The L-shape mitochondrial complex I(CI)consists of four modules:nicotinamide-adenine dinucleotide hydrogen-binding module(N)and ubiquinone-binding module(Q)in the matrix arm and proximal-pump module(P_(P))and distal-p...The L-shape mitochondrial complex I(CI)consists of four modules:nicotinamide-adenine dinucleotide hydrogen-binding module(N)and ubiquinone-binding module(Q)in the matrix arm and proximal-pump module(P_(P))and distal-pump module(P_(D))in the membrane arm.As mitochondrial mutants are unavailable,the CI assembly pathway in plants is unclear.We investigated the CI assembly process using the maize RNA processing mutants deficient in individual CI components.Complexome profiling detected all major assembly intermediates of each module,confirming their independent assembly pathway.A block in the Q module assembly causes the accumulation of the membrane arm,whereas a block in the P_(D) module assembly results in the accumulation of CI^(*),a subcomplex assembled by P_(P) with the matrix arm.We further isolated and analyzed the mutants of two CI assembly factors,ZmGLDH and CRK1.The absence of either ZmGLDH or CRK1 eliminates the accumulation of CI^(*)but allows a substantial amount of CI to be assembled.The membrane arm was also accumulated in zmgldh and crk1.Together,these results suggest two CI assembly pathways.The P_(D)-early former starts with the assembly of P_(P) with P_(D),forming the membrane arm,then joins with the matrix arm to produce CI.The P_(D)-late pathway is initiated by assembling P_(P) with the matrix arm to yield CI^(*),which is then combined with P_(D) to form CI.展开更多
The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they ...The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they exhibit dense interconnectivity(Braitenburg and Schüz,1998;Campagnola et al.,2022).The strength and probability of connectivity depend on cell type,inter-neuronal distance,and species.Still,every cortical neuron receives input from thousands of other neurons while transmitting output to a similar number of neurons.Second,communication between neurons occurs primarily via chemical or electrical synapses.展开更多
Background India harbors the world’s largest cattle population,encompassing over 50 distinct Bos indicus breeds.This rich genetic diversity underscores the inadequacy of a single reference genome to fully capture the...Background India harbors the world’s largest cattle population,encompassing over 50 distinct Bos indicus breeds.This rich genetic diversity underscores the inadequacy of a single reference genome to fully capture the genomic landscape of Indian cattle.To comprehensively characterize the genomic variation within Bos indicus and,specifically,dairy breeds,we aim to identify non-reference sequences and construct a comprehensive pangenome.Results Five representative genomes of prominent dairy breeds,including Gir,Kankrej,Tharparkar,Sahiwal,and Red Sindhi,were sequenced using 10X Genomics‘linked-read’technology.Assemblies generated from these linked-reads ranged from 2.70 Gb to 2.77 Gb,comparable to the Bos indicus Brahman reference genome.A pangenome of Bos indicus cattle was constructed by comparing the newly assembled genomes with the reference using alignment and graph-based methods,revealing 8 Mb and 17.7 Mb of novel sequence respectively.A confident set of 6,844 Non-reference Unique Insertions(NUIs)spanning 7.57 Mb was identified through both methods,representing the pange-nome of Indian Bos indicus breeds.Comparative analysis with previously published pangenomes unveiled 2.8 Mb(37%)commonality with the Chinese indicine pangenome and only 1%commonality with the Bos taurus pange-nome.Among these,2,312 NUIs encompassing~2 Mb,were commonly found in 98 samples of the 5 breeds and des-ignated as Bos indicus Common Insertions(BICIs)in the population.Furthermore,926 BICIs were identified within 682 protein-coding genes,54 long non-coding RNAs(lncRNA),and 18 pseudogenes.These protein-coding genes were enriched for functions such as chemical synaptic transmission,cell junction organization,cell-cell adhesion,and cell morphogenesis.The protein-coding genes were found in various prominent quantitative trait locus(QTL)regions,suggesting potential roles of BICIs in traits related to milk production,reproduction,exterior,health,meat,and carcass.Notably,63.21%of the bases within the BICIs call set contained interspersed repeats,predominantly Long Inter-spersed Nuclear Elements(LINEs).Additionally,70.28%of BICIs are shared with other domesticated and wild species,highlighting their evolutionary significance.Conclusions This is the first report unveiling a robust set of NUIs defining the pangenome of Bos indicus breeds of India.The analyses contribute valuable insights into the genomic landscape of desi cattle breeds.展开更多
The genetic basis for Gossypium hirsutum race latifolium,the putative ancestor of cultivated upland cotton,emerging from the semi-wild races to be domesticated into cultivated upland cotton is unknown.Here,we reported...The genetic basis for Gossypium hirsutum race latifolium,the putative ancestor of cultivated upland cotton,emerging from the semi-wild races to be domesticated into cultivated upland cotton is unknown.Here,we reported a high-quality genome assembly of G.latifolium.Comparative genome analyses revealed substantial variations in both gene group composition and genomic sequences across 13 cotton genomes,including the expansion of photosynthesis-related gene groups in G.latifolium compared with other races and the pivotal contribution of structural variations(SVs)to G.hirsutum domestication.Based on the resequencing reads and constructed pan-genome of upland cotton,co-selection regions and SVs with significant frequency differences among different populations were identified.Genes located in these regions or affected by these variations may characterize the differences between G.latifolium and other races,and could be involved in maintenance of upland cotton domestication phenotypes.These findings may assist in mining genes for upland cotton improvement and improving the understanding of the genetic basis of upland cotton domestication.展开更多
As the proton transport channel and binder within the catalytic layer(CL),the physicochemical properties of the ionomer can affect the CL microstructure and performance of the membrane electrode assembly.In this paper...As the proton transport channel and binder within the catalytic layer(CL),the physicochemical properties of the ionomer can affect the CL microstructure and performance of the membrane electrode assembly.In this paper,we select ionomers with different side-chain lengths and investigate the effects of the side-chain structure and content of the ionomers on the performance of membrane electrode assembly(MEA).Electrochemical tests show that at a mass ratio of 10 wt.%of ionomer/Ir(I/Ir),long-side-chain(LSC)ionomer exhibits the best performance(2.141 V@2.00 A/cm^(2),while short-side-chain(SSC)ionomer is 2.208 V@2.00 A/cm^(2)).The MEA containing LSC ionomer shows better electrochemical performance than the SSC at the same I/Ir mass ratio,especially at high current density.The MEA containing LSC ionomer has a larger average pore size and porosity,which indicates that it may have better mass-transfer properties.From the analysis of voltage loss,it can be seen that LSC ionomers have a smaller ohmic impedance and mass transfer resistance than SSC ionomers.In conclusion,LSC ionomers are more conducive to water-gas transport,which can provide excellent water electrolysis performance.This article focuses on the optimization of ionomer side chains and content,which can enhance PEM water electrolysis performance at lower cost.展开更多
