optical switching configurations in Central Station (CS) to realize the wavelength switching,and the simulation results indicate the queuing size and the corresponding queue delay for different numbers of available wavelengths.
基金The National Natural Science Foundation of China(No.61741102,61471164,61601122)the Fundamental Research Funds for the Central Universities(No.SJLX_160040)
文摘In order to solve the problem of efficiently assigning tasks in an ad-hoc mobile cloud( AMC),a task assignment algorithm based on the heuristic algorithm is proposed. The proposed task assignment algorithm based on particle swarm optimization and simulated annealing( PSO-SA) transforms the dependencies between tasks into a directed acyclic graph( DAG) model. The number in each node represents the computation workload of each task and the number on each edge represents the workload produced by the transmission. In order to simulate the environment of task assignment in AMC,mathematical models are developed to describe the dependencies between tasks and the costs of each task are defined. PSO-SA is used to make the decision for task assignment and for minimizing the cost of all devices,which includes the energy consumption and time delay of all devices.PSO-SA also takes the advantage of both particle swarm optimization and simulated annealing by selecting an optimal solution with a certain probability to avoid falling into local optimal solution and to guarantee the convergence speed. The simulation results show that compared with other existing algorithms,the PSO-SA has a smaller cost and the result of PSO-SA can be very close to the optimal solution.
基金supported by the National Natural Science Foundation of China(No.61675033,61575026,61675233)National High Technical Research and Development Program of China(No.2015AA015504)
文摘This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.
基金Project Supported: National Natural Science Foundation of China (11131009, 71540028, F012408), Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (CIT&TCD20130327), and major research project of Beijing Wuzi University.
文摘The task assignment problem of robots in a smart warehouse environment (TARSWE) based on cargo-to-person is investigated. Firstly, the sites of warehouse robots and the order picking tasks are given and the task assignment problem for picking one order is formulated into a mathematical model to minimize the total operation cost. Then a heuristic algorithm is designed to solve the task assignment problem for picking multiple orders. Finally, simulations are done by using the orders data of online bookstore A. The results show that using the heuristic algorithm of this paper to assign robots, the cost was reduced by 2% and it can effectively avoid far route and unbalanced workload of robots. The feasibility and validity of the model and algorithm are verified. The model and algorithm in this paper provide a theoretical basis to solve the TARSWE.
文摘In this paper, we address one of the issues in the frequency assignment problem for cellular mobile networks in which we intend to minimize the interference levels when assigning frequencies from a limited frequency spectrum. In order to satisfy the increasing demand in such cellular mobile networks, we use a hybrid approach consisting of a Particle Swarm Optimization(PSO) combined with a Tabu Search(TS) algorithm. This approach takes both advantages of PSO efficiency in global optimization and TS in avoiding the premature convergence that would lead PSO to stagnate in a local minimum. Moreover, we propose a new efficient, simple, and inexpensive model for storing and evaluating solution's assignment. The purpose of this model reduces the solution's storage volume as well as the computations required to evaluate thesesolutions in comparison with the classical model. Our simulation results on the most known benchmarking instances prove the effectiveness of our proposed algorithm in comparison with previous related works in terms of convergence rate, the number of iterations, the solution storage volume and the running time required to converge to the optimal solution.
基金supported by the National Natural Science Foundation of China (No. 31772843)the Natural Sci- ence Foundation of Guangxi Province (No. AA17204080-4)the Fundamental Research Funds for the Central Uni- versities (No. 201762014)
文摘Iwagaki oyster,Crassostrea nippona,widely distributes along the seashore of Eastern Asia,and has been considered to be a potential breeding species due to its delicious taste and high commercial value.In order to study its genetic background and population structure,we developed 46 novel polymorphic microsatellite markers using next-generation sequencing technique and characterized them in 30 individuals.The number of alleles ranged from 3 to 22,while the observed and expected heterozygosities varied from 0.133 to 1.000 and 0.455 to 0.949,respectively.Fifteen microsatellite markers were selected and grouped into five highly informative multiplex PCRs for C.nippona.We evaluated and validated these multiplex PCRs in a cultured population including 173 candidate parents and 486 offspring.In actual parentage analysis,80%of the offspring were correctly assigned to their parental pairs using three multiplex PCRs.Furthermore,the success rate of parentage assignment reached 96%when the other two multiplex PCRs were added.These 46 microsatellite loci with high variability and the five multiplex PCRs described here provide a powerful tool for pedigree reconstruction,resource conservation and selective breeding program of C.nippona.
基金Supported by the National High Technology Development 863 Program of China(2001AA122023)
文摘In wavelength division multiplexing (WDM) networks without wavelengthconversion functionality, we convert the dynamic routing and wavelength assignment problem formulti-lightpath demands to the edge-disjoint paths problem, and propose a new algorithm. Thecomputer simulations show that the proposed algorithm has better blocking probability performancethan a sequential algorithm, which first separates a multi-lightpath demand into mutilplesingle-lightpath demands, then uses the fixed-alternate routing-first fit wavelength assignment(AR-FF) algorithm for each single-lightpath demand.
