To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for con...To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for constructing an industrial robot assembly system based on virtual reality technology.Focusing on the shaft hole assembly,the mechanical characteristics of the industrial robot shaft hole assembly process are analyzed and a dynamic model is established for shaft hole assembly operations.The key elements of virtual assembly operations for industrial robots are summarized and a five-dimensional model is proposed for industrial robot virtual operations.Utilizing the Unity3D engine based on the 5-D model for industrial robot virtual operations,an industrial robot shaft hole assembly system is developed.This system enables virtual assembly operations,displays physical attributes,and provides valuable references for the research of virtual systems.展开更多
Common bean(Phaseolus vulgaris L.)is a vital source of protein and essential nutrients for human consumption and plays a key role in sustainable agriculture due to its nitrogen-fixing ability(Nadeem et al.,2021).Kidne...Common bean(Phaseolus vulgaris L.)is a vital source of protein and essential nutrients for human consumption and plays a key role in sustainable agriculture due to its nitrogen-fixing ability(Nadeem et al.,2021).Kidney beans,a subcategory of dry common beans,are highly valued for their rich protein,dietary fiber,low fat content,and various trace elements(Garcia-Cordero et al.,2021).Despite the release of several de novo genome assemblies(Goodstein et al.,2012;Schmutz et al.,2014;Vlasova et al.,2016;Cortinovis et al.,2024),existing common bean genomes remain incomplete,particularly in complex regions such as centromeres and telomeres,limiting a comprehensive understanding of the genomic landscape.展开更多
Despite the gradual transformation of traditional manufacturing by the Human-Robot Collaboration Assembly(HRCA),challenges remain in the robot’s ability to understand and predict human assembly intentions.This study ...Despite the gradual transformation of traditional manufacturing by the Human-Robot Collaboration Assembly(HRCA),challenges remain in the robot’s ability to understand and predict human assembly intentions.This study aims to enhance the robot’s comprehension and prediction capabilities of operator assembly intentions by capturing and analyzing operator behavior and movements.We propose a video feature extraction method based on the Temporal Shift Module Network(TSM-ResNet50)to extract spatiotemporal features from assembly videos and differentiate various assembly actions using feature differences between video frames.Furthermore,we construct an action recognition and segmentation model based on the Refined-Multi-Scale Temporal Convolutional Network(Refined-MS-TCN)to identify assembly action intervals and accurately acquire action categories.Experiments on our self-built reducer assembly action dataset demonstrate that our network can classify assembly actions frame by frame,achieving an accuracy rate of 83%.Additionally,we develop a HiddenMarkovModel(HMM)integrated with assembly task constraints to predict operator assembly intentions based on the probability transition matrix and assembly task constraints.The experimental results show that our method for predicting operator assembly intentions can achieve an accuracy of 90.6%,which is a 13.3%improvement over the HMM without task constraints.展开更多
Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-sec...Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-section in the flow channel is normally adopted,the configuration optimization of which could potentially enhance the performance of the electrolyzer.This paper describes the numerical simulation study on the impact of the flow-channel cross-section shapes in the MEA electrolyzer for CO_(2)RR.The results show that wide flow channels with low heights are beneficial to the CO_(2)RR by providing a uniform flow field of CO_(2),especially at high current densities.Moreover,the larger the electrolyzer,the more significant the effect is.This study provides a theoretical basis for the design of high-performance MEA electrolyzers for CO_(2)RR.展开更多
Juglans sigillata is an economically valuable nut crop renowned for its nutritional richness,including essential nutrients,antioxidants,and healthy fats,which boost human cardial,brain and gut health.Despite its impor...Juglans sigillata is an economically valuable nut crop renowned for its nutritional richness,including essential nutrients,antioxidants,and healthy fats,which boost human cardial,brain and gut health.Despite its importance,the lack of a complete genome assembly has been a stumbling block in its biological breeding process.Therefore,we generated deep coverage ultralong Oxford Nanopore Technology(ONT)and PacBio HiFi reads to construct a telomere-to-telomere(T2T)genome assembly.The final assembly spans 537.27 Mb with no gaps,demonstrating a remarkable completeness of 98.1%.We utilized a combination of transcriptome data and homologous proteins to annotate the genome,identifying 36018 protein-coding genes.Furthermore,we profiled global cytosine DNA methylations using ONT sequencing data.Global methylome analysis revealed high methylation levels in transposable element(TE)-rich chromosomal regions juxtaposed with comparatively lower methylation in gene-rich areas.By integrating a detailed multi-omics data analysis,we obtained valuable insights into the mechanism underlying endopleura coloration.This investigation led to the identification of eight candidate genes(e.g.ANR)involved in anthocyanin biosynthesis pathways,which are crucial for the development of color in plants.The comprehensive genome assembly and the understanding of the genetic basis of important traits like endopleura coloration will open avenues for more efficient breeding programs and improved crop quality.展开更多
Because of their low electrical conductivity,sluggish ion diffusion,and poor stability,conventional electrode materials are not able to meet the growing demands of energy storage and portable devices.Graphene assemble...Because of their low electrical conductivity,sluggish ion diffusion,and poor stability,conventional electrode materials are not able to meet the growing demands of energy storage and portable devices.Graphene assembled films(GAFs)formed from graphene nanosheets have an ultrahigh conductivity,a unique 2D network structure,and exceptional mechanical strength,which give them the potential to solve these problems.However,a systematic understanding of GAFs as an advanced electrode material is lacking.This review focuses on the use of GAFs in electrochemistry,providing a comprehensive analysis of their synthesis methods,surface/structural characteristics,and physical properties,and thus understand their structure-property relationships.Their advantages in batteries,supercapacitors,and electrochemical sensors are systematically evaluated,with an emphasis on their excellent electrical conductivity,ion transport kinetics,and interfacial stability.The existing problems in these devices,such as chemical inertness and mechanical brittleness,are discussed and potential solutions are proposed,including defect engineering and hybrid structures.This review should deepen our mechanistic understanding of the use of GAFs in electrochemical systems and provide actionable strategies for developing stable,high-performance electrode materials.展开更多