Rice seedling blight,caused by various fungi,including Fusarium oxysporum,poses a severe threat to rice production.As awareness grows regarding the environmental and safety hazards associated with the application of f...Rice seedling blight,caused by various fungi,including Fusarium oxysporum,poses a severe threat to rice production.As awareness grows regarding the environmental and safety hazards associated with the application of fungicides for managing rice seedling blight,there has been a shift in focus towards biological control agents.In this study,we isolated biocontrol bacteria from paddy fields that significantly inhibited the growth of F.oxysporum in vitro and identified the strains as Bacillus amyloliquefaciens T40 and Bacillus pumilus T208.Additionally,our findings indicated that the combined application of these Bacillus strains in soil was more effective in reducing the incidence of rice seedling blight than their individual use.Analysis of 16S and internal transcribed spacer rRNA gene sequencing data revealed that the mixture of the T40 and T208 strains exhibited the lowest average clustering coefficients,which were negatively correlated with the biomass of F.oxysporum-inoculated rice seedlings.Furthermore,this mixture led to higher stochastic assembly(average|βNTI|<2)and reduced selection pressures on rice rhizosphere bacteria compared with individual strain applications.The mixture of the T40 and T208 strains also significantly increased the expression of defense-related genes.In conclusion,the mixture of the T40 and T208 strains effectively modulates microbial community structures,enhances microbial network stability,and boosts the resistance against rice seedling blight.Our study supports the development and utilization of biological resources for crop protection.展开更多
Lung cancer-derived exosomes are a kind of valuable and clinically-predictable biomarkers for lung cancer, but they have the limitations in individual differences when being applied in liquid biopsy. To improve their ...Lung cancer-derived exosomes are a kind of valuable and clinically-predictable biomarkers for lung cancer, but they have the limitations in individual differences when being applied in liquid biopsy. To improve their application value and accuracy in clinical diagnosis, a dual-labelled electrochemical method is herein reported for precise assessment of lung cancer-derived exosomes. To do so, two probes are prepared for the dual labeling of exosome membrane to run DNA assembly reactions: One is modified with cholesterol and can insert into exosome membrane through hydrophobic interaction;another one is linked with programmed death ligand-1(PD-L1) antibody and can bind to exosome surface-expressing PD-L1 via specific immunoreaction. Quantum dots-tagged signal strands are used to collect respective DNA products, and produce stripping signals corresponding to the amounts of total exosome and surfaceexpressing PD-L1, respectively. A wide linear relationship is established for the quantitative determination of lung cancer-derived exosomes in the range from 103to 1010particles/m L, whereas the ratiometric value of the two stripping signals is proven to have a better diagnostic use in screening and staging of lung cancer when being applied to clinical samples. Therefore, our method might provide a new insight into precise diagnosis of lung cancer, and offer sufficient information to refiect the biomarker level and guide the personalized treatment level even at an early stage in clinic.展开更多
Drug-eluting magnesium(Mg)alloy stents have a slower degradation rate and lower restenosis rate compared with uncoated stents,demonstrating good clinical efficacy.However,the release of anti-hyperplasia drugs from coa...Drug-eluting magnesium(Mg)alloy stents have a slower degradation rate and lower restenosis rate compared with uncoated stents,demonstrating good clinical efficacy.However,the release of anti-hyperplasia drugs from coatings delays endothelial tissue repair,thus leading to late stent thrombosis.To address these issues,a dual self-healed coating with various biological properties was fabricated on magnesium fluoride/polydopamine(MgF_(2)/PDA)-treated Mg alloys by spraying-assisted layer-by-layer(LBL)self-assembly of chitosan(CS),gallic acid(GA),and 3-aminobenzeneboronic acid-modified hyaluronic acid(HA-ABBA).The LBL coating,approximately 1.50μm thick,exhibited a uniform morphology with good adhesion strength(~1065 mN).The annual corrosion rate(Pi)of LBL samples was~1400 times slower than that of the Mg substrate,due to the physical barrier function provided by MgF_(2)/PDA layers and the dual self-healed ability of LBL layers.The rapid self-healing ability(with a healing period of~4 h under dynamic/static conditions)resulted from the synergistic interplay between the recombination of diverse chemical bonds within the LBL coating and the coordination of LBL-released GA with Mg2+,as corroborated by computer simulations.Compared with the drug-eluting coatings,the LBL sample demonstrated substantial advantages in anti-oxidation,anti-denaturation of fibrinogen,anti-platelet adhesion,anti-inflammation,anti-hyperplasia,and promoted-endothelialization.These benefits effectively address the limitations associated with drug-eluting coatings.展开更多
Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-sec...Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-section in the flow channel is normally adopted,the configuration optimization of which could potentially enhance the performance of the electrolyzer.This paper describes the numerical simulation study on the impact of the flow-channel cross-section shapes in the MEA electrolyzer for CO_(2)RR.The results show that wide flow channels with low heights are beneficial to the CO_(2)RR by providing a uniform flow field of CO_(2),especially at high current densities.Moreover,the larger the electrolyzer,the more significant the effect is.This study provides a theoretical basis for the design of high-performance MEA electrolyzers for CO_(2)RR.展开更多
