The thermal degradation of poly(arylene sulfide sulfone)/N-methylpyrrolidone (PASS/NMP) crystal solvate was studied by thermogravimetric analysis (TGA) and was compared with pure PASS in order to determine the w...The thermal degradation of poly(arylene sulfide sulfone)/N-methylpyrrolidone (PASS/NMP) crystal solvate was studied by thermogravimetric analysis (TGA) and was compared with pure PASS in order to determine the way in which the formation of the crystal solvate affected the thermal properties of the polymer. The activation energy of the solid state process was determined using Kissinger's method, which does not require knowledge of the reaction mechanism (RM), to be 174.18 kJ/mol which was lower than that for pure PASS (E = 214 kJ/mol). The study of master curves together with interpretation of integral methods, allows confirmation that the thermal degradation mechanism for PASS in the crystal solvate system is a decelerated Rn type, which is a solid-state process based on a phase boundary controlled reaction, in the conversion range considered. Whereas, the pure PASS follows a decelerated Dn thermodegradation mechanism in the same conversion range.展开更多
A series of cyclic (arylene phosphonate) oligomers were prepared by reaction of phenylphosphonic dichloride (PPD) with various bisphenols under pseudo-high dilution conditions via interfacial polycondensation. The yie...A series of cyclic (arylene phosphonate) oligomers were prepared by reaction of phenylphosphonic dichloride (PPD) with various bisphenols under pseudo-high dilution conditions via interfacial polycondensation. The yield of cyclic (arylene phosphonate) oligomers is over 85% by using hexadecyltrimethylammoniun bromide as phase transfer catalyst (PTC) at 0 'C . The structures of the cyclic oligomers were confirmed by a combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and IR analysis. These cyclic oligomers undergo facile ring-opening polymerization in the melt by using potassium 4,4'-biphenoxide as the initiator to give linear polyphosphonate. Free-radical ring-opening polymerization of cyclic(arylene phosphonate) oligomers containing sulfur linkages was also performed in the melt using 2,2'-dithiobis(benzothiazole) (DTB) as the initiator at 270 °C and the resulting polymer had a Mw, of 8 × 103 with a molecular weight distribution of 4. Ring-opening copolymerization of these cyclic oligomers with cyclic carbonate oligomers was also achieved. The average molecular weight of the resulting copolymer is higher than the corresponding homopolymer and the thermal stability of the copolymer is better than the corresponding homopolymer.展开更多
A novel sulfonated poly(arylene ether) containing triphenylmethane moieties was synthesized by the sulfonation of a designed parent polymer using chlorosulfonic acid as sulfonation agent. The sulfonation took place ...A novel sulfonated poly(arylene ether) containing triphenylmethane moieties was synthesized by the sulfonation of a designed parent polymer using chlorosulfonic acid as sulfonation agent. The sulfonation took place at the para position of the pendant phenyl rings because of the specially designed parent polymer. The position and degree of sulfonation were characterized by ^1H-NMR and elemental analysis. The sulfonated polymers are highly soluble in common organic solvents, such as dimethylsulfoxide, N,N'-dimethylacetamide, dimethylformamide, ethylene glycol monomethyl ether, and can be readily cast into tough and smooth films from solutions. The films showed good thermal and hydrolysis stabilities. Moreover, Fenton's reagent test revealed that the films exhibited superior stability to oxidation. The proton conductivities of the films were comparable with Nation 117 under same conditions. The membrane electrode assembly (MEA) prepared with the asmade film (706 EW, 100 μm dry thickness) shows better cell performance than Nation 115-MEA in the whole current density range.展开更多
Owing to the excellent filtration performance and low energy cost,polymeric nanofibers microfiltration(MF)membranes have attracted increasing attentions.Poly(arylene sulfide sulfone)(PASS),as one of the structurally m...Owing to the excellent filtration performance and low energy cost,polymeric nanofibers microfiltration(MF)membranes have attracted increasing attentions.Poly(arylene sulfide sulfone)(PASS),as one of the structurally modified polymers based on poly-(phenylene sulfide)(PPS),has been selected as the raw material to fabricate nanofibers MF membranes via electrospun techniques.The effects of PASS solution and the electrospinning processing parameters on the structural morphology of nanofibers were investigated in detail.The average diameter of PASS nanofibers was(296±46)nm under the optimal condition:polymer concentration of 0.27 g·m L^–1 PASS/DMI,applied voltage of 20 kV,and speed of collector drum of 300 r·min^–1.And then the multi-layer PASS nanofibers MF membranes were fabricated from cold-pressing the optimized PASS nanofibers(as-prepared PASS nanofibers)membrane.The morphology,porosity,pore size,mechanical properties,and surface wettability of the multi-layer PASS nanofibers MF membranes could be tuned by the layers of as-prepared nanofibers membrane.The results demonstrated that the membrane with 6 layers(marked as PASS-6)exhibited the smallest porosity,smallest pore size,highest mechanical property,and best surface wettability.Meanwhile,the multi-layer PASS nanofibers MF membranes showed that the rejection ratio gradually increased,while the pure water flux decreased with increasing membranes thickness.The PASS-6 membrane exhibited large water flux of 747.76 L·m^–2·h^–1 and high separation efficiency of 99.9%to 0.2μm particles,making it a promising candidate for microfilter.展开更多
A series of multiblock sulfonated poly(arylene ether sulfone)s(SPAES)with various block lengths and predictable ion exchange capacity were synthesized from 4,4’-difluorodiphenyl sulfone,4,4’-dihydrodiphenyl sulfone ...A series of multiblock sulfonated poly(arylene ether sulfone)s(SPAES)with various block lengths and predictable ion exchange capacity were synthesized from 4,4’-difluorodiphenyl sulfone,4,4’-dihydrodiphenyl sulfone and 4,4’-biphenol by one-pot and two-pot polymerization.;H-NMR and FTIR spectra confirmed the structure that sulfonic acid groups were introduced precisely on the poly(arylene ether sulfone)s by post-sulfonation which resulted in controllable sulfonation degree.The proton exchange membranes(PEMs)-based SPAES displayed excellent dimensional,thermal,antioxidant stability,proton conductivity and mechanical properties(maximum tensile stress>35 MPa).Thermogravimetric analysis indicated the prepared SPAES began to degrade above 310℃.The effects of polymerization processes,those were,one-pot hydrophobic segment process,one-pot hydrophilic segment process and two-pot process,on the properties of polymers were investigated.The proton conductivity and microphase separation of SPAES PEMs increased in order of those prepared by one-pot hydrophobic segment process,two-pot process and one-pot hydrophilic segment process.The highest conductivities of SPAES synthesized by the above processes under 80℃ and 100%relative humidity were 213(MS4),297(MB3)and 360 mS·cm^(-1)(MQ2),respectively.展开更多