A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefo...A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefore,this study aimed to compare the performance outcomes of MEA using electrodes with single and three catalyst layers.This study measured Electrochemical Surface Area(ECSA),Electrochemical Impedance Spectroscopy(EIS),X-ray Diffraction analysis(XRD),and X-ray Fluorescence(XRF).Furthermore,the round-trip efficiency(RTE)of the MEA,as w ell as the performance in FC and WE mode,was measured.In comparison,The ECSA values of Pt-Ru/C and Pt/C with three catalyst layers were higher than the single catalyst layer.This result was supported by electrode characterization data for XRD and XRF.The respective electrical conductivity values of Pt-Ru/C and Pt/C with three catalyst layers are also higher than the single cata-lyst layer,and the performance of URFC using MEA with three catalyst layers has the highest value of RTE among the MEA performances of URFC,which is 100%at a current density of 4 mA·cm-2.展开更多
Molecular recognition of fullerene using various host compounds is well-known in literature.But most studies focus on host-vip complexation in solution using host compounds with a single binding cavity.Herein,we rep...Molecular recognition of fullerene using various host compounds is well-known in literature.But most studies focus on host-vip complexation in solution using host compounds with a single binding cavity.Herein,we report a series of highly preorganized janusarene derivatives with homoditopic binding sites.These novel janusarenes can bind and align various fullerenes such as C_(60),C_(70),C_(84),and Gd@C_(82)in a highly efficient manner.Robust shape complementary association and assembly are observed in solution,in the bulk solid state,in the liquid crystalline state,or on surface,and the assembled structures are characterized by nuclear magnetic resonance(NMR)titration,X-ray diffraction,polarized optical microscopy,and scanning tunneling microscopy.展开更多
Soil microbiomes are significant for biodiversity,crucial for ecosystem functions,and vital for the health of various organisms.Nevertheless,the impacts of season and plant species shifts on soil microbial diversity a...Soil microbiomes are significant for biodiversity,crucial for ecosystem functions,and vital for the health of various organisms.Nevertheless,the impacts of season and plant species shifts on soil microbial diversity and community assembly are still poorly understood.This study explored soil bacterial,fungal,and protistan communities during summer and winter in a coastal wetland affected by Spartina alterniflora invasion and subsequent Cyperus malaccensis or Kandelia obovata restoration.The results showed that bacterial,fungal,and protistan diversity were 2.63%,40.3%,and 9.90%higher in winter than in summer,respectively.Plant species had a distinct impact on microbial diversity.Notably,K.obovata restoration significantly increased bacterial diversity,but decreased protistan diversity,with no effect on fungal diversity when compared to S.alterniflora invasion.Season and plant species both significantly influenced the community structure of bacteria,fungi,and protists.However,protistan community structure was more sensitive to season compared to the structure of bacterial and fungal communities.The complexity of co-occurrence networks within or among bacteria,fungi,and protists was higher in winter than in summer.Bacterial and protistan community assembly was primarily driven by stochastic processes,while fungal assembly was dominated by deterministic processes.Bacterial and protistan community assembly exhibited lower stochasticity in winter compared to summer,suggesting a more deterministic assembly of communities during winter.Our findings highlight the critical role of season and plant species in regulating microbial communities,revealing higher microbial diversity,network complexity,and determinism in community assembly during winter compared to summer in a subtropical coastal wetland.展开更多
A renewable fluorescent material(GСCP5L)has been constructed via supramolecular assembly between a new derivative of pillararene,namely leggero pillar[5]arene,as the host molecule(CP5L)and a tetraphenylethylene(TPE)-...A renewable fluorescent material(GСCP5L)has been constructed via supramolecular assembly between a new derivative of pillararene,namely leggero pillar[5]arene,as the host molecule(CP5L)and a tetraphenylethylene(TPE)-based ditopic vip(G).This new material can simultaneously perform efficient detection and separation of silver(I)from aqueous environments.Possessing an electron-rich cavity and two cytosine groups modified on both rims,CP5L functions as the host-vip binding site for G and offers exclusive coordination sites for further interaction with Ag+.Adding Ag+to the system undergoes dramatic fluorescence enhancement due to the mechanism of supramolecular assembly-induced enhanced emission(SAIEE).This fluorescence enhancement allows for efficient and visualized detection following a“light-up”pattern,achieving a limit of detection(LOD)of 1.3×10^(-7)mol/L,which is fully in line with the World Health Organization's drinking water standard of 9×10^(-7)mol/L.In addition,GСCP5L also shows strong anti-interference capability against other cationic species.For the separation of Ag+from aqueous systems,GСCP5L displays exceptional adsorption efficiency(97%)and reliable recovery performance,demonstrating excellent recyclability after five experimental cycles without compromising its adsorption activity.展开更多
Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature...Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.展开更多
Reservoirs play a critical role in addressing water resources challenges.However,their vertical influence on the assembly mechanisms of different microbial communities,including prokaryotes and eukaryotes,remains uncl...Reservoirs play a critical role in addressing water resources challenges.However,their vertical influence on the assembly mechanisms of different microbial communities,including prokaryotes and eukaryotes,remains unclear.This study examined the vertical diversity patterns of abundant and rare subcommunities of prokaryotes and eukaryotes in an urban reservoir,using water depth as a geographical gradient and employing high-throughput sequencing.The impact of vertical environmental heterogeneity on community structure was quantified,and key drivers of these dynamics were identified.The results indicated that the urban reservoir exhibited statistically significant differences in the vertical distribution of water temperature and oxidation/reduction potential.The a-diversity of the abundant subcommunity displayed an opposing vertical pattern compared to that of the rare subcommunity,while the b-diversity for both subcommunities of prokaryotes and eukaryotes increased with water depth.Moreover,the distinct diversity patterns of abundant and rare subcommunities were associated with environmental heterogeneity and species adaptability.Notably,the b-diversity of the rare subcommunity of eukaryotes was primarily driven by species turnover in surface water,whereas nestedness became the dominant factor in deeper water.Furthermore,eukaryotic microbes exhibited a more pronounced response to changes in water depth than prokaryotes,consistent with the importance of heterogeneous selection to the eukaryotic community.Water temperature significantly affected the community composition of all groups,highlighting its importance in shaping community dynamics.This study provides valuable insights into the vertical distribution and assembly mechanisms of microbial communities in urban reservoirs,contributing to the protection and management of aquatic ecosystems under river regulation.展开更多