Juglans sigillata is an economically valuable nut crop renowned for its nutritional richness,including essential nutrients,antioxidants,and healthy fats,which boost human cardial,brain and gut health.Despite its impor...Juglans sigillata is an economically valuable nut crop renowned for its nutritional richness,including essential nutrients,antioxidants,and healthy fats,which boost human cardial,brain and gut health.Despite its importance,the lack of a complete genome assembly has been a stumbling block in its biological breeding process.Therefore,we generated deep coverage ultralong Oxford Nanopore Technology(ONT)and PacBio HiFi reads to construct a telomere-to-telomere(T2T)genome assembly.The final assembly spans 537.27 Mb with no gaps,demonstrating a remarkable completeness of 98.1%.We utilized a combination of transcriptome data and homologous proteins to annotate the genome,identifying 36018 protein-coding genes.Furthermore,we profiled global cytosine DNA methylations using ONT sequencing data.Global methylome analysis revealed high methylation levels in transposable element(TE)-rich chromosomal regions juxtaposed with comparatively lower methylation in gene-rich areas.By integrating a detailed multi-omics data analysis,we obtained valuable insights into the mechanism underlying endopleura coloration.This investigation led to the identification of eight candidate genes(e.g.ANR)involved in anthocyanin biosynthesis pathways,which are crucial for the development of color in plants.The comprehensive genome assembly and the understanding of the genetic basis of important traits like endopleura coloration will open avenues for more efficient breeding programs and improved crop quality.展开更多
The application of photocatalytic technology in algae killing is limited by the non-floatability and difficulty in recycling of the photocatalysts.Loading photocatalyst on magnetic or floatable carriers is the most po...The application of photocatalytic technology in algae killing is limited by the non-floatability and difficulty in recycling of the photocatalysts.Loading photocatalyst on magnetic or floatable carriers is the most popular method for overcoming the above inadequacies.In this work,a CdZnS/TiO_(2) membrane photocatalyst with adjustable suspended depth(include floating)and flexible assembly is designed,which is less prone to dislodgement due to in situ synthesis and has a wider range of applicability than previously reported photocatalysts.The photocatalytic removal of Microcystis aeruginosa revealed that the suspended depth and distribution format of the CdZnS/TiO_(2) membrane photocatalysts have striking effects on the photocatalytic removal performance of Microcystis aeruginosa,the photocatalytic removal efficiency of CdZnS/TiO_(2)-2 membrane photocatalysts for Microcystis aeruginosa could reach to 98.6%in 60 min when the photocatalysts assembled in the form of 3×3 arrays suspended at a depth of 2 cm from the liquid surface.A tiny amount of TiO_(2) loading allows the formation of Z-Scheme heterojunction,resulting in accelerating the separation efficiency of photogenerated carriers,preserving the photogenerated electrons and holes with stronger reduction and oxidation ability and inhabiting the photo-corrosion of CdZnS.展开更多
The ability to control the preparation of one-dimensional(1D)porous carbon nanorods,especially during rapid polymerization,is key to their practical application.We report a method for synthesizing 1D porous carbon nan...The ability to control the preparation of one-dimensional(1D)porous carbon nanorods,especially during rapid polymerization,is key to their practical application.We report a method for synthesizing 1D porous carbon nanorods,characterized by the formation of rod-like mi-celles that are assembled from sodium palmitate and Pluronic F127,facilitated by protonated melamine,and subsequently converted into melamine-based N-doped polymer nanorods which were carbonized to produce the corres-ponding N-doped carbon nanorods.The specific capacitance of the supercapacitor used the as-pre-pared N-doped nanorods as electrode material in a three-electrode system was calculated to be 301.66 F g^(-1) at a current density of 0.2 A g^(-1),with an ultra-high specific surface area normalized capacitance of up to 67.07μF cm^(-2).The N-doping and their one-dimensionality give the nanorods a low internal resistance and good stability,making them well suited for fundamental studies and practical applications ranging from materials chemistry to electrochemical energy storage.展开更多
Because of their low electrical conductivity,sluggish ion diffusion,and poor stability,conventional electrode materials are not able to meet the growing demands of energy storage and portable devices.Graphene assemble...Because of their low electrical conductivity,sluggish ion diffusion,and poor stability,conventional electrode materials are not able to meet the growing demands of energy storage and portable devices.Graphene assembled films(GAFs)formed from graphene nanosheets have an ultrahigh conductivity,a unique 2D network structure,and exceptional mechanical strength,which give them the potential to solve these problems.However,a systematic understanding of GAFs as an advanced electrode material is lacking.This review focuses on the use of GAFs in electrochemistry,providing a comprehensive analysis of their synthesis methods,surface/structural characteristics,and physical properties,and thus understand their structure-property relationships.Their advantages in batteries,supercapacitors,and electrochemical sensors are systematically evaluated,with an emphasis on their excellent electrical conductivity,ion transport kinetics,and interfacial stability.The existing problems in these devices,such as chemical inertness and mechanical brittleness,are discussed and potential solutions are proposed,including defect engineering and hybrid structures.This review should deepen our mechanistic understanding of the use of GAFs in electrochemical systems and provide actionable strategies for developing stable,high-performance electrode materials.展开更多
A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefo...A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefore,this study aimed to compare the performance outcomes of MEA using electrodes with single and three catalyst layers.This study measured Electrochemical Surface Area(ECSA),Electrochemical Impedance Spectroscopy(EIS),X-ray Diffraction analysis(XRD),and X-ray Fluorescence(XRF).Furthermore,the round-trip efficiency(RTE)of the MEA,as w ell as the performance in FC and WE mode,was measured.In comparison,The ECSA values of Pt-Ru/C and Pt/C with three catalyst layers were higher than the single catalyst layer.This result was supported by electrode characterization data for XRD and XRF.The respective electrical conductivity values of Pt-Ru/C and Pt/C with three catalyst layers are also higher than the single cata-lyst layer,and the performance of URFC using MEA with three catalyst layers has the highest value of RTE among the MEA performances of URFC,which is 100%at a current density of 4 mA·cm-2.展开更多