Poly(arylene ether diketone)s were prepared by the aromatic nucleophilic displacement reaction of 4,4'-difluorobenzil with different bisphenols in the presence of anhydrous potassium carbonate in diphenylsulfone a...Poly(arylene ether diketone)s were prepared by the aromatic nucleophilic displacement reaction of 4,4'-difluorobenzil with different bisphenols in the presence of anhydrous potassium carbonate in diphenylsulfone at elevated temperature. The polymers obtained had inherent viscosity of 0.51 similar to 0.63 dL/g, and exhibited glass transition temperature ranging from 136 similar to 217 degrees C mainly depending on the bisphenols used in the polymer synthesis. Thermogravimetry of these polymers showed excellent thermal stability, indicating that 10% weight losses of the polymers were observed in the range above 428 degrees C and 438 degrees C in air and nitrogen, respectively. The mechanical properties of these polymers were also described and the permeability of five polymers for H-2, O-2 and N-2 was determined at 30 degrees C.展开更多
High-quality film capacitors are widely used in many fields such as new energy vehicles,electronic communications,etc.,due to their advantages in wide frequency response and low dielectric loss.The dielectric film is ...High-quality film capacitors are widely used in many fields such as new energy vehicles,electronic communications,etc.,due to their advantages in wide frequency response and low dielectric loss.The dielectric film is a crucial part of the film capacitor,and its properties have an important impact on the performance and use conditions of the film capacitor.In this work,a novel high-temperature-resistant dielectric film was prepared.Firstly,the Bi_(2)S_(3)/rGO-CN fillers were prepared by hydrothermal method combined with cyanation treatment,and then added to the poly(arylene ether nitrile)(PEN)matrix to prepare the dielectric film materials(PEN/Bi_(2)S_(3)/rGO-CN).After high temperature treatment,the fillers Bi_(2)S_(3)/rGO-CN reacted with the PEN matrix,and the composites materials transformed into a thermosetting hybrid film(PEN-Bi_(2)S_(3)/rGO)with gel content of 97.88%.The prepared hybrid dielectric films did not decompose significantly before 400℃,and showed a glass transition temperature(Tg)of up to 252.4℃,which could increase the effective use temperature of the materials.Compared with the composite films without heat treatment,they exhibit better mechanical properties,with further improvement in tensile strength and elastic modulus,and a decrease in elongation at break.The dielectric constant of the hybrid films can be up to 6.8 while the dielectric loss is only about 0.02 at 1 kHz.Moreover,the hybrid films showed excellent dielectric stability during temperature changes,and remain relatively stable before 250℃,which is suitable as a high-temperature-resistant high-dielectric material and is more advantageous for practical applications.展开更多
Compared with conventional π-conjugated polymers,poly(arylene ether)s(PAEs) may take advantages of excellent thermal properties,well-defined effective conjugated length and no catalyst contamination.Recently,thei...Compared with conventional π-conjugated polymers,poly(arylene ether)s(PAEs) may take advantages of excellent thermal properties,well-defined effective conjugated length and no catalyst contamination.Recently,their applications have been extended from engineering plastics to optoelectronic materials.In this review,various kinds of functional PAEs used as fluorescent polymers,host polymers and phosphorescent polymers in organic light-emitting diodes(OLEDs) are outlined,and their molecular design,synthesis and device performance are overviewed.展开更多
Separation of liquid aliphatic hydrocarbons is of fundamental interest and practical importance in the development of liquid fuels and basic chemical feedstocks[1].As a classic platform to synthesize high-value hydroc...Separation of liquid aliphatic hydrocarbons is of fundamental interest and practical importance in the development of liquid fuels and basic chemical feedstocks[1].As a classic platform to synthesize high-value hydrocarbons using nonfossil feedstocks,the Fischer-Tropsch process usually produces a broad distribution of aliphatic alkanes,accompanied with some olefin byproducts[2].展开更多
Dielectric energy storage materials that are extensively employed in capacitors and other electronic devices have attracted increasing attentions amid the rapid progress of electronic technology.However,the commercial...Dielectric energy storage materials that are extensively employed in capacitors and other electronic devices have attracted increasing attentions amid the rapid progress of electronic technology.However,the commercialized polymeric and ceramic dielectric materials characterized by low energy storage density face numerous limitations in practical applications.In this study,we report the simultaneous enhancement of dielectric properties of poly(arylene ether nitrile)(PEN)through the incorporating of sulfonated PEN(SPEN)modified barium titanate nanorods(BTNR)(SPEN@BTNR)and hot-stretching.BTNR is synthesized using a two-step hydrothermal method,aminated with KH550,and then reacted with SPEN to form the cladding-modified SPEN@BTNR.Due to the intrinsic high permittivity of barium titanate(BT)and enhanced compatibility between SPEN@BTNR and PEN stemming from the cladding of SPEN,the dielectric constant and breakdown strength of SPEN@BTNR/PEN composite are as high as 14.0 at 103 Hz and 198.1 kV/mm at the doping amount of 15 wt.%,respectively.As a result,the energy storage density of SPEN@BTNR/PEN is increased to 2.43 J/cm^(3),compared with that of 0.82 J/cm^(3)for PEN.In addition,derived from the rearrangement of SPEN@BTNR and orientation of PEN after hot-stretching,the dielectric constant and breakdown strength of SPEN@BTNR/PEN with 15 wt.%fillers are further enhanced to 17.1 and 204.8 kV/mm,respectively,resulting in an energy storage density of 3.36 J/cm^(3).The boosting of energy storage density up to 310%provides a new idea for improving the performances of dielectric energy storage materials.展开更多