As one of the important wintering areas along the East Asian-Australasian Flyway,wetlands in the Yangtze River floodplain face threats from land-use changes,yet its effects on wintering waterbirds at the landscape lev...As one of the important wintering areas along the East Asian-Australasian Flyway,wetlands in the Yangtze River floodplain face threats from land-use changes,yet its effects on wintering waterbirds at the landscape level remain understudied,impeding conservation practice.Here,using survey data collected across 14 inland lakes in Jiangsu Province in 2022,we calculated wintering waterbirds diversity(taxonomic,functional,phylogenetic)and assembly patterns(MPD/MNTD of functional and phylogenetic).Then,we interpreted satellite imagery of lake areas and buffer zones(5 km),and partitioned them into three land-use and landscape index categories(anthropogenic,ecological,and lake landscape).Finally,we employed multiple linear regression and hierarchical partitioning to explain the influence of landscape scales on wintering waterbird communities.Our results showed that the diversity and assembly of regional wintering waterbird communities tended to be consistent across taxonomic,functional,and phylogenetic dimensions.The standardized diversity indices indicated that functional assembly of communities tends to be clustered at both local and regional scale.In contrast,the phylogenetic structure showed a predominantly overdispersed pattern in most lakes at the local scale,while neutral processes dominated at the regional scale.Modeling showed that selected variables explained waterbird diversity and assembly well.Lake fragmentation increased species evenness but reduced other diversity indices,while landscape evenness was negatively associated with functional and phylogenetic assembly.Among anthropogenic factors,aquaculture ponds and impervious surfaces reduced all diversity dimensions,whereas cropland connectivity enhanced phylogenetic diversity.These factors had consistent effects on community assembly.For ecological variables,grassland area enhanced functional and phylogenetic diversity but led to more clustered functional assembly.Overall,maintaining the integrity and connectivity of lakes and their surrounding landscapes is essential for sustaining waterbird diversity and guiding wetland restoration.展开更多
The buckling-guided three-dimensional(3D)assembly method has arisen increasing attention for its advantages in forming complex 3D architectures with a rich diversity of geometric shapes in a broad spectrum of inorgani...The buckling-guided three-dimensional(3D)assembly method has arisen increasing attention for its advantages in forming complex 3D architectures with a rich diversity of geometric shapes in a broad spectrum of inorganic functional materials.Such an assembly method relies on the controlled lateral bucking of a 2D precursor structure integrated with a pre-stretched substrate at selective regions.In the assembly process,the preservation or break-ing of rotational symmetry is crucial for understanding the mechanism of 2D-to-3D geometric transformation.Here,we present a fundamental study on the rotational symmetry of 3D spoke double-ring structures formed through buckling-guided assembly.An energetic method is introduced to analyze the rotational symmetry and to understand the symmetry-breaking mechanism.Such symmetry-breaking phenomenon is validated by experi-ments and finite element analyses(FEA).Phase diagrams of the deformation mode are established to shed light on the influences of various geometric parameters(e.g.,initial rotational symmetry order,radius ratio,and lo-cation of bonding sites).This work offers new insights into the underlying mechanism of 2D-to-3D geometric transformation in ribbon-type structures formed by compressive buckling.展开更多
Multifunctional flexible sensors as wearable electronic systems have attracted considerable attention for mimicking human skin to sense ambient stimuli.However,sensors need to have high resolution,stability and sensit...Multifunctional flexible sensors as wearable electronic systems have attracted considerable attention for mimicking human skin to sense ambient stimuli.However,sensors need to have high resolution,stability and sensitivity to realize fully biomimetic skin.Here,an assembled and welded Ag/W composite nanowire flexible electrode was prepared for body motion monitoring and flexible heaters.This Ag/W composite nanowire flexible electrode has a high transmittance of 90.1%(at 121Ω·sq^(−1) sheet resistance)and a low sheet resistance of 27Ω·sq^(−1)(at 60.1%transmittance).Although the transparency of this electrode is not high,the fluctuation in relative resistance change rate at 10%strain is only 5%after 1000 tensile cycles.It can be employed to monitor human body motions,including bending of fingers,arms,wrists,and throat action.Meanwhile,the Ag/W nanowires composite film heater achieves a steady-state temperature of up to 100℃ at a constant voltage of 3.5 V and an instantaneous heating rate of up to 36.5℃·s^(−1).展开更多
Bacterial communities play a crucial role in permafrost biogeochemical cycling and ecosystem function maintenance.Bacterial interaction is one of the main factors in shaping soil bacterial communities.However,how woul...Bacterial communities play a crucial role in permafrost biogeochemical cycling and ecosystem function maintenance.Bacterial interaction is one of the main factors in shaping soil bacterial communities.However,how would bacterial interaction influence the bacterial communities in permafrost of the Qinghai-Tibet Plateau(QTP)remains largely unknown.Here we collected paired soil samples from both the active and permafrost layers of two typical QTP permafrost regions in October 2020 for Tuotuohe River(TTH)and May 2022 for Aerjin(ARJ),and investigated the bacterial communities and the role of interactions in structuring the bacterial community and its assembly process through amplicon sequencing of the 16S rRNA gene.Our study revealed distinct bacterial communities,with significant differences in the relative abundances of Proteobacteria(P<0.05),Acidobacteriota(P<0.001),Bacteroidota(P<0.05),and Planctomycetota(P<0.001)between the active layer and the permafrost layer.More importantly,we found that interspecies interactions,including both positive and negative associations,were strongly correlated with bacterial alpha-diversity and played a significant role in community variation and assembly process.Our findings also showed that the community assembly in both the active and permafrost layers was primarily driven by homogeneous selection of deterministic processes,with interspecies interactions accounting for more than 58%and 63%of all assembly mechanisms,respectively.This is the first study to quantify the contribution of bacterial interactions in shaping the bacterial community and its assembly process in permafrost of QTP,highlighting the importance of considering interspecies interactions in future modeling efforts.Our work also emphasizes the necessity of including interspecies interactions in microbial process projections to reduce uncertainty.展开更多