When you think of Dongguan,chances are you picture humming factories and endless assembly lines.For decades,this city in southern China was known as the“world's workshop,”churning out everything from sneakers to...When you think of Dongguan,chances are you picture humming factories and endless assembly lines.For decades,this city in southern China was known as the“world's workshop,”churning out everything from sneakers to smartphones.展开更多
Assembly precision greatly influences the performance of complex high-end equipment.The traditional industrial assembly process and deviation transfer are implicit and uncertain,causing problems like poor component fi...Assembly precision greatly influences the performance of complex high-end equipment.The traditional industrial assembly process and deviation transfer are implicit and uncertain,causing problems like poor component fit and hard-to-trace assembly stress concentration.Assemblers can only check whether the dimensional tolerance of the component design is exceeded step by step in combination with prior knowledge.Inversion in industrial assembly optimizes assembly and design by comparing real and theoretical results and doing inversion analysis to reduce assembly deviation.The digital twin(DT)technology visualizes and predicts the assembly process by mapping real and virtual model parameters and states simultaneously,expanding parameter range for inversion analysis and improving inversion result accuracy.Problems in improving industrial assembly precision and the significance and research status of DT-driven parametric inversion of assembly tools,processes and object precision are summarized.It analyzes vital technologies for assembly precision inversion such as multi-attribute assembly process parameter sensing,virtual modeling of high-fidelity assembly systems,twin synchronization of assembly process data models,multi-physical field simulation,and performance twin model construction of the assembly process.Combined with human-cyber-physical system,augmented reality,and generative intelligence,the outlook of DT-driven assembly precision inversion is proposed,providing support for DT's use in industrial assembly and precision improvement.展开更多
As the demands for assembly quality and efficiency increase,robot-assisted assembly applications are becoming more widespread.Peg-in-hole assembly,as a typical form of assembly,has been widely researched by scholars.C...As the demands for assembly quality and efficiency increase,robot-assisted assembly applications are becoming more widespread.Peg-in-hole assembly,as a typical form of assembly,has been widely researched by scholars.Currently,robotic peg-in-hole assembly faces challenges such as complex analysis of part contact forces,difficulties in task modeling,and the failure of traditional strategies.Simply controlling the position of the robot's end effector cannot achieve high precision,high efficiency peg-in-hole assembly.Flexible assembly,especially intelligent flexible assembly,is becoming the future development trend.So there is a lack of comprehensive reviews on robotic flexible peg-in-hole assembly.This paper first outlines the basic components of peg-in-hole assembly and summarizes the two basic operational processes of peg-in-hole assembly,along with their related theoretical foundations.We then review and analyze the research on passive compliant assembly,active compliant assembly,and intelligent flexible assembly.Finally,it presents an outlook on the future development directions of robotic peg-in-hole assembly.展开更多
To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for con...To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for constructing an industrial robot assembly system based on virtual reality technology.Focusing on the shaft hole assembly,the mechanical characteristics of the industrial robot shaft hole assembly process are analyzed and a dynamic model is established for shaft hole assembly operations.The key elements of virtual assembly operations for industrial robots are summarized and a five-dimensional model is proposed for industrial robot virtual operations.Utilizing the Unity3D engine based on the 5-D model for industrial robot virtual operations,an industrial robot shaft hole assembly system is developed.This system enables virtual assembly operations,displays physical attributes,and provides valuable references for the research of virtual systems.展开更多
Molecular cloning remains a cornerstone technique in genetic engineering and synthetic biology.In this study,we conducted a systematic comparative analysis between the classical cloning method and the Golden Gate asse...Molecular cloning remains a cornerstone technique in genetic engineering and synthetic biology.In this study,we conducted a systematic comparative analysis between the classical cloning method and the Golden Gate assembly technique,utilizing Escherichia coli as the model organism.Through polymerase chain reaction(PCR)amplification,restriction enzyme digestion,ligation,transformation,and Sanger sequencing,we assessed the operational efficiency and cloning fidelity of both strategies.Our results demonstrated that Golden Gate assembly,leveraging type IIS restriction enzymes and simultaneous ligation,significantly enhanced cloning efficiency and precision,particularly for seamless multi-fragment assembly.In contrast,the classical cloning approach maintained certain advantages in simplicity and robustness for specific experimental conditions.Challenges encountered during transformation and sequencing highlighted the critical impact of technical accuracy on experimental outcomes.This study underscores the importance of selecting appropriate cloning methodologies tailored to experimental objectives and laboratory capabilities,providing a foundation for optimized molecular cloning workflows in future synthetic biology and biotechnology applications.展开更多
Molecular recognition of fullerene using various host compounds is well-known in literature.But most studies focus on host-vip complexation in solution using host compounds with a single binding cavity.Herein,we rep...Molecular recognition of fullerene using various host compounds is well-known in literature.But most studies focus on host-vip complexation in solution using host compounds with a single binding cavity.Herein,we report a series of highly preorganized janusarene derivatives with homoditopic binding sites.These novel janusarenes can bind and align various fullerenes such as C_(60),C_(70),C_(84),and Gd@C_(82)in a highly efficient manner.Robust shape complementary association and assembly are observed in solution,in the bulk solid state,in the liquid crystalline state,or on surface,and the assembled structures are characterized by nuclear magnetic resonance(NMR)titration,X-ray diffraction,polarized optical microscopy,and scanning tunneling microscopy.展开更多
基金supported by the National Natural Science Foundation of China(Project Nos.32230075 to B.C.T.,32001610 to B.C.,32171922 to C.X.).
