To present an advanced device scheme of high-performance optoelectronic synapses,herein,we demonstrated the electrically-and/or optically-drivable multifaceted synaptic capabilities on the 2D semiconductor channel-bas...To present an advanced device scheme of high-performance optoelectronic synapses,herein,we demonstrated the electrically-and/or optically-drivable multifaceted synaptic capabilities on the 2D semiconductor channel-based ferroelectric field-effect transistor(FeFET)architecture.The device was fabricated in the form of the MoS_(2)/PZT FeFET,and its synaptic weights were effectively controlled by dual stimuli(i.e.,both electrical and optical pulses simultaneously)as well as single stimuli(i.e.,either electrical or optical pulses alone).This could be attributed to the electrical pulse-tunable strong ferroelectric polarization in PbZrxTi_(1−x)O_(3)(PZT)as well as the polarization field-enhanced persistent photoconductivity effect in MoS_(2).Additionally,it was confirmed that the proposed device possesses substantial activity,achieving approximately 95%pattern recognition accuracy.The results substantiate the great potential of the 2D semiconductor channel-based FeFET device as a high-performance optoelectronic synaptic platform,marking a pivotal stride towards the realization of advanced neuromorphic computing systems.展开更多
Organic electrochemical transistors have emerged as a solution for artificial synapses that mimic the neural functions of the brain structure,holding great potentials to break the bottleneck of von Neumann architectur...Organic electrochemical transistors have emerged as a solution for artificial synapses that mimic the neural functions of the brain structure,holding great potentials to break the bottleneck of von Neumann architectures.However,current artificial synapses rely primarily on electrical signals,and little attention has been paid to the vital role of neurotransmitter-mediated artificial synapses.Dopamine is a key neurotransmitter associated with emotion regulation and cognitive processes that needs to be monitored in real time to advance the development of disease diagnostics and neuroscience.To provide insights into the development of artificial synapses with neurotransmitter involvement,this review proposes three steps towards future biomimic and bioinspired neuromorphic systems.We first summarize OECT-based dopamine detection devices,and then review advances in neurotransmitter-mediated artificial synapses and resultant advanced neuromorphic systems.Finally,by exploring the challenges and opportunities related to such neuromorphic systems,we provide a perspective on the future development of biomimetic and bioinspired neuromorphic systems.展开更多
Recently,artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties.Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reli...Recently,artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties.Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reliable synaptic characteristics by exploiting the advantage of nondistributed weight updates owing to stable ion migrations.However,the three-terminal configurations with large and complex structures impede the crossbar array implementation required for hardware neuromorphic systems.Meanwhile,achieving adequate synaptic performances through effective Li-ion intercalation in vertical two-terminal synaptic devices for array integration remains challenging.Here,two-terminal Au/LixCoO_(2)/Pt artificial synapses are proposed with the potential for practical implementation of hardware neural networks.The Au/LixCoO_(2)/Pt devices demonstrated extraordinary neuromorphic behaviors based on a progressive dearth of Li in LixCoO_(2)films.The intercalation and deintercalation of Li-ion inside the films are precisely controlled over the weight control spike,resulting in improved weight control functionality.Various types of synaptic plasticity were imitated and assessed in terms of key factors such as nonlinearity,symmetricity,and dynamic range.Notably,the LixCoO_(2)-based neuromorphic system outperformed three-terminal synaptic transistors in simulations of convolutional neural networks and multilayer perceptrons due to the high linearity and low programming error.These impressive performances suggest the vertical two-terminal Au/LixCoO_(2)/Pt artificial synapses as promising candidates for hardware neural networks.展开更多