Black phosphorus(BP),as a rising star of 2D nanomaterials has drawn considerable attention in cancer therapy.However,the poor stability under ambient conditions limits their practical applications.Herein,a multiple su...Black phosphorus(BP),as a rising star of 2D nanomaterials has drawn considerable attention in cancer therapy.However,the poor stability under ambient conditions limits their practical applications.Herein,a multiple supramolecular assembly composed of adamantane-modified hyaluronic acid(HAADA),ferrocene-modified cinnamaldehyde(Fc-CA),guanidinium-functionalizedβ-cyclodextrin(Guano-CD),and black phosphorus(BP)nanosheets was successfully fabricated through cooperative host-vip and electrostatic interactions.Owing to the cooperative contribution of these building blocks,the obtained supramolecular assembly simultaneously possesses multiple functions including excellent stability,good biocompatibility and targeting property,and a high inhibition effect toward cancer cells.We believe that this work might provide new insights into designing a new generation of cancer theranostic protocols for potential clinical applications.展开更多
The environmental impacts of acid mine drainage(AMD)from open-pit mining are profoundly detrimental,yet knowledge about its effects on paddy soil microbial communities,especially at greater depths,remains limited.In t...The environmental impacts of acid mine drainage(AMD)from open-pit mining are profoundly detrimental,yet knowledge about its effects on paddy soil microbial communities,especially at greater depths,remains limited.In this investigation,we compared soils affected by AMD versus unaffected soil depth profiles in terms of bacterial diversity and community assembly.The profiles in AMD-polluted soils exhibited tight geochemical gradients,characterized by increased acidity,SO_(4)^(2-),NO_(3)^(-),and heavy metal content compared to unpolluted soils.Notably,AMD significantly diminished soil bacterial biodiversity.A depthwise analysis showed distinct microbial stratification,with certain bacteria like Candidatus_Solibacter and Candidatus_Koribacter predominated in polluted soils,while others like Haliangium and Nitrospira were more prevalent in control soils.Interestingly,despite variable soil conditions,predictedmetabolic pathways,particularly those involving carbon,nitrogen,and sulfur,showed relative stability.AMD pollution induced the upregulation of methylcoenzyme M reductase and sulfate reductase genes.Bacterial communities were more responsive to pH and nutrient content rather than heavy metals,with pH and SO_(4)^(2-)being the primary drivers of microbial diversity and distribution.Additionally,pHwas identified as the most significant influence on the predicted methane,sulfur,and nitrogen metabolism.Furthermore,deterministic processes played a more significant role in community assembly of polluted soils,while heterogeneous selection gained importance with increasing depth in control soils.Additionally,microbial co-occurrences,particularly positive interactions,were more prevalent in the polluted soils with reduced network modularity and keystone taxa.These findings offer insights into sustaining microbial diversity in extreme environments.展开更多
Effective vegetation reconstruction plays a vital role in the restoration of desert ecosystems.However,in reconstruction of different vegetation types,the community characteristics,assembly processes,and functions of ...Effective vegetation reconstruction plays a vital role in the restoration of desert ecosystems.However,in reconstruction of different vegetation types,the community characteristics,assembly processes,and functions of different soil microbial taxa under environmental changes are still disputed,which limits the understanding of the sustainability of desert restoration.Hence,we investigated the soil microbial community characteristics and functional attributes of grassland desert(GD),desert steppe(DS),typical steppe(TS),and artificial forest(AF)in the Mu Us Desert,China.Our findings confirmed the geographical conservation of soil microbial composition but highlighted decreased microbial diversity in TS.Meanwhile,the abundance of rare taxa and microbial community stability in TS improved.Heterogeneous and homogeneous selection determined the assembly of rare and abundant bacterial taxa,respectively,with both being significantly influenced by soil moisture.In contrast,fungal communities displayed stochastic processes and exhibited sensitivity to soil nutrient conditions.Furthermore,our investigation revealed a noteworthy augmentation in bacterial metabolic functionality in TS,aligning with improved vegetation restoration and the assemblage of abundant bacterial taxa.However,within nutrient-limited soils(GD,DS,and AF),the assembly dynamics of rare fungal taxa assumed a prominent role in augmenting their metabolic capacity and adaptability to desert ecosystems.These results highlighted the variations in the assembly processes and metabolic functions of soil microorganisms during vegetation reestablishment and provided corresponding theoretical support for anthropogenic revegetation of desert ecosystems.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.52005003)the Science and Technology Planning Project of Wuhu City(Grant No.2022jc41)。
文摘To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for constructing an industrial robot assembly system based on virtual reality technology.Focusing on the shaft hole assembly,the mechanical characteristics of the industrial robot shaft hole assembly process are analyzed and a dynamic model is established for shaft hole assembly operations.The key elements of virtual assembly operations for industrial robots are summarized and a five-dimensional model is proposed for industrial robot virtual operations.Utilizing the Unity3D engine based on the 5-D model for industrial robot virtual operations,an industrial robot shaft hole assembly system is developed.This system enables virtual assembly operations,displays physical attributes,and provides valuable references for the research of virtual systems.