Organoboron compounds have become important intermediates for the construction of new compounds in synthetic chemistry and pharmaceutical chemistry,and it has been found that pinacol biborate(B_(2)pin_(2))as the boron...Organoboron compounds have become important intermediates for the construction of new compounds in synthetic chemistry and pharmaceutical chemistry,and it has been found that pinacol biborate(B_(2)pin_(2))as the boron source and Cu^(Ⅱ) organophosphorus complex(L)as the catalyst can effectively realize the hydrogen-reduced borylation products and dehydrohydrated borylation products of aryl olefins.The reaction regioselectivity involvingβ-C positions of aryl olefins can be controlled by regulating the ligand and additive types.The formation mechanism of the product is conducted at LCu^(Ⅰ)Bpin formed from Cu^(Ⅱ),L and B_(2)pin_(2).Subsequently the substrate aryl olefins undergo addition reaction to form the active intermediate PhCH(LCu^(Ⅰ))CH_(2)Bpin.Followed by the metathesis of the active intermediate with water to form hydrogen reduction products,the same active intermediate can be oxidized with 2,2,6,6-tetramethylpiperidoxyl(TEMPO)to form trans dehydrogenation products.展开更多
Quaternary ammonium densely functionalized octa-benzylmethyl-containing poly(arylene ether ketone)s(QA-OMPAEKs) with ion exchange capacities(IECs) ranging from 1.23 to 2.21 mmol g^(-1) were synthesized from:(1) Ullman...Quaternary ammonium densely functionalized octa-benzylmethyl-containing poly(arylene ether ketone)s(QA-OMPAEKs) with ion exchange capacities(IECs) ranging from 1.23 to 2.21 mmol g^(-1) were synthesized from:(1) Ullmann coupling extension of tetra-benzylmethyl-containing bisphenol A;(2) condensation polymerization with activated dihalide in the presence of K_2CO_3;(3) selective bromination using N-bromosuccinimide; and(4) quantitative quaternization using trimethylamine. Both smallangle X-ray scattering(SAXS) and transmission electron microscope(TEM) characterizations revealed distinct nano-phase separation in QA-OMPAEKs as a result of the dense quaternization. The QA-OMPAEK-20 with an IEC of 1.98 mmol g^(-1) exhibited a high SO_4^(2-) conductivity of 11.4 mS cm^(-1) and a low VO^(2+) permeability of 0.06×10^(-12) m^2 s^(-1) at room temperature,leading to a dramatically higher ion selectivity than Nafion N212. Consequently, the vanadium redox flow battery(VRFB)assembled with QA-OMPAEK-20 achieved a Coulombic efficiency of 96.9% and an energy efficiency of 84.8% at a current density of 50 mA cm^(-2), which were much higher than those of the batteries assembled with Nafion N212 and a home-made control membrane without distinct nano-phase separation. Therefore, ion segregation is demonstrated to be a strategical route for the design of high performance anion exchange membranes(AEMs) for VRFBs.展开更多
Two-electron neutral aqueous organic redox flow batteries(AORFBs)hold more promising applications in the power grid than one-electron batteries because of their higher capacity.However,their development is strongly li...Two-electron neutral aqueous organic redox flow batteries(AORFBs)hold more promising applications in the power grid than one-electron batteries because of their higher capacity.However,their development is strongly limited by the structural instability of the highly reduced species.By combining the extendedπ-conjugation structure of the anolytes and the enhanced aromaticity of the highly reduced species,we reported a series of highly conjugated and inexpensive arylene diimide derivatives(NDI,PDI,and TPDI)as novel two-electron storage anolyte materials for ultrastable AORFBs.Matched with(ferrocenylmethyl)trimethylammonium chloride(FcNCl)as catholyte,arylene diimide derivative-based AORFBs showed the highest stability in two-electron AORFBs to date.The NDI/FcNCl-based AORFB delivered 98.44%capacity retention at 40 mA cm^(−2)for 350 cycles;TPDI/FcNCl-based AORFB also showed remarkable stability with 97.22%capacity retention at 20 mA cm^(−2)over 200 cycles.This finding lays the theoretical foundation and offers a reference for improving the stability of two-electron AORFBs.展开更多
A new series of poly(arylene piperidinium)-based anion exchange membranes(AEMs)are proposed for vanadium redox flow batteries(VRFBs).The AEMs are fabricated via the Menshutkin reaction between poly(arylene piperidine)...A new series of poly(arylene piperidinium)-based anion exchange membranes(AEMs)are proposed for vanadium redox flow batteries(VRFBs).The AEMs are fabricated via the Menshutkin reaction between poly(arylene piperidine)without ether bonds in the backbone and various quaternizing agents,including iodomethane,1-bromopentane,and(5-bromopentyl)-trimethylammonium bromide.The properties of the AEMs are investigated in terms of sulfuric acid doping content,swelling,vanadium permeability,ion selectivity,area-specific resistance,mechanical properties,VRFB performance,and cyclic testing.Particularly,a method of measuring the H^(+) permeability of the AEM is developed.It demonstrates that the poly(p-terphenyl-N-methylpiperidine)-quaternary ammonium(PTP-QA)membrane with a QA cation-tethered alkyl chain exhibits high H^(+) permeability,resulting in low area resistance.Combined with its low vanadium permeance,the PTP-QA membrane achieves nearly 370 times higher ion selectivity than Nafion 115.The VRFB based on PTP-QA-based AEM displays high Coulombic efficiencies above 99% at current densities of 80-160 mA cm^(-2).The higher energy efficiency of 89.8% is achieved at 100 mA cm^(-2)(vs.73.6% for Nafion 115).Meanwhile,the PTPQA-based AEM shows good cycling stability and capacity retention,proving great potential as the ion exchange membrane for VRFB applications.展开更多
Vanadium flow batteries(VFBs)have drawn considerable attention as an emerging technology for largescale energy storage systems(ESSs).One of the pivotal challenges is the availability of eligible ion exchange membranes...Vanadium flow batteries(VFBs)have drawn considerable attention as an emerging technology for largescale energy storage systems(ESSs).One of the pivotal challenges is the availability of eligible ion exchange membranes(ICMs)that provide high ion selectivity,proton conductivity,and stability under rigorous condition.Herein,a‘side-chain-type’strategy has been employed to fabricate highly stable phenolphthalein-based cardo poly(arylene ether ketone)s(PAEKs)membrane with low area resistance(0.058Ωcm^(2)),in which flexible alkyl spacers effectively alleviated inductive withdrawing effect from terminal ion exchange groups thus enabling a stable backbone.The assembled VFBs based on PAEKs bearing pendent alkyl chain terminated with quaternary ammonium(Q-PPhEK)demonstrated an energy efficiency above 80%over 700 cycles at 160 mA/cm^(2).Such a remarkable results revealed that the side-chain-type strategy contributed to enhancing the ICMs stability in strong oxidizing environment,meanwhile,more interesting backbones would be woken with this design engaging in stable ICMs for VFBs.展开更多
Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]...Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]-containing carboxyl groups[PAEK-COOH]/UiO-66-NH_(2)@graphene oxide[GO])with superb fouling resistance and high permeability was prepared by the nonsolvent-induced phase separation method,by in-situ growth of UiO-66-NH_(2) on the GO layer,and by preparing hydrophilic PAEK-COOH.On the basis of the structure and performance analysis of the MMM,the maximum water flux reached 591.25 L·m^(-2)·h^(-1) for PAEK-COOH/UiO-66-NH_(2)@GO,whereas the retention rate for bovine serum albumin increased from 85.40%to 94.87%.As the loading gradually increased,the hydrophilicity of the MMMs increased,significantly enhancing their fouling resistance.The strongest anti-fouling ability observed was 94.74%,which was 2.02 times greater than that of the pure membrane.At the same time,the MMMs contained internal amide and hydrogen bonds during the preparation process,forming a cross-linked structure,which further enhanced the mechanical strength and chemical stability.In summary,the MMMs with high retention rate,strong permeability,and anti-fouling ability were successfully prepared.展开更多
Macrocyclic arylene ether ketone was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrum(MALDI-TOF MS)combining with nuclear magnetic resonance(NMR)spectra.No any more fragment io...Macrocyclic arylene ether ketone was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrum(MALDI-TOF MS)combining with nuclear magnetic resonance(NMR)spectra.No any more fragment ionization peaks except for the molecular ion peak from the mass spectrum.The structure of macrocyclic dimmer was further affirmed by the NMR spectra through the analysis of chemical shifts.The MALDI-TOF MS combining with NMR technique was found an important tool to characterized Macrocyclic aromatic oligomers.展开更多
The microstructure of polymer electrolyte membranes plays a key role in ion conductivity and water transport.Herein,fluorinated poly(aryl ether)s with tetra-alkylsulfonate side chains(SFPAEs)have been successfully syn...The microstructure of polymer electrolyte membranes plays a key role in ion conductivity and water transport.Herein,fluorinated poly(aryl ether)s with tetra-alkylsulfonate side chains(SFPAEs)have been successfully synthesized from the copolymerization of a newly developed tetra-allyl-containing bisphenol(TABP)monomer,followed by the thiol-ene addition with sodium 3-mercapto-1-propanesulfonate to attach the ionic groups at the end of the flexible chains.Being the first of its kind,the densely distributed and lengthy alkylsulfonate group possesses the benefit of ease to self-assemble into hydrophilic domains during membrane preparation via solution casting.Indeed,the TEM characterizations revealed that distinct hydrophilic channels of 1-2 nm width had been formed,much larger than those of a home-made control sample where only di-alkylsulfonate side chains were attached.The SFPAE-4-45 with an IECw of 2.0 mmol g^-1 exhibited an enhanced proton conductivity of 143.7 m S cm^-1 at room temperature,which was superior to that of Nafion 212(91.0 m S cm^-1).Furthermore,the oxidative stabilities of SFPAEs were significantly higher than those of non-fluorinated analogs in literature.This study offered a new route to engineering the pendent structure of ionomers for well-defined microscopic morphologies.展开更多
Critical issues of Zn anodes including undesirable dendrites formation and parasitic reactions severely limit the reversibility and cyclability of Zn anodes.To address these issues,a functional Janus separator with th...Critical issues of Zn anodes including undesirable dendrites formation and parasitic reactions severely limit the reversibility and cyclability of Zn anodes.To address these issues,a functional Janus separator with the structure of a mechanically strong sulfonated poly(arylene ether sulfone)(SPAES)dense layer composited on a porous glass fiber(GF)substrate is designed.The SPAES dense layer that faces the Zn anode containing abundant sulfonic acid groups effectively promotes the desolvation process of hydrated Zn ions,guides uniform Zn ion transfer,and blocks anions and water,contributing to dendrite-free and highly reversible Zn plating/stripping cycles,while the porous GF substrate retains high electrolyte uptake.As a result,the Zn symmetric cell with the Janus separator demonstrates an ultralong cycling lifespan of over 2000 h at the areal capacity of 1 m A h cm^(-2),which is 23-fold superior to that with a pristine glass fiber separator(<90 h).More impressively,the as-prepared Janus separator enables outstanding rate performance and excellent cycling stability of full Zn ion batteries with diverse cathode materials.For instance,when paired with the V_2O_(5)cathode,the full battery with a Janus separator attains an ultrahigh initial specific capacity of 416.3 m A h g^(-1)and capacity retention of 60%over 450 cycles at 1 A g^(-1),exceeding that with a glass fiber separator.Hence,this work provides a facile yet effective approach to mitigating the dendrites formation and ameliorating the parasitic reactions of Zn metal anodes for high-performance Zn ion batteries.展开更多
The direct polymerization of an unsymmetrical kink non-coplanar heterocyclic diamine (1) with various aromatic bis(trimellitimide)s (2a-e) using triphenyl phosphite and pyridine as condensing agents could generate a s...The direct polymerization of an unsymmetrical kink non-coplanar heterocyclic diamine (1) with various aromatic bis(trimellitimide)s (2a-e) using triphenyl phosphite and pyridine as condensing agents could generate a series of new aromatic poly(amide imide)s (3a-e) containing the kink non-coplanar phthalazinone heterocyclic units in the polymer main chains with inherent viscosities of 0.58-0.66 dL/g. The polymers are readily soluble in a variety of solvents such as N,N- dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidinone, pyridine and m-cresol and can be cast to form flexible and tough films. The glass transition temperatures of polymers (Tg) are in the range of 301-327°C, and the temperatures for 5% weight loss in nitrogen are in the range of 498-521 'C.展开更多
基金supported by the 863 program of China(No.2007AA 03Z561)
文摘The thermal degradation of poly(arylene sulfide sulfone)/N-methylpyrrolidone (PASS/NMP) crystal solvate was studied by thermogravimetric analysis (TGA) and was compared with pure PASS in order to determine the way in which the formation of the crystal solvate affected the thermal properties of the polymer. The activation energy of the solid state process was determined using Kissinger's method, which does not require knowledge of the reaction mechanism (RM), to be 174.18 kJ/mol which was lower than that for pure PASS (E = 214 kJ/mol). The study of master curves together with interpretation of integral methods, allows confirmation that the thermal degradation mechanism for PASS in the crystal solvate system is a decelerated Rn type, which is a solid-state process based on a phase boundary controlled reaction, in the conversion range considered. Whereas, the pure PASS follows a decelerated Dn thermodegradation mechanism in the same conversion range.
