Stimuli-triggered drug delivery systems hold vast promise in local infection treatment for the site-specific targeting and shuttling of drugs.Herein,chitosan conjugates(SPCS)installed with sialic acid(SA)and phenylbor...Stimuli-triggered drug delivery systems hold vast promise in local infection treatment for the site-specific targeting and shuttling of drugs.Herein,chitosan conjugates(SPCS)installed with sialic acid(SA)and phenylboronic acid(PBA)were synthesized,of which SA served as targeting ligand for coccidium and reversible-binding bridge for PBA.The enhanced drug-loading capacity of SPCS micelles was attributed to a combination assembly from hydrophobicity-driving and reversible borate bridges.The drug-loaded SPCS micelles shared superior biostability in upper gastrointestinal tract.After reaching the lesions,the borate bridges were snipped by carbohydrates under a higher pH followed by accelerated drug release,while SA exposure on micellar surface facilitated drug cellular internalization to eliminate parasites inside.The drugmicelles revealed an enhanced anti-coccidial capacity with a higher index of 185.72 compared with commercial preparation.The dual-responsive combination of physicochemical assembly could provide an efficient strategy for the exploitation of stable,safe and flexible anti-infectious drug delivery systems.展开更多
Both morphology and composition have a great influence on the properties and functions of materials,however,how to rational modulate both of them to achieve their synergistic effects has been a longstanding expectatio...Both morphology and composition have a great influence on the properties and functions of materials,however,how to rational modulate both of them to achieve their synergistic effects has been a longstanding expectation.Herein,we demonstrate a competitive assembling strategy for the construction of metal-free graphite carbon nitride(CN)homojunctions in which morphology and composition can be easily controlled simultaneously by only changing the ratio of assembly raw materials.These homojunctions are comprised of porous nanotubular S-doped CN(SCN)grafted with CN nanovesicles,which are derived from thermal polycondensation of melamine-thiocyanuric acid(M-T)/melamine-cyanuric acid(M-C)supramolecular hybrid blocks.This unique architecture and component engineering endows the novel SCN-CN homojunction with abundant active sites,enhanced visible trapping ability,and intimate interface contact.As a result,the synthesized SCN-CN homojunctions demonstrate high photocatalytic activity for hydrogen evolution and pollutant degradation.This developed strategy opens up intriguing opportu-nities for the rational construction of intricate metal-free heterostructures with controllable architecture and interfacial contact for applications in energy-related fields.展开更多
Nanocarbon-based materials, such as carbon nanotubes(CNTs) and graphene have been attached much attention by scientific and industrial community. As two representative nanocarbon materials, one-dimensional CNTs and tw...Nanocarbon-based materials, such as carbon nanotubes(CNTs) and graphene have been attached much attention by scientific and industrial community. As two representative nanocarbon materials, one-dimensional CNTs and twodimensional graphene both possess remarkable mechanical properties. In the past years, a large amount of work have been done by using CNTs or graphene as building blocks for constructing novel, macroscopic, mechanically strong fibrous materials. In this review, we summarize the assembly approaches of CNT-based fibers and graphene-based fibers in chronological order, respectively. The mechanical performances of these fibrous materials are compared, and the critical influences on the mechanical properties are discussed. Personal perspectives on the fabrication methods of CNT-and graphene-based fibers are further presented.展开更多
Gold nanoclusters(AuNCs)have garnered significant attention due to their unique photoluminescent,catalytic,and therapeutic properties.Since the discovery of their ability to enhance emission through aggregation,resear...Gold nanoclusters(AuNCs)have garnered significant attention due to their unique photoluminescent,catalytic,and therapeutic properties.Since the discovery of their ability to enhance emission through aggregation,researchers have extensively studied hybrid nanomaterials formed by combining AuNCs with various components through assembly.Assembly can significantly improve the original performance of AuNCs and confer additional properties such as responsiveness and targeting.These assembly strategies greatly expand the potential applications of AuNCs and are regarded as essential means to improve the detection,imaging,and therapeutic capabilities.This review categorizes recent advancements in AuNC assembly methods,including self-assembly and co-assembly of AuNCs.In addition,the emerging directions in the in vivo assembly and disassembly of AuNCs are also being addressed.We also discuss the applications of AuNC assemblies in in vitro biodetection,in vivo bioimaging,and therapeutic platforms.Finally,we offer prospects for the future development of AuNC assemblies.With further exploration of assembly strategies,mechanisms,and application designs,AuNC assemblies are expected to play a more significant role in more fields.展开更多
基金financial support from National Key Research and Development Program(2017YFD0501403)National Natural Science Foundation of China(Nos.81872819)+4 种基金Natural Science Foundation of Jiangsu Province(No.BK20171390)supported by Double First-Rate construction plan of China Pharmaceutical University(CPU2018GY26)the Project of State Key Laboratory of Natural Medicines,China Pharmaceutical University(No.SKLNMZZCX201816)the National Science and Technology Major Project(2017ZX09101001)the financial support from Development Funds for Priority Academic Programs in Jiangsu Higher Education Institutions-Young Talent Program。
文摘Stimuli-triggered drug delivery systems hold vast promise in local infection treatment for the site-specific targeting and shuttling of drugs.Herein,chitosan conjugates(SPCS)installed with sialic acid(SA)and phenylboronic acid(PBA)were synthesized,of which SA served as targeting ligand for coccidium and reversible-binding bridge for PBA.The enhanced drug-loading capacity of SPCS micelles was attributed to a combination assembly from hydrophobicity-driving and reversible borate bridges.The drug-loaded SPCS micelles shared superior biostability in upper gastrointestinal tract.After reaching the lesions,the borate bridges were snipped by carbohydrates under a higher pH followed by accelerated drug release,while SA exposure on micellar surface facilitated drug cellular internalization to eliminate parasites inside.The drugmicelles revealed an enhanced anti-coccidial capacity with a higher index of 185.72 compared with commercial preparation.The dual-responsive combination of physicochemical assembly could provide an efficient strategy for the exploitation of stable,safe and flexible anti-infectious drug delivery systems.