基金supported by the National Natural Science Foundation of China(32241045,32241046,32241038)the Major Special Science and Technology Projects in Shanxi Province(202101140601027)+3 种基金Shanxi Provincial Agricultural Key Technologies Breakthrough Project(NYGG01)Doctoral Research Starting Project at Shanxi Agricultural University(2024BQ77)the National Key Research and Development Program of China(2023YFD1202705/2023YFD120270503,2023YFD1202703/2023YFD1202703-4)Shanxi HouJi Laboratory Self-proposed Research Project(202304010930003/202304010930003-03).
文摘Common bean(Phaseolus vulgaris L.)is a vital source of protein and essential nutrients for human consumption and plays a key role in sustainable agriculture due to its nitrogen-fixing ability(Nadeem et al.,2021).Kidney beans,a subcategory of dry common beans,are highly valued for their rich protein,dietary fiber,low fat content,and various trace elements(Garcia-Cordero et al.,2021).Despite the release of several de novo genome assemblies(Goodstein et al.,2012;Schmutz et al.,2014;Vlasova et al.,2016;Cortinovis et al.,2024),existing common bean genomes remain incomplete,particularly in complex regions such as centromeres and telomeres,limiting a comprehensive understanding of the genomic landscape.
文摘Despite the gradual transformation of traditional manufacturing by the Human-Robot Collaboration Assembly(HRCA),challenges remain in the robot’s ability to understand and predict human assembly intentions.This study aims to enhance the robot’s comprehension and prediction capabilities of operator assembly intentions by capturing and analyzing operator behavior and movements.We propose a video feature extraction method based on the Temporal Shift Module Network(TSM-ResNet50)to extract spatiotemporal features from assembly videos and differentiate various assembly actions using feature differences between video frames.Furthermore,we construct an action recognition and segmentation model based on the Refined-Multi-Scale Temporal Convolutional Network(Refined-MS-TCN)to identify assembly action intervals and accurately acquire action categories.Experiments on our self-built reducer assembly action dataset demonstrate that our network can classify assembly actions frame by frame,achieving an accuracy rate of 83%.Additionally,we develop a HiddenMarkovModel(HMM)integrated with assembly task constraints to predict operator assembly intentions based on the probability transition matrix and assembly task constraints.The experimental results show that our method for predicting operator assembly intentions can achieve an accuracy of 90.6%,which is a 13.3%improvement over the HMM without task constraints.
基金the National Key R&D Program of China(No.2021YFA1501503)the National Natural Science Foundation of China(Nos.22250008,22121004,22108197)+3 种基金the Haihe Laboratory of Sustainable Chemical Transformations(No.CYZC202107)the Natural Science Foundation of Tianjin City(No.21JCZXJC00060)the Program of Introducing Talents of Discipline to Universities(No.BP0618007)the Xplorer Prize for financial support。
文摘Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-section in the flow channel is normally adopted,the configuration optimization of which could potentially enhance the performance of the electrolyzer.This paper describes the numerical simulation study on the impact of the flow-channel cross-section shapes in the MEA electrolyzer for CO_(2)RR.The results show that wide flow channels with low heights are beneficial to the CO_(2)RR by providing a uniform flow field of CO_(2),especially at high current densities.Moreover,the larger the electrolyzer,the more significant the effect is.This study provides a theoretical basis for the design of high-performance MEA electrolyzers for CO_(2)RR.
基金supported by the Yunnan Seed Laboratory,China(202205AR070001-15)the National Natural Science Foundation of China,China(Grant No.32160697)。
文摘Juglans sigillata is an economically valuable nut crop renowned for its nutritional richness,including essential nutrients,antioxidants,and healthy fats,which boost human cardial,brain and gut health.Despite its importance,the lack of a complete genome assembly has been a stumbling block in its biological breeding process.Therefore,we generated deep coverage ultralong Oxford Nanopore Technology(ONT)and PacBio HiFi reads to construct a telomere-to-telomere(T2T)genome assembly.The final assembly spans 537.27 Mb with no gaps,demonstrating a remarkable completeness of 98.1%.We utilized a combination of transcriptome data and homologous proteins to annotate the genome,identifying 36018 protein-coding genes.Furthermore,we profiled global cytosine DNA methylations using ONT sequencing data.Global methylome analysis revealed high methylation levels in transposable element(TE)-rich chromosomal regions juxtaposed with comparatively lower methylation in gene-rich areas.By integrating a detailed multi-omics data analysis,we obtained valuable insights into the mechanism underlying endopleura coloration.This investigation led to the identification of eight candidate genes(e.g.ANR)involved in anthocyanin biosynthesis pathways,which are crucial for the development of color in plants.The comprehensive genome assembly and the understanding of the genetic basis of important traits like endopleura coloration will open avenues for more efficient breeding programs and improved crop quality.
基金the National Natural Science Foundation of China(22279097)the Key R&D Program of Hubei Province(2023BAB103)the PhD Scientific Research and Innovation Foundation of The Education Department of Hainan Province Joint Project of Sanya Yazhou Bay Science and Technology City(HSPHDSRF-2024-03-022)。
文摘Because of their low electrical conductivity,sluggish ion diffusion,and poor stability,conventional electrode materials are not able to meet the growing demands of energy storage and portable devices.Graphene assembled films(GAFs)formed from graphene nanosheets have an ultrahigh conductivity,a unique 2D network structure,and exceptional mechanical strength,which give them the potential to solve these problems.However,a systematic understanding of GAFs as an advanced electrode material is lacking.This review focuses on the use of GAFs in electrochemistry,providing a comprehensive analysis of their synthesis methods,surface/structural characteristics,and physical properties,and thus understand their structure-property relationships.Their advantages in batteries,supercapacitors,and electrochemical sensors are systematically evaluated,with an emphasis on their excellent electrical conductivity,ion transport kinetics,and interfacial stability.The existing problems in these devices,such as chemical inertness and mechanical brittleness,are discussed and potential solutions are proposed,including defect engineering and hybrid structures.This review should deepen our mechanistic understanding of the use of GAFs in electrochemical systems and provide actionable strategies for developing stable,high-performance electrode materials.