基金This project was supported by the National Natural Science Foundation of China (No. 20084001).
文摘A series of cyclic (arylene phosphonate) oligomers were prepared by reaction of phenylphosphonic dichloride (PPD) with various bisphenols under pseudo-high dilution conditions via interfacial polycondensation. The yield of cyclic (arylene phosphonate) oligomers is over 85% by using hexadecyltrimethylammoniun bromide as phase transfer catalyst (PTC) at 0 'C . The structures of the cyclic oligomers were confirmed by a combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and IR analysis. These cyclic oligomers undergo facile ring-opening polymerization in the melt by using potassium 4,4'-biphenoxide as the initiator to give linear polyphosphonate. Free-radical ring-opening polymerization of cyclic(arylene phosphonate) oligomers containing sulfur linkages was also performed in the melt using 2,2'-dithiobis(benzothiazole) (DTB) as the initiator at 270 °C and the resulting polymer had a Mw, of 8 × 103 with a molecular weight distribution of 4. Ring-opening copolymerization of these cyclic oligomers with cyclic carbonate oligomers was also achieved. The average molecular weight of the resulting copolymer is higher than the corresponding homopolymer and the thermal stability of the copolymer is better than the corresponding homopolymer.
基金This work was financially supported by the National Science Foundation of China (NSFC) (Key project, No. 29734120)the China High-Tech Development 863 Program (No. 2003AA302410)+1 种基金Natural Science Foundation of Guangdong Province (Excellent Team Project, No. 015007)Canton Province Sci & Tech Bureau (Key Strategic Project, No. A1100402) and Guangzhou Sci & Tech Bureau
文摘A novel sulfonated poly(arylene ether) containing triphenylmethane moieties was synthesized by the sulfonation of a designed parent polymer using chlorosulfonic acid as sulfonation agent. The sulfonation took place at the para position of the pendant phenyl rings because of the specially designed parent polymer. The position and degree of sulfonation were characterized by ^1H-NMR and elemental analysis. The sulfonated polymers are highly soluble in common organic solvents, such as dimethylsulfoxide, N,N'-dimethylacetamide, dimethylformamide, ethylene glycol monomethyl ether, and can be readily cast into tough and smooth films from solutions. The films showed good thermal and hydrolysis stabilities. Moreover, Fenton's reagent test revealed that the films exhibited superior stability to oxidation. The proton conductivities of the films were comparable with Nation 117 under same conditions. The membrane electrode assembly (MEA) prepared with the asmade film (706 EW, 100 μm dry thickness) shows better cell performance than Nation 115-MEA in the whole current density range.
文摘Owing to the excellent filtration performance and low energy cost,polymeric nanofibers microfiltration(MF)membranes have attracted increasing attentions.Poly(arylene sulfide sulfone)(PASS),as one of the structurally modified polymers based on poly-(phenylene sulfide)(PPS),has been selected as the raw material to fabricate nanofibers MF membranes via electrospun techniques.The effects of PASS solution and the electrospinning processing parameters on the structural morphology of nanofibers were investigated in detail.The average diameter of PASS nanofibers was(296±46)nm under the optimal condition:polymer concentration of 0.27 g·m L^–1 PASS/DMI,applied voltage of 20 kV,and speed of collector drum of 300 r·min^–1.And then the multi-layer PASS nanofibers MF membranes were fabricated from cold-pressing the optimized PASS nanofibers(as-prepared PASS nanofibers)membrane.The morphology,porosity,pore size,mechanical properties,and surface wettability of the multi-layer PASS nanofibers MF membranes could be tuned by the layers of as-prepared nanofibers membrane.The results demonstrated that the membrane with 6 layers(marked as PASS-6)exhibited the smallest porosity,smallest pore size,highest mechanical property,and best surface wettability.Meanwhile,the multi-layer PASS nanofibers MF membranes showed that the rejection ratio gradually increased,while the pure water flux decreased with increasing membranes thickness.The PASS-6 membrane exhibited large water flux of 747.76 L·m^–2·h^–1 and high separation efficiency of 99.9%to 0.2μm particles,making it a promising candidate for microfilter.
基金financially supported by the National Natural Science Foundation of China(No.21306010)。
文摘A series of multiblock sulfonated poly(arylene ether sulfone)s(SPAES)with various block lengths and predictable ion exchange capacity were synthesized from 4,4’-difluorodiphenyl sulfone,4,4’-dihydrodiphenyl sulfone and 4,4’-biphenol by one-pot and two-pot polymerization.;H-NMR and FTIR spectra confirmed the structure that sulfonic acid groups were introduced precisely on the poly(arylene ether sulfone)s by post-sulfonation which resulted in controllable sulfonation degree.The proton exchange membranes(PEMs)-based SPAES displayed excellent dimensional,thermal,antioxidant stability,proton conductivity and mechanical properties(maximum tensile stress>35 MPa).Thermogravimetric analysis indicated the prepared SPAES began to degrade above 310℃.The effects of polymerization processes,those were,one-pot hydrophobic segment process,one-pot hydrophilic segment process and two-pot process,on the properties of polymers were investigated.The proton conductivity and microphase separation of SPAES PEMs increased in order of those prepared by one-pot hydrophobic segment process,two-pot process and one-pot hydrophilic segment process.The highest conductivities of SPAES synthesized by the above processes under 80℃ and 100%relative humidity were 213(MS4),297(MB3)and 360 mS·cm^(-1)(MQ2),respectively.
