Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity,abundant surface active sites,and efficient charge separation.Nevertheless,the roles...Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity,abundant surface active sites,and efficient charge separation.Nevertheless,the roles of different forms of atomically-dispersed metals(i.e.,single-atoms and atomic clusters)in photocatalytic reactions remain ambiguous.Herein,we developed an ethylenediamine(EDA)-assisted reduction method to controllably synthesize atomically dispersed Au in the forms of Au single atoms(Au_(SA)),Au clusters(Au_(C)),and a mixed-phase of Au_(SA)and Au_(C)(Au_(SA+C))on CdS.In addition,we elucidate the synergistic effect of Au_(SA)and Au_(C)in enhancing the photocatalytic performance of CdS substrates for simultaneous CO_(2)reduction and aryl alcohol oxidation.Specifically,Au_(SA)can effectively lower the energy barrier for the CO_(2)→*COOH conversion,while Au_(C)can enhance the adsorption of alcohols and reduce the energy barrier for dehydrogenation.As a result,the Au_(SA)and Au_(C)co-loaded CdS show impressive overall photocatalytic CO_(2)conversion performance,achieving remarkable CO and BAD production rates of 4.43 and 4.71 mmol g^(−1)h^(−1),with the selectivities of 93%and 99%,respectively.More importantly,the solar-to-chemical conversion efficiency of Au_(SA+C)/CdS reaches 0.57%,which is over fivefold higher than the typical solar-to-biomass conversion efficiency found in nature(ca.0.1%).This study comprehensively describes the roles of different forms of atomically-dispersed metals and their synergistic effects in photocatalytic reactions,which is anticipated to pave a new avenue in energy and environmental applications.展开更多
Compressed CO~ could promote the disproportionation reactions of aryl alcohols in water medium significantly. The control experiments indicated that the effect of CO2 on the properties of the reactant/water emulsions ...Compressed CO~ could promote the disproportionation reactions of aryl alcohols in water medium significantly. The control experiments indicated that the effect of CO2 on the properties of the reactant/water emulsions was the main reason for the ac- celeration of the reactions rate.展开更多
Umpolung reactions of C=X bonds(X=O,N)are valuable ways of constructing new C–C bonds,which are sometimes difficult to be constructed using traditional synthetic pathways.Classical polarity inversion of C=X bonds(X=O...Umpolung reactions of C=X bonds(X=O,N)are valuable ways of constructing new C–C bonds,which are sometimes difficult to be constructed using traditional synthetic pathways.Classical polarity inversion of C=X bonds(X=O,N)usually requires air or moisture‐sensitive and strong reducing agents,which limit the feasibility of substrate scope.Herein we describe a photo‐induced reductive cross‐coupling reaction of aldehydes,ketones and imines with electron‐deficient arenes(aromatic nitriles)using fac‐Ir(ppy)3as a photocatalyst and diisopropylethylamine(DIPEA)as a terminal reductant under visible light irradiation.Mild conditions and high yields mean that this new polarity inversion strategy can be used with aryl‐substituted alcohols and amines.Spectroscopic studies and control experiments have demonstrated the oxidative quenching of Ir(ppy)3*by electron‐deficient arenes involved in the key step for the C–C bond formation.展开更多
Allylic alcohols react with aryl iodides in the presence of tri-n-butylamine and a catalytic amount of a silica-bound bidentate sulfur palladium (0) complex to form 3-arylaldehydes or ketones in good yields.