基金support from the Ministry of Higher Education Malaysia under grant HICOE-2023-005.
文摘A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefore,this study aimed to compare the performance outcomes of MEA using electrodes with single and three catalyst layers.This study measured Electrochemical Surface Area(ECSA),Electrochemical Impedance Spectroscopy(EIS),X-ray Diffraction analysis(XRD),and X-ray Fluorescence(XRF).Furthermore,the round-trip efficiency(RTE)of the MEA,as w ell as the performance in FC and WE mode,was measured.In comparison,The ECSA values of Pt-Ru/C and Pt/C with three catalyst layers were higher than the single catalyst layer.This result was supported by electrode characterization data for XRD and XRF.The respective electrical conductivity values of Pt-Ru/C and Pt/C with three catalyst layers are also higher than the single cata-lyst layer,and the performance of URFC using MEA with three catalyst layers has the highest value of RTE among the MEA performances of URFC,which is 100%at a current density of 4 mA·cm-2.
基金supported by the National Natural Science Foundation of China(Nos.22325111,2220312,21871298,91956118)Guangdong Basic Research Center of Excellence for Functional Molecular Engineeringthe Sun Yat-sen University。
文摘Molecular recognition of fullerene using various host compounds is well-known in literature.But most studies focus on host-vip complexation in solution using host compounds with a single binding cavity.Herein,we report a series of highly preorganized janusarene derivatives with homoditopic binding sites.These novel janusarenes can bind and align various fullerenes such as C_(60),C_(70),C_(84),and Gd@C_(82)in a highly efficient manner.Robust shape complementary association and assembly are observed in solution,in the bulk solid state,in the liquid crystalline state,or on surface,and the assembled structures are characterized by nuclear magnetic resonance(NMR)titration,X-ray diffraction,polarized optical microscopy,and scanning tunneling microscopy.
基金supported by the Natural Resources Science and Technology Innovation Project of Fujian Province,China(No.KY-090000-04-2022-012)the National Natural Science Foundation of China(Nos.42077041 and 42377301)+1 种基金the National Natural Science Foundation of Fujian Province,China(No.2021J011038)the Talent Introduction Program of Minjiang University,China(No.MJY20012).
文摘Soil microbiomes are significant for biodiversity,crucial for ecosystem functions,and vital for the health of various organisms.Nevertheless,the impacts of season and plant species shifts on soil microbial diversity and community assembly are still poorly understood.This study explored soil bacterial,fungal,and protistan communities during summer and winter in a coastal wetland affected by Spartina alterniflora invasion and subsequent Cyperus malaccensis or Kandelia obovata restoration.The results showed that bacterial,fungal,and protistan diversity were 2.63%,40.3%,and 9.90%higher in winter than in summer,respectively.Plant species had a distinct impact on microbial diversity.Notably,K.obovata restoration significantly increased bacterial diversity,but decreased protistan diversity,with no effect on fungal diversity when compared to S.alterniflora invasion.Season and plant species both significantly influenced the community structure of bacteria,fungi,and protists.However,protistan community structure was more sensitive to season compared to the structure of bacterial and fungal communities.The complexity of co-occurrence networks within or among bacteria,fungi,and protists was higher in winter than in summer.Bacterial and protistan community assembly was primarily driven by stochastic processes,while fungal assembly was dominated by deterministic processes.Bacterial and protistan community assembly exhibited lower stochasticity in winter compared to summer,suggesting a more deterministic assembly of communities during winter.Our findings highlight the critical role of season and plant species in regulating microbial communities,revealing higher microbial diversity,network complexity,and determinism in community assembly during winter compared to summer in a subtropical coastal wetland.
基金the Natural Science Foundation of Jilin Province(No.20230101052JC)the National Natural Science Foundation of China(No.52173200)Hangzhou Jingshi Technology Co.,Ltd.,and Hangzhou Xuhui Technology Co.,Ltd.for financial support。
文摘A renewable fluorescent material(GСCP5L)has been constructed via supramolecular assembly between a new derivative of pillararene,namely leggero pillar[5]arene,as the host molecule(CP5L)and a tetraphenylethylene(TPE)-based ditopic vip(G).This new material can simultaneously perform efficient detection and separation of silver(I)from aqueous environments.Possessing an electron-rich cavity and two cytosine groups modified on both rims,CP5L functions as the host-vip binding site for G and offers exclusive coordination sites for further interaction with Ag+.Adding Ag+to the system undergoes dramatic fluorescence enhancement due to the mechanism of supramolecular assembly-induced enhanced emission(SAIEE).This fluorescence enhancement allows for efficient and visualized detection following a“light-up”pattern,achieving a limit of detection(LOD)of 1.3×10^(-7)mol/L,which is fully in line with the World Health Organization's drinking water standard of 9×10^(-7)mol/L.In addition,GСCP5L also shows strong anti-interference capability against other cationic species.For the separation of Ag+from aqueous systems,GСCP5L displays exceptional adsorption efficiency(97%)and reliable recovery performance,demonstrating excellent recyclability after five experimental cycles without compromising its adsorption activity.
基金supported by the National Natural Science Foundation of China(No.22288101)the 111 Project(No.B17020)。
文摘Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.92047201)the Fundamental Research Funds for the Central Universities(Grant No.B230201026)+1 种基金the National Natural Science Foundation of China(Grants No.42377054 and 42007149)the Open Project of Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake(Grant No.HZHLAB2301).