文摘Poly(arylene ether diketone)s were prepared by the aromatic nucleophilic displacement reaction of 4,4'-difluorobenzil with different bisphenols in the presence of anhydrous potassium carbonate in diphenylsulfone at elevated temperature. The polymers obtained had inherent viscosity of 0.51 similar to 0.63 dL/g, and exhibited glass transition temperature ranging from 136 similar to 217 degrees C mainly depending on the bisphenols used in the polymer synthesis. Thermogravimetry of these polymers showed excellent thermal stability, indicating that 10% weight losses of the polymers were observed in the range above 428 degrees C and 438 degrees C in air and nitrogen, respectively. The mechanical properties of these polymers were also described and the permeability of five polymers for H-2, O-2 and N-2 was determined at 30 degrees C.
基金financially supported by the National Natural Science Foundation of China(Nos.52073039,51903029,21805027,51803020 and 51773028)International Science and Technology Cooperation Project(No.52011530027)+3 种基金Major Special Projects of Sichuan Province(Nos.2020YFG0270,2020ZDZX0020,2019ZDZX0027 and 2019ZDZX0016)the Fundamental Research Funds for the Central Universities(No.ZYGX2019J026)Sichuan Science and Technology Program(Nos.2019YJ0197,2019YFG0056 and 2020YFG0100)International Science and Technology Cooperation Project from Chengdu municipal government(No.2019-GH02-00037-HZ)。
文摘High-quality film capacitors are widely used in many fields such as new energy vehicles,electronic communications,etc.,due to their advantages in wide frequency response and low dielectric loss.The dielectric film is a crucial part of the film capacitor,and its properties have an important impact on the performance and use conditions of the film capacitor.In this work,a novel high-temperature-resistant dielectric film was prepared.Firstly,the Bi_(2)S_(3)/rGO-CN fillers were prepared by hydrothermal method combined with cyanation treatment,and then added to the poly(arylene ether nitrile)(PEN)matrix to prepare the dielectric film materials(PEN/Bi_(2)S_(3)/rGO-CN).After high temperature treatment,the fillers Bi_(2)S_(3)/rGO-CN reacted with the PEN matrix,and the composites materials transformed into a thermosetting hybrid film(PEN-Bi_(2)S_(3)/rGO)with gel content of 97.88%.The prepared hybrid dielectric films did not decompose significantly before 400℃,and showed a glass transition temperature(Tg)of up to 252.4℃,which could increase the effective use temperature of the materials.Compared with the composite films without heat treatment,they exhibit better mechanical properties,with further improvement in tensile strength and elastic modulus,and a decrease in elongation at break.The dielectric constant of the hybrid films can be up to 6.8 while the dielectric loss is only about 0.02 at 1 kHz.Moreover,the hybrid films showed excellent dielectric stability during temperature changes,and remain relatively stable before 250℃,which is suitable as a high-temperature-resistant high-dielectric material and is more advantageous for practical applications.
基金the National Natural Science Foundation of China(Nos.51573182,51203149,21204084,91333205)the 973 Project(No.2015CB655000)for financial support of this research
文摘Compared with conventional π-conjugated polymers,poly(arylene ether)s(PAEs) may take advantages of excellent thermal properties,well-defined effective conjugated length and no catalyst contamination.Recently,their applications have been extended from engineering plastics to optoelectronic materials.In this review,various kinds of functional PAEs used as fluorescent polymers,host polymers and phosphorescent polymers in organic light-emitting diodes(OLEDs) are outlined,and their molecular design,synthesis and device performance are overviewed.
文摘Separation of liquid aliphatic hydrocarbons is of fundamental interest and practical importance in the development of liquid fuels and basic chemical feedstocks[1].As a classic platform to synthesize high-value hydrocarbons using nonfossil feedstocks,the Fischer-Tropsch process usually produces a broad distribution of aliphatic alkanes,accompanied with some olefin byproducts[2].
基金the National Natural Science Foundation of China(No.21978237)Natural Science Foundation of Shaanxi Province(Nos.2023-JC-YB-370 and 2024-JC-YBQN-0140)Shaanxi Fundamental Science Research Project for Chemistry and Biology(No.22JHQ032)are gratefully acknowledged.
文摘Dielectric energy storage materials that are extensively employed in capacitors and other electronic devices have attracted increasing attentions amid the rapid progress of electronic technology.However,the commercialized polymeric and ceramic dielectric materials characterized by low energy storage density face numerous limitations in practical applications.In this study,we report the simultaneous enhancement of dielectric properties of poly(arylene ether nitrile)(PEN)through the incorporating of sulfonated PEN(SPEN)modified barium titanate nanorods(BTNR)(SPEN@BTNR)and hot-stretching.BTNR is synthesized using a two-step hydrothermal method,aminated with KH550,and then reacted with SPEN to form the cladding-modified SPEN@BTNR.Due to the intrinsic high permittivity of barium titanate(BT)and enhanced compatibility between SPEN@BTNR and PEN stemming from the cladding of SPEN,the dielectric constant and breakdown strength of SPEN@BTNR/PEN composite are as high as 14.0 at 103 Hz and 198.1 kV/mm at the doping amount of 15 wt.%,respectively.As a result,the energy storage density of SPEN@BTNR/PEN is increased to 2.43 J/cm^(3),compared with that of 0.82 J/cm^(3)for PEN.In addition,derived from the rearrangement of SPEN@BTNR and orientation of PEN after hot-stretching,the dielectric constant and breakdown strength of SPEN@BTNR/PEN with 15 wt.%fillers are further enhanced to 17.1 and 204.8 kV/mm,respectively,resulting in an energy storage density of 3.36 J/cm^(3).The boosting of energy storage density up to 310%provides a new idea for improving the performances of dielectric energy storage materials.