文摘The L-shape mitochondrial complex I(CI)consists of four modules:nicotinamide-adenine dinucleotide hydrogen-binding module(N)and ubiquinone-binding module(Q)in the matrix arm and proximal-pump module(P_(P))and distal-pump module(P_(D))in the membrane arm.As mitochondrial mutants are unavailable,the CI assembly pathway in plants is unclear.We investigated the CI assembly process using the maize RNA processing mutants deficient in individual CI components.Complexome profiling detected all major assembly intermediates of each module,confirming their independent assembly pathway.A block in the Q module assembly causes the accumulation of the membrane arm,whereas a block in the P_(D) module assembly results in the accumulation of CI^(*),a subcomplex assembled by P_(P) with the matrix arm.We further isolated and analyzed the mutants of two CI assembly factors,ZmGLDH and CRK1.The absence of either ZmGLDH or CRK1 eliminates the accumulation of CI^(*)but allows a substantial amount of CI to be assembled.The membrane arm was also accumulated in zmgldh and crk1.Together,these results suggest two CI assembly pathways.The P_(D)-early former starts with the assembly of P_(P) with P_(D),forming the membrane arm,then joins with the matrix arm to produce CI.The P_(D)-late pathway is initiated by assembling P_(P) with the matrix arm to yield CI^(*),which is then combined with P_(D) to form CI.
基金supported in part by the Rosetrees Trust(#CF-2023-I-2_113)by the Israel Ministry of Innovation,Science,and Technology(#7393)(to ES).
文摘The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they exhibit dense interconnectivity(Braitenburg and Schüz,1998;Campagnola et al.,2022).The strength and probability of connectivity depend on cell type,inter-neuronal distance,and species.Still,every cortical neuron receives input from thousands of other neurons while transmitting output to a similar number of neurons.Second,communication between neurons occurs primarily via chemical or electrical synapses.
基金the project “Genomics for Conservation of Indigenous Cattle Breeds and for Enhancing Milk Yield, Phase-I” [BT/ PR26466/AAQ/1/704/2017], funded by the Department of Biotechnology (DBT ), Indiathe project “Identification of key molecular factors involved in resistance/susceptibility to paratuberculosis infection in indigenous breeds of cows” [BT/PR32758/AAQ/1/760/2019], which was also funded by Department of Biotechnology (DBT ), India。
文摘Background India harbors the world’s largest cattle population,encompassing over 50 distinct Bos indicus breeds.This rich genetic diversity underscores the inadequacy of a single reference genome to fully capture the genomic landscape of Indian cattle.To comprehensively characterize the genomic variation within Bos indicus and,specifically,dairy breeds,we aim to identify non-reference sequences and construct a comprehensive pangenome.Results Five representative genomes of prominent dairy breeds,including Gir,Kankrej,Tharparkar,Sahiwal,and Red Sindhi,were sequenced using 10X Genomics‘linked-read’technology.Assemblies generated from these linked-reads ranged from 2.70 Gb to 2.77 Gb,comparable to the Bos indicus Brahman reference genome.A pangenome of Bos indicus cattle was constructed by comparing the newly assembled genomes with the reference using alignment and graph-based methods,revealing 8 Mb and 17.7 Mb of novel sequence respectively.A confident set of 6,844 Non-reference Unique Insertions(NUIs)spanning 7.57 Mb was identified through both methods,representing the pange-nome of Indian Bos indicus breeds.Comparative analysis with previously published pangenomes unveiled 2.8 Mb(37%)commonality with the Chinese indicine pangenome and only 1%commonality with the Bos taurus pange-nome.Among these,2,312 NUIs encompassing~2 Mb,were commonly found in 98 samples of the 5 breeds and des-ignated as Bos indicus Common Insertions(BICIs)in the population.Furthermore,926 BICIs were identified within 682 protein-coding genes,54 long non-coding RNAs(lncRNA),and 18 pseudogenes.These protein-coding genes were enriched for functions such as chemical synaptic transmission,cell junction organization,cell-cell adhesion,and cell morphogenesis.The protein-coding genes were found in various prominent quantitative trait locus(QTL)regions,suggesting potential roles of BICIs in traits related to milk production,reproduction,exterior,health,meat,and carcass.Notably,63.21%of the bases within the BICIs call set contained interspersed repeats,predominantly Long Inter-spersed Nuclear Elements(LINEs).Additionally,70.28%of BICIs are shared with other domesticated and wild species,highlighting their evolutionary significance.Conclusions This is the first report unveiling a robust set of NUIs defining the pangenome of Bos indicus breeds of India.The analyses contribute valuable insights into the genomic landscape of desi cattle breeds.
基金supported by the National Natural Science Foundation of China(32201873)the Key Research and Development Plan of Hubei Province(2023BBB050)。
文摘The genetic basis for Gossypium hirsutum race latifolium,the putative ancestor of cultivated upland cotton,emerging from the semi-wild races to be domesticated into cultivated upland cotton is unknown.Here,we reported a high-quality genome assembly of G.latifolium.Comparative genome analyses revealed substantial variations in both gene group composition and genomic sequences across 13 cotton genomes,including the expansion of photosynthesis-related gene groups in G.latifolium compared with other races and the pivotal contribution of structural variations(SVs)to G.hirsutum domestication.Based on the resequencing reads and constructed pan-genome of upland cotton,co-selection regions and SVs with significant frequency differences among different populations were identified.Genes located in these regions or affected by these variations may characterize the differences between G.latifolium and other races,and could be involved in maintenance of upland cotton domestication phenotypes.These findings may assist in mining genes for upland cotton improvement and improving the understanding of the genetic basis of upland cotton domestication.
基金Project(52271013)supported by the National Natural Science Foundation of ChinaProject(23DZ1200600)supported by the Science and Technology Innovation Action Plan of Shanghai,China。
文摘As the proton transport channel and binder within the catalytic layer(CL),the physicochemical properties of the ionomer can affect the CL microstructure and performance of the membrane electrode assembly.In this paper,we select ionomers with different side-chain lengths and investigate the effects of the side-chain structure and content of the ionomers on the performance of membrane electrode assembly(MEA).Electrochemical tests show that at a mass ratio of 10 wt.%of ionomer/Ir(I/Ir),long-side-chain(LSC)ionomer exhibits the best performance(2.141 V@2.00 A/cm^(2),while short-side-chain(SSC)ionomer is 2.208 V@2.00 A/cm^(2)).The MEA containing LSC ionomer shows better electrochemical performance than the SSC at the same I/Ir mass ratio,especially at high current density.The MEA containing LSC ionomer has a larger average pore size and porosity,which indicates that it may have better mass-transfer properties.From the analysis of voltage loss,it can be seen that LSC ionomers have a smaller ohmic impedance and mass transfer resistance than SSC ionomers.In conclusion,LSC ionomers are more conducive to water-gas transport,which can provide excellent water electrolysis performance.This article focuses on the optimization of ionomer side chains and content,which can enhance PEM water electrolysis performance at lower cost.