Memtransistor,a multi-terminal device that combines both the characteristics of a memristor and a transistor,has been intensively studied in two-dimensional layered materials(2 DLM),which show potential for applicatio...Memtransistor,a multi-terminal device that combines both the characteristics of a memristor and a transistor,has been intensively studied in two-dimensional layered materials(2 DLM),which show potential for applications in such as neuromorphic computation.However,while often based on the migration of ions or atomic defects in the conduction channels,performances of memtransistors suffer from the poor reliability and tunability.Furthermore,those known 2 DLM-based memtransistors are mostly constructed in a lateral manner,which hinders the further increasing of the transistor densities per area.Until now,fabricating non-atomic-diffusion based memtransistors with vertical structure remains challenging.Here,we demonstrate a vertically-integrated ferroelectric memristor by hetero-integrating the 2 D ferroelectric materials CuInP_(2)S_(6)(CIPS)into a graphite/CuInP_(2)S_(6)/MoS_(2)vertical heterostructure.Memristive behaviour and multi-level resistance states were realized.Essential synaptic behaviours including excitatory postsynaptic current,paired-pulse-facilitation,and spike-amplitude-dependent plasticity are successfully mimicked.Moreover,by applying a gate potential,the memristive behaviour and synaptic features can be effectively gate tuned.Our findings pave the way for the realization of novel gate-tunable ferroelectric synaptic devices with the capability to perform complex neural functions.展开更多
Neuromorphic devices inspired by the human brain have attracted significant attention because of their excellent ability for cognitive and parallel computing.This study presents ZnO-based artificial synapses with pept...Neuromorphic devices inspired by the human brain have attracted significant attention because of their excellent ability for cognitive and parallel computing.This study presents ZnO-based artificial synapses with peptide insulators for the electrical emulation of biological synapses.We demonstrated the dynamic responses of the device under various environmental conditions.The proton-conducting property of the tyrosine-rich peptide enables time-dependent responses under ambient conditions such that various aspects of synaptic behaviors are emulated by the devices.The transition from short-term memory to longterm memory is achieved via electrochemical doping of ZnO by protons.Furthermore,we demonstrate an image classification simulation using a multi-layer perceptron model to evaluate the potential of the device for use in neuromorphic computing.The neural network based on our device achieved a recognition accuracy of 87.47% for the MNIST handwritten digit images.This work proposes a novel device platform inspired by biosystems for brain-mimetic hardware systems.展开更多
As key components of artificial afferent nervous systems,synaptic devices can mimic the physiological synaptic behaviors,which have attracted extensive attentions.Here,a flexible tribotronic artificial synapse(TAS)wit...As key components of artificial afferent nervous systems,synaptic devices can mimic the physiological synaptic behaviors,which have attracted extensive attentions.Here,a flexible tribotronic artificial synapse(TAS)with bioinspired neurosensory behavior is developed.The triboelectric potential generated by the external contact electrification is used as the ion-gel-gate voltage of the organic thin film transistor,which can tune the carriers transport through the migration/accumulation of ions.The TAS successfully demonstrates a series of synaptic behaviors by external stimuli,such as excitatory postsynaptic current,paired-pulse facilitation,and the hierarchical memory process from sensory memory to short-term memory and long-term memory.Moreover,the synaptic behaviors remained stable under the strain condition with a bending radius of 20 mm,and the TAS still exhibits excellent durability after 1000 bending cycles.Finally,Pavlovian conditioning has been successfully mimicked by applying force and vibration as food and bell,respectively.This work demonstrates a bioinspired flexible artificial synapse that will help to facilitate the development of artificial afferent nervous systems,which is great significance to the practical application of artificial limbs,robotics,and bionics in future.展开更多
Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continu...Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continuous synaptic depression.The relatively large power consumption and poor analog behavior of PCM devices greatly limit their applications.Here,we fabricate a GeTe/Sb2Te3 superlattice-like PCM device which allows a progressive RESET process.Our devices feature low-power consumption operation and potential high-density integration,which can effectively simulate biological synaptic characteristics.The programming energy can be further reduced by properly selecting the resistance range and operating method.The fabricated devices are implemented in both artificial neural networks(ANN)and convolutional neural network(CNN)simulations,demonstrating high accuracy in brain-like pattern recognition.展开更多