文摘Reservoirs play a critical role in addressing water resources challenges.However,their vertical influence on the assembly mechanisms of different microbial communities,including prokaryotes and eukaryotes,remains unclear.This study examined the vertical diversity patterns of abundant and rare subcommunities of prokaryotes and eukaryotes in an urban reservoir,using water depth as a geographical gradient and employing high-throughput sequencing.The impact of vertical environmental heterogeneity on community structure was quantified,and key drivers of these dynamics were identified.The results indicated that the urban reservoir exhibited statistically significant differences in the vertical distribution of water temperature and oxidation/reduction potential.The a-diversity of the abundant subcommunity displayed an opposing vertical pattern compared to that of the rare subcommunity,while the b-diversity for both subcommunities of prokaryotes and eukaryotes increased with water depth.Moreover,the distinct diversity patterns of abundant and rare subcommunities were associated with environmental heterogeneity and species adaptability.Notably,the b-diversity of the rare subcommunity of eukaryotes was primarily driven by species turnover in surface water,whereas nestedness became the dominant factor in deeper water.Furthermore,eukaryotic microbes exhibited a more pronounced response to changes in water depth than prokaryotes,consistent with the importance of heterogeneous selection to the eukaryotic community.Water temperature significantly affected the community composition of all groups,highlighting its importance in shaping community dynamics.This study provides valuable insights into the vertical distribution and assembly mechanisms of microbial communities in urban reservoirs,contributing to the protection and management of aquatic ecosystems under river regulation.
基金funded by the National Natural Science Foundation of China(Grant No.42271116)。
文摘As one of the important wintering areas along the East Asian-Australasian Flyway,wetlands in the Yangtze River floodplain face threats from land-use changes,yet its effects on wintering waterbirds at the landscape level remain understudied,impeding conservation practice.Here,using survey data collected across 14 inland lakes in Jiangsu Province in 2022,we calculated wintering waterbirds diversity(taxonomic,functional,phylogenetic)and assembly patterns(MPD/MNTD of functional and phylogenetic).Then,we interpreted satellite imagery of lake areas and buffer zones(5 km),and partitioned them into three land-use and landscape index categories(anthropogenic,ecological,and lake landscape).Finally,we employed multiple linear regression and hierarchical partitioning to explain the influence of landscape scales on wintering waterbird communities.Our results showed that the diversity and assembly of regional wintering waterbird communities tended to be consistent across taxonomic,functional,and phylogenetic dimensions.The standardized diversity indices indicated that functional assembly of communities tends to be clustered at both local and regional scale.In contrast,the phylogenetic structure showed a predominantly overdispersed pattern in most lakes at the local scale,while neutral processes dominated at the regional scale.Modeling showed that selected variables explained waterbird diversity and assembly well.Lake fragmentation increased species evenness but reduced other diversity indices,while landscape evenness was negatively associated with functional and phylogenetic assembly.Among anthropogenic factors,aquaculture ponds and impervious surfaces reduced all diversity dimensions,whereas cropland connectivity enhanced phylogenetic diversity.These factors had consistent effects on community assembly.For ecological variables,grassland area enhanced functional and phylogenetic diversity but led to more clustered functional assembly.Overall,maintaining the integrity and connectivity of lakes and their surrounding landscapes is essential for sustaining waterbird diversity and guiding wetland restoration.
基金supported by the National Natural Science Foundation of China(Grant Nos.12225206,11921002,and 12202233)the New Cornerstone Science Foundation through the XPLORER PRIZE,the Tsinghua National Laboratory for Information Science and Technology,a grant from the Institute for Guo Qiang,Tsinghua University(Grant No.2021GQG1009)。
文摘The buckling-guided three-dimensional(3D)assembly method has arisen increasing attention for its advantages in forming complex 3D architectures with a rich diversity of geometric shapes in a broad spectrum of inorganic functional materials.Such an assembly method relies on the controlled lateral bucking of a 2D precursor structure integrated with a pre-stretched substrate at selective regions.In the assembly process,the preservation or break-ing of rotational symmetry is crucial for understanding the mechanism of 2D-to-3D geometric transformation.Here,we present a fundamental study on the rotational symmetry of 3D spoke double-ring structures formed through buckling-guided assembly.An energetic method is introduced to analyze the rotational symmetry and to understand the symmetry-breaking mechanism.Such symmetry-breaking phenomenon is validated by experi-ments and finite element analyses(FEA).Phase diagrams of the deformation mode are established to shed light on the influences of various geometric parameters(e.g.,initial rotational symmetry order,radius ratio,and lo-cation of bonding sites).This work offers new insights into the underlying mechanism of 2D-to-3D geometric transformation in ribbon-type structures formed by compressive buckling.
基金supported by the National Natural Science Foundation of China(Nos.51905103,52275177).
文摘Multifunctional flexible sensors as wearable electronic systems have attracted considerable attention for mimicking human skin to sense ambient stimuli.However,sensors need to have high resolution,stability and sensitivity to realize fully biomimetic skin.Here,an assembled and welded Ag/W composite nanowire flexible electrode was prepared for body motion monitoring and flexible heaters.This Ag/W composite nanowire flexible electrode has a high transmittance of 90.1%(at 121Ω·sq^(−1) sheet resistance)and a low sheet resistance of 27Ω·sq^(−1)(at 60.1%transmittance).Although the transparency of this electrode is not high,the fluctuation in relative resistance change rate at 10%strain is only 5%after 1000 tensile cycles.It can be employed to monitor human body motions,including bending of fingers,arms,wrists,and throat action.Meanwhile,the Ag/W nanowires composite film heater achieves a steady-state temperature of up to 100℃ at a constant voltage of 3.5 V and an instantaneous heating rate of up to 36.5℃·s^(−1).