文摘Solving the absent assignment problem of the shortest time limit in a weighted bipartite graph with the minimal weighted k-matching algorithm is unsuitable for situations in which large numbers of problems need to be addressed by large numbers of parties. This paper simplifies the algorithm of searching for the even alternating path that contains a maximal element using the minimal weighted k-matching theorem and intercept graph. A program for solving the maximal efficiency assignment problem was compiled. As a case study, the program was used to solve the assignment problem of water piping repair in the case of a large number of companies and broken pipes, and the validity of the program was verified.
文摘In this paper, we propose a new multicast wavelength assignment algorithm called NGWA with complexity of O(N), where N is the number of nodes on a multicast tree. The whole procedure of NGWA algorithm is separated into two phases: the partial wavelength assignment phase and the complete wavelength assignment phase. It tries to minimize the total number of wavelength conversions of the multicast tree. Meanwhile, the number of different wavelengths used is minimized locally. Through illustrative example and simulation experiments, it is proved that the NGWA algorithm works well and achieves satisfactory performance in terms of the average number of wavelength conversions and the average blocking probability.
文摘Given a set of lightpath connection requests in an all-10 Gb/s optical dense wavelength division multiplexed (DWDM) Ethernet network, lightpaths are designed. In addition the wavelength channels are assigned subject to minimization of the channel blocking and provisional requests satisfying the limits due to accumulative linear dispersion effects over the hops. This paper proposes a routing and wavelength assignment scheme for DWDM long-haul optical networks that includes routing, assignment and reservation of different wavelength channels operating under the Generalized Multiprotocol Label Switching (GMPLS) environment. The GMPLS framework can offer an approach to implement IP over DWDM with variable weighting assignments of routes based on the limitations due to residual dispersion accumulated on the lightwave path. The modeling is implemented under the framework of an object-oriented modeling platform OMNeT++. Network performance tests are evaluated based mainly on a long-haul terrestrial fiber mesh network composed of as well as three topologies structured as chain, ring, and mesh configurations. Blocking probability of lightpath connection requests are examined with the average link utilization in the network employing variable number of wavelength channels in association with the limits of route distance due to linear chromatic and polarization mode dispersion effects.
基金the National Natural Science Foundation of China(No.U1633115,61571021)the Science and Technology Foundation of Beijing Municipal Commission of Education(No.KM201810005027).
文摘With the rapid development of civil aviation in recent years,the management and assignment of airport resources are becoming more and more difficult.Among the various airport resources,gates and taxiways are very important,therefore,many researchers focus on the airport gate and taxiway assignment problem.However,the joint assignment algorithm of airport gates and taxiways with realistic airport data has not been well studied.A greedy algorithm based on joint assignment of airport gates and taxiways using the data of a large hub airport in China is proposed.The objective is maximizing the ratio of fixed gates and minimizing the ratio of taxiway collisions.Simulation results show that it outperforms other assignment schemes.
文摘To solve the routing and wavelength assignment problem in the optical network, this paper put forward the metric model with sparse wavelength conversion and routing algorithm with pruning (RAP) in order to efficiently realize the resource management in the unified way. Related methods with dynamic and adaptation characters considered the link state conditions and certain heuristic information. They can be applied to current network environments. In particular, the simulation was made according to the selfsimilar traffic and the results showed that the corresponding methods not only provided service differentiation but also reduced the overall average blocking Drobabilitv.
文摘Routing and wavelength assignment for online real-time multicast connection setup is a difficult task due to the dynamic change of availabilities of wavelengths on links and the consideration of wavelength conversion delay in WDM networks.This paper presents a distributed routing and wavelength assignment scheme for the setup of real-time multicast connections.It integrates routing and wavelength assignment as a single process,which greatly reduces the connection setup time.The proposed routing method is based on the Prim’s MST(Minimum Spanning Tree)algorithm and the K-restricted breadth-first search method,which can produce a sub-minimal cost tree under a given delay bound.The wave-length assignment uses the least-conversion and load balancing strategies.Simulation results show that the proposed algorithm is suitable for online multicast connection establishment in WDM networks.
基金Supported by the Natural Science Foundation of China(No.61003032,61100118)Artificial Intelligence Key Laboratory of Sichuan Province of China(No.2010RY010,2011RYJ05)
文摘As feature sizes shrink,low energy consumption,high reliability and high performance become key objectives of network-on-chip(NoC) design.In this paper,an integrated approach is presented to map IP cores onto NoC architecture and assign voltage levels for each link,such that the communication energy is minimized under constraints of bandwidth and reliability.The design space is explored using tabu search.In order to select optimal voltage level for the links,an energy-efficiency driven heuristic algorithm is proposed to perform energy/reliability trade-off by exploiting communication slack.Experimental results show that the ordinary energy optimization techniques ignoring the influence of voltage on fault rates could lead to drastically decreased communication reliability of NoCs,and the proposed approach can produce reliable and energy-efficient implementations.