文摘Organoboron compounds have become important intermediates for the construction of new compounds in synthetic chemistry and pharmaceutical chemistry,and it has been found that pinacol biborate(B_(2)pin_(2))as the boron source and Cu^(Ⅱ) organophosphorus complex(L)as the catalyst can effectively realize the hydrogen-reduced borylation products and dehydrohydrated borylation products of aryl olefins.The reaction regioselectivity involvingβ-C positions of aryl olefins can be controlled by regulating the ligand and additive types.The formation mechanism of the product is conducted at LCu^(Ⅰ)Bpin formed from Cu^(Ⅱ),L and B_(2)pin_(2).Subsequently the substrate aryl olefins undergo addition reaction to form the active intermediate PhCH(LCu^(Ⅰ))CH_(2)Bpin.Followed by the metathesis of the active intermediate with water to form hydrogen reduction products,the same active intermediate can be oxidized with 2,2,6,6-tetramethylpiperidoxyl(TEMPO)to form trans dehydrogenation products.
基金supported by the National Natural Science Foundation of China (51503038, 51873037)
文摘Quaternary ammonium densely functionalized octa-benzylmethyl-containing poly(arylene ether ketone)s(QA-OMPAEKs) with ion exchange capacities(IECs) ranging from 1.23 to 2.21 mmol g^(-1) were synthesized from:(1) Ullmann coupling extension of tetra-benzylmethyl-containing bisphenol A;(2) condensation polymerization with activated dihalide in the presence of K_2CO_3;(3) selective bromination using N-bromosuccinimide; and(4) quantitative quaternization using trimethylamine. Both smallangle X-ray scattering(SAXS) and transmission electron microscope(TEM) characterizations revealed distinct nano-phase separation in QA-OMPAEKs as a result of the dense quaternization. The QA-OMPAEK-20 with an IEC of 1.98 mmol g^(-1) exhibited a high SO_4^(2-) conductivity of 11.4 mS cm^(-1) and a low VO^(2+) permeability of 0.06×10^(-12) m^2 s^(-1) at room temperature,leading to a dramatically higher ion selectivity than Nafion N212. Consequently, the vanadium redox flow battery(VRFB)assembled with QA-OMPAEK-20 achieved a Coulombic efficiency of 96.9% and an energy efficiency of 84.8% at a current density of 50 mA cm^(-2), which were much higher than those of the batteries assembled with Nafion N212 and a home-made control membrane without distinct nano-phase separation. Therefore, ion segregation is demonstrated to be a strategical route for the design of high performance anion exchange membranes(AEMs) for VRFBs.
基金supported by the Natural Science Foundation of China(grant nos.22175138 and 21875180)the National Key Research and Development Program of China(grant no.2021YFB3200700)+4 种基金the Key Research and Development Program of Shaanxi(grant no.2021GXLH-Z023)the Independent Innovation Capability Improvement Project of Xi’an Jiaotong University(grant no.PY3A066)the Fundamental Research Funds for the Central Universities(grant no.xhj032021008-03)the Regional Innovation Capability Guidance Program of Shaanxi Province the Fundamental(grant no.2022QFY08-01)the Research Funds for the Central Universities(grant no.xzy022022001).
文摘Two-electron neutral aqueous organic redox flow batteries(AORFBs)hold more promising applications in the power grid than one-electron batteries because of their higher capacity.However,their development is strongly limited by the structural instability of the highly reduced species.By combining the extendedπ-conjugation structure of the anolytes and the enhanced aromaticity of the highly reduced species,we reported a series of highly conjugated and inexpensive arylene diimide derivatives(NDI,PDI,and TPDI)as novel two-electron storage anolyte materials for ultrastable AORFBs.Matched with(ferrocenylmethyl)trimethylammonium chloride(FcNCl)as catholyte,arylene diimide derivative-based AORFBs showed the highest stability in two-electron AORFBs to date.The NDI/FcNCl-based AORFB delivered 98.44%capacity retention at 40 mA cm^(−2)for 350 cycles;TPDI/FcNCl-based AORFB also showed remarkable stability with 97.22%capacity retention at 20 mA cm^(−2)over 200 cycles.This finding lays the theoretical foundation and offers a reference for improving the stability of two-electron AORFBs.
基金supported by the National Natural Science Foundation of China(51603031)the Fundamental Research Funds for the Central Universities of China(N2005026)+1 种基金Liaoning Provincial Natural Science Foundation of China(20180550871 and 2020-MS-087)the Innovation Fund Denmark(DanFlow)。
文摘A new series of poly(arylene piperidinium)-based anion exchange membranes(AEMs)are proposed for vanadium redox flow batteries(VRFBs).The AEMs are fabricated via the Menshutkin reaction between poly(arylene piperidine)without ether bonds in the backbone and various quaternizing agents,including iodomethane,1-bromopentane,and(5-bromopentyl)-trimethylammonium bromide.The properties of the AEMs are investigated in terms of sulfuric acid doping content,swelling,vanadium permeability,ion selectivity,area-specific resistance,mechanical properties,VRFB performance,and cyclic testing.Particularly,a method of measuring the H^(+) permeability of the AEM is developed.It demonstrates that the poly(p-terphenyl-N-methylpiperidine)-quaternary ammonium(PTP-QA)membrane with a QA cation-tethered alkyl chain exhibits high H^(+) permeability,resulting in low area resistance.Combined with its low vanadium permeance,the PTP-QA membrane achieves nearly 370 times higher ion selectivity than Nafion 115.The VRFB based on PTP-QA-based AEM displays high Coulombic efficiencies above 99% at current densities of 80-160 mA cm^(-2).The higher energy efficiency of 89.8% is achieved at 100 mA cm^(-2)(vs.73.6% for Nafion 115).Meanwhile,the PTPQA-based AEM shows good cycling stability and capacity retention,proving great potential as the ion exchange membrane for VRFB applications.