基金supported by the Zhejiang Provincial Natural Science Foundation,China(Grant No.LQ24C010007)Zhejiang Science and Technology Major Program on Rice New Variety Breeding,China(Grant No.2021C02063)+4 种基金the Agricultural Sciences and Technologies Innovation Program,China(Grant No.CAAS-CSCB-202301)the Key Projects of Zhejiang Provincial Natural Science Foundation,China(Grant No.LZ23C130002)the Youth Innovation Program of Chinese Academy of Agricultural Sciences(Grant No.Y2023QC22)the Joint Open Competitive Project of the Yazhou Bay Seed Laboratory and China National Seed Company Limited(Grant Nos.B23YQ1514 and B23CQ15EP)the External Cooperation Projects of Biotechnology Research Institute,Fujian Academy of Agricultural Sciences,China(Grant No.DWHZ2024-07).
文摘Rice seedling blight,caused by various fungi,including Fusarium oxysporum,poses a severe threat to rice production.As awareness grows regarding the environmental and safety hazards associated with the application of fungicides for managing rice seedling blight,there has been a shift in focus towards biological control agents.In this study,we isolated biocontrol bacteria from paddy fields that significantly inhibited the growth of F.oxysporum in vitro and identified the strains as Bacillus amyloliquefaciens T40 and Bacillus pumilus T208.Additionally,our findings indicated that the combined application of these Bacillus strains in soil was more effective in reducing the incidence of rice seedling blight than their individual use.Analysis of 16S and internal transcribed spacer rRNA gene sequencing data revealed that the mixture of the T40 and T208 strains exhibited the lowest average clustering coefficients,which were negatively correlated with the biomass of F.oxysporum-inoculated rice seedlings.Furthermore,this mixture led to higher stochastic assembly(average|βNTI|<2)and reduced selection pressures on rice rhizosphere bacteria compared with individual strain applications.The mixture of the T40 and T208 strains also significantly increased the expression of defense-related genes.In conclusion,the mixture of the T40 and T208 strains effectively modulates microbial community structures,enhances microbial network stability,and boosts the resistance against rice seedling blight.Our study supports the development and utilization of biological resources for crop protection.
基金supported by the National Natural Science Foundation of China (Nos. 81972799, 82202834, and 81871449)。
文摘Lung cancer-derived exosomes are a kind of valuable and clinically-predictable biomarkers for lung cancer, but they have the limitations in individual differences when being applied in liquid biopsy. To improve their application value and accuracy in clinical diagnosis, a dual-labelled electrochemical method is herein reported for precise assessment of lung cancer-derived exosomes. To do so, two probes are prepared for the dual labeling of exosome membrane to run DNA assembly reactions: One is modified with cholesterol and can insert into exosome membrane through hydrophobic interaction;another one is linked with programmed death ligand-1(PD-L1) antibody and can bind to exosome surface-expressing PD-L1 via specific immunoreaction. Quantum dots-tagged signal strands are used to collect respective DNA products, and produce stripping signals corresponding to the amounts of total exosome and surfaceexpressing PD-L1, respectively. A wide linear relationship is established for the quantitative determination of lung cancer-derived exosomes in the range from 103to 1010particles/m L, whereas the ratiometric value of the two stripping signals is proven to have a better diagnostic use in screening and staging of lung cancer when being applied to clinical samples. Therefore, our method might provide a new insight into precise diagnosis of lung cancer, and offer sufficient information to refiect the biomarker level and guide the personalized treatment level even at an early stage in clinic.
基金supported by the National Key Research and Development Program of China(No.2021YFC2400703)the Key Scientific and Technological Research Projects in Henan Province(Nos.232102311155 and 232102230106)Zhengzhou University Major Project Cultivation Special Project(No.125-32214076).
文摘Drug-eluting magnesium(Mg)alloy stents have a slower degradation rate and lower restenosis rate compared with uncoated stents,demonstrating good clinical efficacy.However,the release of anti-hyperplasia drugs from coatings delays endothelial tissue repair,thus leading to late stent thrombosis.To address these issues,a dual self-healed coating with various biological properties was fabricated on magnesium fluoride/polydopamine(MgF_(2)/PDA)-treated Mg alloys by spraying-assisted layer-by-layer(LBL)self-assembly of chitosan(CS),gallic acid(GA),and 3-aminobenzeneboronic acid-modified hyaluronic acid(HA-ABBA).The LBL coating,approximately 1.50μm thick,exhibited a uniform morphology with good adhesion strength(~1065 mN).The annual corrosion rate(Pi)of LBL samples was~1400 times slower than that of the Mg substrate,due to the physical barrier function provided by MgF_(2)/PDA layers and the dual self-healed ability of LBL layers.The rapid self-healing ability(with a healing period of~4 h under dynamic/static conditions)resulted from the synergistic interplay between the recombination of diverse chemical bonds within the LBL coating and the coordination of LBL-released GA with Mg2+,as corroborated by computer simulations.Compared with the drug-eluting coatings,the LBL sample demonstrated substantial advantages in anti-oxidation,anti-denaturation of fibrinogen,anti-platelet adhesion,anti-inflammation,anti-hyperplasia,and promoted-endothelialization.These benefits effectively address the limitations associated with drug-eluting coatings.