Organic electrochemical transistors(OECTs)have emerged as one type of promising building block for neuromorphic systems owing to their capability of mimicking the morphology and functions of biological neurons and syn...Organic electrochemical transistors(OECTs)have emerged as one type of promising building block for neuromorphic systems owing to their capability of mimicking the morphology and functions of biological neurons and synapses.Currently,numerous kinds of OECTs have been developed,while self-healing performance has been neglected in most reported OECTs.In this work,the OECTs using self-healing polymer electrolytes as dielectric layers are proposed.Several important synaptic behaviors are simulated in the OECTs by doping the channel layers with ions from the electrolytes.Benefitting from the dynamic hydrogen bonds in the self-healing polymer electrolytes,the OECTs can successfully maintain their electrical performance and the ability of emulating synaptic behaviors after self-healing compared with the initial state.More significantly,the sublinear spatial summation function is demonstrated in the OECTs and their potential in flexible electronics is also validated.These results suggest that our devices are expected to be a vital component in the development of future wearable and bioimplantable neuromorphic systems.展开更多
Artificial synapses are essential building blocks for neuromorphic electronics.Here,solid polymer electrolyte-gated artificial synapses(EGASs)were fabricated using ITO fibers as channels,which possess an ultra-high se...Artificial synapses are essential building blocks for neuromorphic electronics.Here,solid polymer electrolyte-gated artificial synapses(EGASs)were fabricated using ITO fibers as channels,which possess an ultra-high sensitivity of 5 m V and a long-term memory time exceeding 3 min.Notably,digitally printed ITO-fiber arrays exhibit an ultra-high transmittance of approximately 99.67%.Biological synaptic plasticity,such as excitatory postsynaptic current,paired-pulse facilitation,spike frequency-dependent plasticity,and synaptic potentiation and depression,were successfully mimicked using the EGASs.Based on the synaptic properties of the EGASs,an artificial neural network was constructed to perform supervised learning using the Fashion-MNIST dataset,achieving high pattern recognition rate(82.39%)due to the linear and symmetric synaptic plasticity.This work provides insights into high-sensitivity artificial synapses for future neuromorphic computing.展开更多
Artificial synapse inspired by the biological brain has great potential in the field of neuromorphic computing and artificial intelligence.The memristor is an ideal artificial synaptic device with fast operation and g...Artificial synapse inspired by the biological brain has great potential in the field of neuromorphic computing and artificial intelligence.The memristor is an ideal artificial synaptic device with fast operation and good tolerance.Here,we have prepared a memristor device with Au/CsPbBr_(3)/ITO structure.The memristor device exhibits resistance switching behavior,the high and low resistance states no obvious decline after 400 switching times.The memristor device is stimulated by voltage pulses to simulate biological synaptic plasticity,such as long-term potentiation,long-term depression,pair-pulse facilitation,short-term depression,and short-term potentiation.The transformation from short-term memory to long-term memory is achieved by changing the stimulation frequency.In addition,a convolutional neural network was constructed to train/recognize MNIST handwritten data sets;a distinguished recognition accuracy of~96.7%on the digital image was obtained in 100 epochs,which is more accurate than other memristor-based neural networks.These results show that the memristor device based on CsPbBr3 has immense potential in the neuromorphic computing system.展开更多
A flexible organic artificial synapse(OAS)for tunable time-frequency signal processing was fabricated using a tri-blend film that had been fabricated using a one-step solution method.When combined with a chitosan film...A flexible organic artificial synapse(OAS)for tunable time-frequency signal processing was fabricated using a tri-blend film that had been fabricated using a one-step solution method.When combined with a chitosan film,this OAS can achieve an ultrashort-term retention time of only 49 ms for instant electricalcomputing applications;this is the shortest retention time yet achieved by a two-terminal artificial synapse.An array of these flexible OASs can withstand a high bending strain of 5%for 10^(4) cycles;this deformation endurance is a new record.The OAS was also sensitive to the number and frequency of electrical inputs;a tunable cut-off frequency enables dynamic filtering for use in image detail enhancement.This work provides a new resource for development of future neuromorphic computing devices。展开更多
The regulation of signal transmission speed is one of the most important capabilities of the biological nervous system.This study explores the mechanisms and methods for regulating signal transmission speed among nonm...The regulation of signal transmission speed is one of the most important capabilities of the biological nervous system.This study explores the mechanisms and methods for regulating signal transmission speed among nonmyelinated neurons within the same brain region,starting from spike-timing-dependent plasticity(STDP)of synapses.Building upon the Hodgkin-Huxley model,the dynamic behavior of synapses is incorporated,and the adaptive growth neuron(AGN)model is proposed.Artificial synaptic structures and neuronal physical nodes are also designed.The artificial synaptic structure exhibits unidirectionality,memory capacity,and STDP,enabling it to connect neuronal physical nodes through branching and merging structures.Furthermore,the artificial synapse can adjust signal transmission speed,regulate functional competition between different regions of the neuromorphic network,and promote information interaction.The findings of this study endow neuromorphic networks with the ability to regulate signal transmission speed over the long term,providing new insights into the development of neuromorphic networks.展开更多