基金supported by grants from the National Natural Science Foundation of China for Excellent Young Scientists Fund Program(No.42222105)the National Natural Science Foundation of China General Program(No.42171144)+1 种基金the Assessment of Ecosystem Carbon Stock and Turnover Patterns in Qinghai Province(No.2021-SFA7-1-1)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2021QZKK0100)。
文摘Bacterial communities play a crucial role in permafrost biogeochemical cycling and ecosystem function maintenance.Bacterial interaction is one of the main factors in shaping soil bacterial communities.However,how would bacterial interaction influence the bacterial communities in permafrost of the Qinghai-Tibet Plateau(QTP)remains largely unknown.Here we collected paired soil samples from both the active and permafrost layers of two typical QTP permafrost regions in October 2020 for Tuotuohe River(TTH)and May 2022 for Aerjin(ARJ),and investigated the bacterial communities and the role of interactions in structuring the bacterial community and its assembly process through amplicon sequencing of the 16S rRNA gene.Our study revealed distinct bacterial communities,with significant differences in the relative abundances of Proteobacteria(P<0.05),Acidobacteriota(P<0.001),Bacteroidota(P<0.05),and Planctomycetota(P<0.001)between the active layer and the permafrost layer.More importantly,we found that interspecies interactions,including both positive and negative associations,were strongly correlated with bacterial alpha-diversity and played a significant role in community variation and assembly process.Our findings also showed that the community assembly in both the active and permafrost layers was primarily driven by homogeneous selection of deterministic processes,with interspecies interactions accounting for more than 58%and 63%of all assembly mechanisms,respectively.This is the first study to quantify the contribution of bacterial interactions in shaping the bacterial community and its assembly process in permafrost of QTP,highlighting the importance of considering interspecies interactions in future modeling efforts.Our work also emphasizes the necessity of including interspecies interactions in microbial process projections to reduce uncertainty.
基金supported by the Program for improving the Scientific Research Ability of Youth Teachers of Inner Mongolia Agricultural University(No.BR220140)the National Natural Science Foundation of China(No.52263013)+2 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region(No.2021MS02023)the Grassland Talents program of Inner Mongolia Autonomous Regionthe Program of Higher-level Talents of Inner Mongolia Agricultural University(No.NDGCC2016-21)。
文摘Black phosphorus(BP),as a rising star of 2D nanomaterials has drawn considerable attention in cancer therapy.However,the poor stability under ambient conditions limits their practical applications.Herein,a multiple supramolecular assembly composed of adamantane-modified hyaluronic acid(HAADA),ferrocene-modified cinnamaldehyde(Fc-CA),guanidinium-functionalizedβ-cyclodextrin(Guano-CD),and black phosphorus(BP)nanosheets was successfully fabricated through cooperative host-vip and electrostatic interactions.Owing to the cooperative contribution of these building blocks,the obtained supramolecular assembly simultaneously possesses multiple functions including excellent stability,good biocompatibility and targeting property,and a high inhibition effect toward cancer cells.We believe that this work might provide new insights into designing a new generation of cancer theranostic protocols for potential clinical applications.
基金supported by the Educational Commission of Anhui Province of China(No.KJ2021A0168)the Research Fund of Anhui Agricultural University(No.rc422112).
文摘The environmental impacts of acid mine drainage(AMD)from open-pit mining are profoundly detrimental,yet knowledge about its effects on paddy soil microbial communities,especially at greater depths,remains limited.In this investigation,we compared soils affected by AMD versus unaffected soil depth profiles in terms of bacterial diversity and community assembly.The profiles in AMD-polluted soils exhibited tight geochemical gradients,characterized by increased acidity,SO_(4)^(2-),NO_(3)^(-),and heavy metal content compared to unpolluted soils.Notably,AMD significantly diminished soil bacterial biodiversity.A depthwise analysis showed distinct microbial stratification,with certain bacteria like Candidatus_Solibacter and Candidatus_Koribacter predominated in polluted soils,while others like Haliangium and Nitrospira were more prevalent in control soils.Interestingly,despite variable soil conditions,predictedmetabolic pathways,particularly those involving carbon,nitrogen,and sulfur,showed relative stability.AMD pollution induced the upregulation of methylcoenzyme M reductase and sulfate reductase genes.Bacterial communities were more responsive to pH and nutrient content rather than heavy metals,with pH and SO_(4)^(2-)being the primary drivers of microbial diversity and distribution.Additionally,pHwas identified as the most significant influence on the predicted methane,sulfur,and nitrogen metabolism.Furthermore,deterministic processes played a more significant role in community assembly of polluted soils,while heterogeneous selection gained importance with increasing depth in control soils.Additionally,microbial co-occurrences,particularly positive interactions,were more prevalent in the polluted soils with reduced network modularity and keystone taxa.These findings offer insights into sustaining microbial diversity in extreme environments.
基金supported by the National Natural Science Foundation of China(No.42007428)the National Forage Industry Technology System Program of China(No.CARS34)+1 种基金the Key Research and Development Program of Shaanxi,China(No.2022SF-285)Shaanxi Province Forestry Science and Technology Innovation Program,China(No.SXLK2022-02-14)。
文摘Effective vegetation reconstruction plays a vital role in the restoration of desert ecosystems.However,in reconstruction of different vegetation types,the community characteristics,assembly processes,and functions of different soil microbial taxa under environmental changes are still disputed,which limits the understanding of the sustainability of desert restoration.Hence,we investigated the soil microbial community characteristics and functional attributes of grassland desert(GD),desert steppe(DS),typical steppe(TS),and artificial forest(AF)in the Mu Us Desert,China.Our findings confirmed the geographical conservation of soil microbial composition but highlighted decreased microbial diversity in TS.Meanwhile,the abundance of rare taxa and microbial community stability in TS improved.Heterogeneous and homogeneous selection determined the assembly of rare and abundant bacterial taxa,respectively,with both being significantly influenced by soil moisture.In contrast,fungal communities displayed stochastic processes and exhibited sensitivity to soil nutrient conditions.Furthermore,our investigation revealed a noteworthy augmentation in bacterial metabolic functionality in TS,aligning with improved vegetation restoration and the assemblage of abundant bacterial taxa.However,within nutrient-limited soils(GD,DS,and AF),the assembly dynamics of rare fungal taxa assumed a prominent role in augmenting their metabolic capacity and adaptability to desert ecosystems.These results highlighted the variations in the assembly processes and metabolic functions of soil microorganisms during vegetation reestablishment and provided corresponding theoretical support for anthropogenic revegetation of desert ecosystems.