基金the National Key R&D Program of China(No.2021YFA1501503)the National Natural Science Foundation of China(Nos.22250008,22121004,22108197)+3 种基金the Haihe Laboratory of Sustainable Chemical Transformations(No.CYZC202107)the Natural Science Foundation of Tianjin City(No.21JCZXJC00060)the Program of Introducing Talents of Discipline to Universities(No.BP0618007)the Xplorer Prize for financial support。
文摘Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-section in the flow channel is normally adopted,the configuration optimization of which could potentially enhance the performance of the electrolyzer.This paper describes the numerical simulation study on the impact of the flow-channel cross-section shapes in the MEA electrolyzer for CO_(2)RR.The results show that wide flow channels with low heights are beneficial to the CO_(2)RR by providing a uniform flow field of CO_(2),especially at high current densities.Moreover,the larger the electrolyzer,the more significant the effect is.This study provides a theoretical basis for the design of high-performance MEA electrolyzers for CO_(2)RR.
基金supported by the Yunnan Seed Laboratory,China(202205AR070001-15)the National Natural Science Foundation of China,China(Grant No.32160697)。
文摘Juglans sigillata is an economically valuable nut crop renowned for its nutritional richness,including essential nutrients,antioxidants,and healthy fats,which boost human cardial,brain and gut health.Despite its importance,the lack of a complete genome assembly has been a stumbling block in its biological breeding process.Therefore,we generated deep coverage ultralong Oxford Nanopore Technology(ONT)and PacBio HiFi reads to construct a telomere-to-telomere(T2T)genome assembly.The final assembly spans 537.27 Mb with no gaps,demonstrating a remarkable completeness of 98.1%.We utilized a combination of transcriptome data and homologous proteins to annotate the genome,identifying 36018 protein-coding genes.Furthermore,we profiled global cytosine DNA methylations using ONT sequencing data.Global methylome analysis revealed high methylation levels in transposable element(TE)-rich chromosomal regions juxtaposed with comparatively lower methylation in gene-rich areas.By integrating a detailed multi-omics data analysis,we obtained valuable insights into the mechanism underlying endopleura coloration.This investigation led to the identification of eight candidate genes(e.g.ANR)involved in anthocyanin biosynthesis pathways,which are crucial for the development of color in plants.The comprehensive genome assembly and the understanding of the genetic basis of important traits like endopleura coloration will open avenues for more efficient breeding programs and improved crop quality.
基金financially supported by the Natural Science Foundation of ShanDong(Nos.ZR2023QD152 and ZR2021MD002).
文摘The application of photocatalytic technology in algae killing is limited by the non-floatability and difficulty in recycling of the photocatalysts.Loading photocatalyst on magnetic or floatable carriers is the most popular method for overcoming the above inadequacies.In this work,a CdZnS/TiO_(2) membrane photocatalyst with adjustable suspended depth(include floating)and flexible assembly is designed,which is less prone to dislodgement due to in situ synthesis and has a wider range of applicability than previously reported photocatalysts.The photocatalytic removal of Microcystis aeruginosa revealed that the suspended depth and distribution format of the CdZnS/TiO_(2) membrane photocatalysts have striking effects on the photocatalytic removal performance of Microcystis aeruginosa,the photocatalytic removal efficiency of CdZnS/TiO_(2)-2 membrane photocatalysts for Microcystis aeruginosa could reach to 98.6%in 60 min when the photocatalysts assembled in the form of 3×3 arrays suspended at a depth of 2 cm from the liquid surface.A tiny amount of TiO_(2) loading allows the formation of Z-Scheme heterojunction,resulting in accelerating the separation efficiency of photogenerated carriers,preserving the photogenerated electrons and holes with stronger reduction and oxidation ability and inhabiting the photo-corrosion of CdZnS.
文摘The ability to control the preparation of one-dimensional(1D)porous carbon nanorods,especially during rapid polymerization,is key to their practical application.We report a method for synthesizing 1D porous carbon nanorods,characterized by the formation of rod-like mi-celles that are assembled from sodium palmitate and Pluronic F127,facilitated by protonated melamine,and subsequently converted into melamine-based N-doped polymer nanorods which were carbonized to produce the corres-ponding N-doped carbon nanorods.The specific capacitance of the supercapacitor used the as-pre-pared N-doped nanorods as electrode material in a three-electrode system was calculated to be 301.66 F g^(-1) at a current density of 0.2 A g^(-1),with an ultra-high specific surface area normalized capacitance of up to 67.07μF cm^(-2).The N-doping and their one-dimensionality give the nanorods a low internal resistance and good stability,making them well suited for fundamental studies and practical applications ranging from materials chemistry to electrochemical energy storage.
基金the National Natural Science Foundation of China(22279097)the Key R&D Program of Hubei Province(2023BAB103)the PhD Scientific Research and Innovation Foundation of The Education Department of Hainan Province Joint Project of Sanya Yazhou Bay Science and Technology City(HSPHDSRF-2024-03-022)。
文摘Because of their low electrical conductivity,sluggish ion diffusion,and poor stability,conventional electrode materials are not able to meet the growing demands of energy storage and portable devices.Graphene assembled films(GAFs)formed from graphene nanosheets have an ultrahigh conductivity,a unique 2D network structure,and exceptional mechanical strength,which give them the potential to solve these problems.However,a systematic understanding of GAFs as an advanced electrode material is lacking.This review focuses on the use of GAFs in electrochemistry,providing a comprehensive analysis of their synthesis methods,surface/structural characteristics,and physical properties,and thus understand their structure-property relationships.Their advantages in batteries,supercapacitors,and electrochemical sensors are systematically evaluated,with an emphasis on their excellent electrical conductivity,ion transport kinetics,and interfacial stability.The existing problems in these devices,such as chemical inertness and mechanical brittleness,are discussed and potential solutions are proposed,including defect engineering and hybrid structures.This review should deepen our mechanistic understanding of the use of GAFs in electrochemical systems and provide actionable strategies for developing stable,high-performance electrode materials.
基金support from the Ministry of Higher Education Malaysia under grant HICOE-2023-005.