Two-dimensional(2D)metal oxides are promising candidates for constructing neuromorphic systems because of their intriguing physical properties,such as atomic thinness and ionic activity.In this work,Co_(3)O_(4)nanoshe...Two-dimensional(2D)metal oxides are promising candidates for constructing neuromorphic systems because of their intriguing physical properties,such as atomic thinness and ionic activity.In this work,Co_(3)O_(4)nanosheets were synthesized using a solvothermal method and integrated into artificial synapses.Based on the synaptic plasticity of the Co_(3)O_(4)nanosheet-based memristive device,an artificial neural network(ANN)was designed and tested.A recognition accuracy of approximately 96% was achieved for the Modified National Institute of Standards and Technology(MNIST)handwritten digit classification task using this ANN.These results highlight the potential of Co_(3)O_(4)nanosheet-based artificial synapses and Al/Co_(3)O_(4)nanosheet/ITO memristor devices as excellent material candidates for neuromorphic hardware.展开更多
The rapid development of neuromorphic computing has led to widespread investigation of artificial synapses.These synapses can perform parallel in-memory computing functions while transmitting signals,enabling low-ener...The rapid development of neuromorphic computing has led to widespread investigation of artificial synapses.These synapses can perform parallel in-memory computing functions while transmitting signals,enabling low-energy and fast artificial intelligence.Robots are the most ideal endpoint for the application of artificial intelligence.In the human nervous system,there are different types of synapses for sensory input,allowing for signal preprocessing at the receiving end.Therefore,the development of anthropomorphic intelligent robots requires not only an artificial intelligence system as the brain but also the combination of multimodal artificial synapses for multisensory sensing,including visual,tactile,olfactory,auditory,and taste.This article reviews the working mechanisms of artificial synapses with different stimulation and response modalities,and presents their use in various neuromorphic tasks.We aim to provide researchers in this frontier field with a comprehensive understanding of multimodal artificial synapses.展开更多
The advent of the Internet of Things(IoT)era has significantly accelerated advancements in neuromorphic computing research.Triboelectric nanogenerators(TENGs)exhibit dual functionality as both energy harvesters and sy...The advent of the Internet of Things(IoT)era has significantly accelerated advancements in neuromorphic computing research.Triboelectric nanogenerators(TENGs)exhibit dual functionality as both energy harvesters and synaptic simulators,facilitated by their inherent mechanoelectrical transduction properties and seamless circuit integration capabilities.In this work,we presented a vertically contact-separated paper-based artificial synaptic device employing TENG technology.The fabricated device successfully replicates fundamental synaptic behaviors,including paired-pulse facilitation(PPF),high-pass filtering characteristics,and spatiotemporal dynamic logic operations.Through optimized circuit configurations,we achieved elementary“NOT”logic gate using single devices,while implementing“AND/NAND”logic gates and“OR/NOR”logic gates operations through two-and three-device assemblies,respectively.Capitalizing on the mechanical flexibility and lightweight of paper substrates,we further developed a trilayer artificial synaptic architecture that mimics hierarchical neural information processing.This mechanoelectrical coupling approach establishes a novel paradigm for flexible neuromorphic systems,demonstrating exceptional potential for environmentally interactive robotics and adaptive wearable prosthetics.展开更多
Optoelectronic memristors possess capabilities of data storage and mimicking human visual perception.They hold great promise in neuromorphic visual systems(NVs).This study introduces the amorphous wide-bandgap Ga_(2)O...Optoelectronic memristors possess capabilities of data storage and mimicking human visual perception.They hold great promise in neuromorphic visual systems(NVs).This study introduces the amorphous wide-bandgap Ga_(2)O_(3)photoelectric synaptic memristor,which achieves 3-bit data storage through the adjustment of current compliance(Icc)and the utilization of variable ultraviolet(UV-254 nm)light intensities.The“AND”and“OR”logic gates in memristor-aided logic(MAGIC)are implemented by utilizing voltage polarity and UV light as input signals.The device also exhibits highly stable synaptic characteristics such as paired-pulse facilitation(PPF),spike-intensity dependent plasticity(SIDP),spike-number dependent plasticity(SNDP),spike-time dependent plasticity(STDP),spike-frequency dependent plasticity(SFDP)and the learning experience behavior.Finally,when integrated into an artificial neural network(ANN),the Ag/Ga_(2)O_(3)/Pt memristive device mimicked optical pulse potentiation and electrical pulse depression with high pattern accuracy(90.7%).The single memristive cells with multifunctional features are promising candidates for optoelectronic memory storage,neuromorphic computing,and artificial visual perception applications.展开更多