基金the financial support of the National Natural Science Foundation of China(Nos.22075276,U19A2016,U22B6012)CAS Strategic Leading Science&Technology Program(A)(No.XDA21070000)+2 种基金Dalian High Level Talent Innovation Support Program(No.2020RD05)the Development of Scientic and Technological Project of the Jilin Province(No.20210101126JC)International Partnership Program of Chinese Academy of Sciences(No.121421KYSB20210028)。
文摘Vanadium flow batteries(VFBs)have drawn considerable attention as an emerging technology for largescale energy storage systems(ESSs).One of the pivotal challenges is the availability of eligible ion exchange membranes(ICMs)that provide high ion selectivity,proton conductivity,and stability under rigorous condition.Herein,a‘side-chain-type’strategy has been employed to fabricate highly stable phenolphthalein-based cardo poly(arylene ether ketone)s(PAEKs)membrane with low area resistance(0.058Ωcm^(2)),in which flexible alkyl spacers effectively alleviated inductive withdrawing effect from terminal ion exchange groups thus enabling a stable backbone.The assembled VFBs based on PAEKs bearing pendent alkyl chain terminated with quaternary ammonium(Q-PPhEK)demonstrated an energy efficiency above 80%over 700 cycles at 160 mA/cm^(2).Such a remarkable results revealed that the side-chain-type strategy contributed to enhancing the ICMs stability in strong oxidizing environment,meanwhile,more interesting backbones would be woken with this design engaging in stable ICMs for VFBs.
基金support of this work by National Natural Science Foundation of China(22075031,51673030,51603017 and 51803011)Jilin Provincial Science&Technology Department(20220201105GX)Chang Bai Mountain Scholars Program of Jilin Province.
文摘Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]-containing carboxyl groups[PAEK-COOH]/UiO-66-NH_(2)@graphene oxide[GO])with superb fouling resistance and high permeability was prepared by the nonsolvent-induced phase separation method,by in-situ growth of UiO-66-NH_(2) on the GO layer,and by preparing hydrophilic PAEK-COOH.On the basis of the structure and performance analysis of the MMM,the maximum water flux reached 591.25 L·m^(-2)·h^(-1) for PAEK-COOH/UiO-66-NH_(2)@GO,whereas the retention rate for bovine serum albumin increased from 85.40%to 94.87%.As the loading gradually increased,the hydrophilicity of the MMMs increased,significantly enhancing their fouling resistance.The strongest anti-fouling ability observed was 94.74%,which was 2.02 times greater than that of the pure membrane.At the same time,the MMMs contained internal amide and hydrogen bonds during the preparation process,forming a cross-linked structure,which further enhanced the mechanical strength and chemical stability.In summary,the MMMs with high retention rate,strong permeability,and anti-fouling ability were successfully prepared.
文摘Macrocyclic arylene ether ketone was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrum(MALDI-TOF MS)combining with nuclear magnetic resonance(NMR)spectra.No any more fragment ionization peaks except for the molecular ion peak from the mass spectrum.The structure of macrocyclic dimmer was further affirmed by the NMR spectra through the analysis of chemical shifts.The MALDI-TOF MS combining with NMR technique was found an important tool to characterized Macrocyclic aromatic oligomers.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51503038 and 51873037)
文摘The microstructure of polymer electrolyte membranes plays a key role in ion conductivity and water transport.Herein,fluorinated poly(aryl ether)s with tetra-alkylsulfonate side chains(SFPAEs)have been successfully synthesized from the copolymerization of a newly developed tetra-allyl-containing bisphenol(TABP)monomer,followed by the thiol-ene addition with sodium 3-mercapto-1-propanesulfonate to attach the ionic groups at the end of the flexible chains.Being the first of its kind,the densely distributed and lengthy alkylsulfonate group possesses the benefit of ease to self-assemble into hydrophilic domains during membrane preparation via solution casting.Indeed,the TEM characterizations revealed that distinct hydrophilic channels of 1-2 nm width had been formed,much larger than those of a home-made control sample where only di-alkylsulfonate side chains were attached.The SFPAE-4-45 with an IECw of 2.0 mmol g^-1 exhibited an enhanced proton conductivity of 143.7 m S cm^-1 at room temperature,which was superior to that of Nafion 212(91.0 m S cm^-1).Furthermore,the oxidative stabilities of SFPAEs were significantly higher than those of non-fluorinated analogs in literature.This study offered a new route to engineering the pendent structure of ionomers for well-defined microscopic morphologies.
基金fully supported by the Research Grant Council Collaborative Research Fund of the Hong Kong Special Administrative Region,China (C5031-20G)。
文摘Critical issues of Zn anodes including undesirable dendrites formation and parasitic reactions severely limit the reversibility and cyclability of Zn anodes.To address these issues,a functional Janus separator with the structure of a mechanically strong sulfonated poly(arylene ether sulfone)(SPAES)dense layer composited on a porous glass fiber(GF)substrate is designed.The SPAES dense layer that faces the Zn anode containing abundant sulfonic acid groups effectively promotes the desolvation process of hydrated Zn ions,guides uniform Zn ion transfer,and blocks anions and water,contributing to dendrite-free and highly reversible Zn plating/stripping cycles,while the porous GF substrate retains high electrolyte uptake.As a result,the Zn symmetric cell with the Janus separator demonstrates an ultralong cycling lifespan of over 2000 h at the areal capacity of 1 m A h cm^(-2),which is 23-fold superior to that with a pristine glass fiber separator(<90 h).More impressively,the as-prepared Janus separator enables outstanding rate performance and excellent cycling stability of full Zn ion batteries with diverse cathode materials.For instance,when paired with the V_2O_(5)cathode,the full battery with a Janus separator attains an ultrahigh initial specific capacity of 416.3 m A h g^(-1)and capacity retention of 60%over 450 cycles at 1 A g^(-1),exceeding that with a glass fiber separator.Hence,this work provides a facile yet effective approach to mitigating the dendrites formation and ameliorating the parasitic reactions of Zn metal anodes for high-performance Zn ion batteries.
基金This work was supported by the Key Natural Science Foundation of Fujian Province (E0320003).
文摘The direct polymerization of an unsymmetrical kink non-coplanar heterocyclic diamine (1) with various aromatic bis(trimellitimide)s (2a-e) using triphenyl phosphite and pyridine as condensing agents could generate a series of new aromatic poly(amide imide)s (3a-e) containing the kink non-coplanar phthalazinone heterocyclic units in the polymer main chains with inherent viscosities of 0.58-0.66 dL/g. The polymers are readily soluble in a variety of solvents such as N,N- dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidinone, pyridine and m-cresol and can be cast to form flexible and tough films. The glass transition temperatures of polymers (Tg) are in the range of 301-327°C, and the temperatures for 5% weight loss in nitrogen are in the range of 498-521 'C.