基金the National Natural Science Foundation of China(Nos.51772085,12072110)the Natural Science Foundation of Hunan Province(No.2020JJ4190).
文摘Both morphology and composition have a great influence on the properties and functions of materials,however,how to rational modulate both of them to achieve their synergistic effects has been a longstanding expectation.Herein,we demonstrate a competitive assembling strategy for the construction of metal-free graphite carbon nitride(CN)homojunctions in which morphology and composition can be easily controlled simultaneously by only changing the ratio of assembly raw materials.These homojunctions are comprised of porous nanotubular S-doped CN(SCN)grafted with CN nanovesicles,which are derived from thermal polycondensation of melamine-thiocyanuric acid(M-T)/melamine-cyanuric acid(M-C)supramolecular hybrid blocks.This unique architecture and component engineering endows the novel SCN-CN homojunction with abundant active sites,enhanced visible trapping ability,and intimate interface contact.As a result,the synthesized SCN-CN homojunctions demonstrate high photocatalytic activity for hydrogen evolution and pollutant degradation.This developed strategy opens up intriguing opportu-nities for the rational construction of intricate metal-free heterostructures with controllable architecture and interfacial contact for applications in energy-related fields.
基金supported by the National Natural Science Foundation of China (Nos. 21325417, 51533008)the MOST National Key Research and Development Plan (2016YFA0200200)+1 种基金the National Postdoctoral Program for Innovative Talents (No. BX201700209)the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (No. LK1403)
文摘Nanocarbon-based materials, such as carbon nanotubes(CNTs) and graphene have been attached much attention by scientific and industrial community. As two representative nanocarbon materials, one-dimensional CNTs and twodimensional graphene both possess remarkable mechanical properties. In the past years, a large amount of work have been done by using CNTs or graphene as building blocks for constructing novel, macroscopic, mechanically strong fibrous materials. In this review, we summarize the assembly approaches of CNT-based fibers and graphene-based fibers in chronological order, respectively. The mechanical performances of these fibrous materials are compared, and the critical influences on the mechanical properties are discussed. Personal perspectives on the fabrication methods of CNT-and graphene-based fibers are further presented.
基金financially supported by the National Natural Science Foundation of China(Nos.52003097 and 52293474)the Shenzhen Science and Technology Program(No.CYJ20220530160603007).
文摘Gold nanoclusters(AuNCs)have garnered significant attention due to their unique photoluminescent,catalytic,and therapeutic properties.Since the discovery of their ability to enhance emission through aggregation,researchers have extensively studied hybrid nanomaterials formed by combining AuNCs with various components through assembly.Assembly can significantly improve the original performance of AuNCs and confer additional properties such as responsiveness and targeting.These assembly strategies greatly expand the potential applications of AuNCs and are regarded as essential means to improve the detection,imaging,and therapeutic capabilities.This review categorizes recent advancements in AuNC assembly methods,including self-assembly and co-assembly of AuNCs.In addition,the emerging directions in the in vivo assembly and disassembly of AuNCs are also being addressed.We also discuss the applications of AuNC assemblies in in vitro biodetection,in vivo bioimaging,and therapeutic platforms.Finally,we offer prospects for the future development of AuNC assemblies.With further exploration of assembly strategies,mechanisms,and application designs,AuNC assemblies are expected to play a more significant role in more fields.