文摘A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefore,this study aimed to compare the performance outcomes of MEA using electrodes with single and three catalyst layers.This study measured Electrochemical Surface Area(ECSA),Electrochemical Impedance Spectroscopy(EIS),X-ray Diffraction analysis(XRD),and X-ray Fluorescence(XRF).Furthermore,the round-trip efficiency(RTE)of the MEA,as w ell as the performance in FC and WE mode,was measured.In comparison,The ECSA values of Pt-Ru/C and Pt/C with three catalyst layers were higher than the single catalyst layer.This result was supported by electrode characterization data for XRD and XRF.The respective electrical conductivity values of Pt-Ru/C and Pt/C with three catalyst layers are also higher than the single cata-lyst layer,and the performance of URFC using MEA with three catalyst layers has the highest value of RTE among the MEA performances of URFC,which is 100%at a current density of 4 mA·cm-2.
文摘When you think of Dongguan,chances are you picture humming factories and endless assembly lines.For decades,this city in southern China was known as the“world's workshop,”churning out everything from sneakers to smartphones.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFB3304200)National Natural Science Foundation of China(Grant No.52205288)+1 种基金China Postdoctoral Science Foundation(Grant Nos.2024T170795,2024M762815)Zhejiang Provincial Key Research and Development Program(Grant No.2024C01029)。
文摘Assembly precision greatly influences the performance of complex high-end equipment.The traditional industrial assembly process and deviation transfer are implicit and uncertain,causing problems like poor component fit and hard-to-trace assembly stress concentration.Assemblers can only check whether the dimensional tolerance of the component design is exceeded step by step in combination with prior knowledge.Inversion in industrial assembly optimizes assembly and design by comparing real and theoretical results and doing inversion analysis to reduce assembly deviation.The digital twin(DT)technology visualizes and predicts the assembly process by mapping real and virtual model parameters and states simultaneously,expanding parameter range for inversion analysis and improving inversion result accuracy.Problems in improving industrial assembly precision and the significance and research status of DT-driven parametric inversion of assembly tools,processes and object precision are summarized.It analyzes vital technologies for assembly precision inversion such as multi-attribute assembly process parameter sensing,virtual modeling of high-fidelity assembly systems,twin synchronization of assembly process data models,multi-physical field simulation,and performance twin model construction of the assembly process.Combined with human-cyber-physical system,augmented reality,and generative intelligence,the outlook of DT-driven assembly precision inversion is proposed,providing support for DT's use in industrial assembly and precision improvement.
基金Supported by National Natural Science Foundation of China(Grant Nos.52475509 and U22A20203)Beijing Municipal Natural Science Foundation(Grant No.L248005)Hebei Provincial Natural Science Foundation(Grant No.E2023105059)。
文摘As the demands for assembly quality and efficiency increase,robot-assisted assembly applications are becoming more widespread.Peg-in-hole assembly,as a typical form of assembly,has been widely researched by scholars.Currently,robotic peg-in-hole assembly faces challenges such as complex analysis of part contact forces,difficulties in task modeling,and the failure of traditional strategies.Simply controlling the position of the robot's end effector cannot achieve high precision,high efficiency peg-in-hole assembly.Flexible assembly,especially intelligent flexible assembly,is becoming the future development trend.So there is a lack of comprehensive reviews on robotic flexible peg-in-hole assembly.This paper first outlines the basic components of peg-in-hole assembly and summarizes the two basic operational processes of peg-in-hole assembly,along with their related theoretical foundations.We then review and analyze the research on passive compliant assembly,active compliant assembly,and intelligent flexible assembly.Finally,it presents an outlook on the future development directions of robotic peg-in-hole assembly.
基金Sponsored by the National Natural Science Foundation of China(Grant No.52005003)the Science and Technology Planning Project of Wuhu City(Grant No.2022jc41)。
文摘To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for constructing an industrial robot assembly system based on virtual reality technology.Focusing on the shaft hole assembly,the mechanical characteristics of the industrial robot shaft hole assembly process are analyzed and a dynamic model is established for shaft hole assembly operations.The key elements of virtual assembly operations for industrial robots are summarized and a five-dimensional model is proposed for industrial robot virtual operations.Utilizing the Unity3D engine based on the 5-D model for industrial robot virtual operations,an industrial robot shaft hole assembly system is developed.This system enables virtual assembly operations,displays physical attributes,and provides valuable references for the research of virtual systems.
文摘Molecular cloning remains a cornerstone technique in genetic engineering and synthetic biology.In this study,we conducted a systematic comparative analysis between the classical cloning method and the Golden Gate assembly technique,utilizing Escherichia coli as the model organism.Through polymerase chain reaction(PCR)amplification,restriction enzyme digestion,ligation,transformation,and Sanger sequencing,we assessed the operational efficiency and cloning fidelity of both strategies.Our results demonstrated that Golden Gate assembly,leveraging type IIS restriction enzymes and simultaneous ligation,significantly enhanced cloning efficiency and precision,particularly for seamless multi-fragment assembly.In contrast,the classical cloning approach maintained certain advantages in simplicity and robustness for specific experimental conditions.Challenges encountered during transformation and sequencing highlighted the critical impact of technical accuracy on experimental outcomes.This study underscores the importance of selecting appropriate cloning methodologies tailored to experimental objectives and laboratory capabilities,providing a foundation for optimized molecular cloning workflows in future synthetic biology and biotechnology applications.
基金supported by the National Natural Science Foundation of China(Nos.22325111,2220312,21871298,91956118)Guangdong Basic Research Center of Excellence for Functional Molecular Engineeringthe Sun Yat-sen University。
文摘Molecular recognition of fullerene using various host compounds is well-known in literature.But most studies focus on host-vip complexation in solution using host compounds with a single binding cavity.Herein,we report a series of highly preorganized janusarene derivatives with homoditopic binding sites.These novel janusarenes can bind and align various fullerenes such as C_(60),C_(70),C_(84),and Gd@C_(82)in a highly efficient manner.Robust shape complementary association and assembly are observed in solution,in the bulk solid state,in the liquid crystalline state,or on surface,and the assembled structures are characterized by nuclear magnetic resonance(NMR)titration,X-ray diffraction,polarized optical microscopy,and scanning tunneling microscopy.