分离纯化刺芹侧耳Pleurotus eryngii芳基醇氧化酶,并探究其酶学性质。通过硫酸铵盐沉、DEAE-Sepharose Fast Flow弱阴离子交换层析、Sephacryl S-200 High Resolution凝胶过滤层析和Source 15Q强阴离子交换层析,得到纯化的单一酶。经肽...分离纯化刺芹侧耳Pleurotus eryngii芳基醇氧化酶,并探究其酶学性质。通过硫酸铵盐沉、DEAE-Sepharose Fast Flow弱阴离子交换层析、Sephacryl S-200 High Resolution凝胶过滤层析和Source 15Q强阴离子交换层析,得到纯化的单一酶。经肽指纹图谱鉴定,确定其为芳基醇氧化酶,酶活回收率25.5%,纯化倍数38.2。结合SDS-PAGE和IEF-PAGE分析,确定其分子量和等电点分别为70k Da和4.2。以藜芦醇为底物,该酶最适反应p H为6.0,最适反应温度为70℃,金属离子Zn^(2+)、Fe^(2+)和Cu^(2+)对芳基醇氧化酶的活性抑制作用明显,Km和Vmax分别为0.921mmol/L和80U/mg。展开更多
文摘Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity,abundant surface active sites,and efficient charge separation.Nevertheless,the roles of different forms of atomically-dispersed metals(i.e.,single-atoms and atomic clusters)in photocatalytic reactions remain ambiguous.Herein,we developed an ethylenediamine(EDA)-assisted reduction method to controllably synthesize atomically dispersed Au in the forms of Au single atoms(Au_(SA)),Au clusters(Au_(C)),and a mixed-phase of Au_(SA)and Au_(C)(Au_(SA+C))on CdS.In addition,we elucidate the synergistic effect of Au_(SA)and Au_(C)in enhancing the photocatalytic performance of CdS substrates for simultaneous CO_(2)reduction and aryl alcohol oxidation.Specifically,Au_(SA)can effectively lower the energy barrier for the CO_(2)→*COOH conversion,while Au_(C)can enhance the adsorption of alcohols and reduce the energy barrier for dehydrogenation.As a result,the Au_(SA)and Au_(C)co-loaded CdS show impressive overall photocatalytic CO_(2)conversion performance,achieving remarkable CO and BAD production rates of 4.43 and 4.71 mmol g^(−1)h^(−1),with the selectivities of 93%and 99%,respectively.More importantly,the solar-to-chemical conversion efficiency of Au_(SA+C)/CdS reaches 0.57%,which is over fivefold higher than the typical solar-to-biomass conversion efficiency found in nature(ca.0.1%).This study comprehensively describes the roles of different forms of atomically-dispersed metals and their synergistic effects in photocatalytic reactions,which is anticipated to pave a new avenue in energy and environmental applications.
基金National Natural Science Foundation of China(21003133,20932002,21021003)Chinese Academy of Sciences(KJCX2.YW.H30)
文摘Compressed CO~ could promote the disproportionation reactions of aryl alcohols in water medium significantly. The control experiments indicated that the effect of CO2 on the properties of the reactant/water emulsions was the main reason for the ac- celeration of the reactions rate.
文摘Umpolung reactions of C=X bonds(X=O,N)are valuable ways of constructing new C–C bonds,which are sometimes difficult to be constructed using traditional synthetic pathways.Classical polarity inversion of C=X bonds(X=O,N)usually requires air or moisture‐sensitive and strong reducing agents,which limit the feasibility of substrate scope.Herein we describe a photo‐induced reductive cross‐coupling reaction of aldehydes,ketones and imines with electron‐deficient arenes(aromatic nitriles)using fac‐Ir(ppy)3as a photocatalyst and diisopropylethylamine(DIPEA)as a terminal reductant under visible light irradiation.Mild conditions and high yields mean that this new polarity inversion strategy can be used with aryl‐substituted alcohols and amines.Spectroscopic studies and control experiments have demonstrated the oxidative quenching of Ir(ppy)3*by electron‐deficient arenes involved in the key step for the C–C bond formation.
文摘Allylic alcohols react with aryl iodides in the presence of tri-n-butylamine and a catalytic amount of a silica-bound bidentate sulfur palladium (0) complex to form 3-arylaldehydes or ketones in good yields.
基金supported by the "111 Project" from the Ministry of Education of China and the State Administration of Foreign Expert Affairs of China(No.111-2-07)National Science and Technology Major Projects of China(No.2012ZX09103-101-030)and the Project Program of State Key Laboratory of Natural Medicines,China Pharmaceutical University(No.ZJ12009)
文摘分离纯化刺芹侧耳Pleurotus eryngii芳基醇氧化酶,并探究其酶学性质。通过硫酸铵盐沉、DEAE-Sepharose Fast Flow弱阴离子交换层析、Sephacryl S-200 High Resolution凝胶过滤层析和Source 15Q强阴离子交换层析,得到纯化的单一酶。经肽指纹图谱鉴定,确定其为芳基醇氧化酶,酶活回收率25.5%,纯化倍数38.2。结合SDS-PAGE和IEF-PAGE分析,确定其分子量和等电点分别为70k Da和4.2。以藜芦醇为底物,该酶最适反应p H为6.0,最适反应温度为70℃,金属离子Zn^(2+)、Fe^(2+)和Cu^(2+)对芳基醇氧化酶的活性抑制作用明显,Km和Vmax分别为0.921mmol/L和80U/mg。