Various forms of intelligent light-controlled soft actuators and robots rely on advanced material architectures and bionic systems to enable programmable remote actuation and multifunctionality.Despite advancements,si...Various forms of intelligent light-controlled soft actuators and robots rely on advanced material architectures and bionic systems to enable programmable remote actuation and multifunctionality.Despite advancements,significant challenges remain in developing actuators and robots that can effectively mimic the low-intensity,wide-wavelength light signal sensing and processing functions observed in living organisms.Herein,we report a design strategy that integrates light-responsive artificial synapses(AS)with liquid crystal networks(LCNs)to create bionic light-controlled LCN soft actuators(AS-LCNs).Remarkably,AS-LCNs can be controlled with light intensities as low as 0.68 mW cm^(-2),a value comparable to the light intensity perceivable by the human eye.These AS-LCNs can perform programmable intelligent sensing,learning,and memory within a wide wavelength range from 365 nm to 808 nm.Additionally,our system demonstrates time-related proofs of concept for a tachycardia alarm and a porcupine defense behavior simulation.Overall,this work addresses the limitations of traditional light-controlled soft actuators and robots in signal reception and processing,paving the way for the development of intelligent soft actuators and robots that emulate the cognitive abilities of living organisms.展开更多
Organic electrochemical transistors(OECTs)have garnered significant attention as artificial synapses due to their ability to emulate synaptic functionalities.While previous research has predominantly focused on modula...Organic electrochemical transistors(OECTs)have garnered significant attention as artificial synapses due to their ability to emulate synaptic functionalities.While previous research has predominantly focused on modulating the physical properties of the channel materials to enhance synaptic performance,the role of ion dynamics in influencing device characteristics remains underexplored.Effective regulation of ion dynamics is crucial for improving state retention and achieving long-term plasticity(LTP)in these devices.In this study,we propose a strategy to modulate the interactions between polymer semiconductors and ions in solid-electrolyte-based artificial synapses.Our findings indicate that the interplay between semiconductors and doping counterions significantly influences ion transport dynamics,thereby affecting the electrochemical doping and dedoping pro-cesses in OECTs.Notably,by suppressing the dedoping process,we achieved enhanced synaptic performances,with devices retaining 64%of the peak current after a retention time of 1000 s.Through the judicious selection of anions and optimization of their interactions with polymer semiconductors,we effectively controlled the dedoping process in OECTs,leading to improved state retention.These insights provide a novel perspective on tuning ion-polymer semiconductor interactions for the development of high-performance synaptic devices,advancing neuromorphic computing applications.展开更多
Two-dimensional(2D)van der Waals heterostructure(vdWH)-based floating gate devices show great potential for next-generation nonvolatile and multilevel data storage memory.However,high program voltage induced substanti...Two-dimensional(2D)van der Waals heterostructure(vdWH)-based floating gate devices show great potential for next-generation nonvolatile and multilevel data storage memory.However,high program voltage induced substantial energy consumption,which is one of the primary concerns,hinders their applications in lowenergy-consumption artificial synapses for neuromorphic computing.In this study,we demonstrate a three-terminal floating gate device based on the vdWH of tin disulfide(SnS2),hexagonal boron nitride(h-BN),and few-layer graphene.The large electron affinity of SnS2 facilitates a significant reduction in the program voltage of the device by lowering the hole-injection barrier across h-BN.Our floating gate device,as a nonvolatile multilevel electronic memory,exhibits large on/off current ratio(105),good retention(over 104 s),and robust endurance(over 1000 cycles).Moreover,it can function as an artificial synapse to emulate basic synaptic functions.Further,low energy consumption down to7 picojoule(pJ)can be achieved owing to the small program voltage.High linearity(<1)and conductance ratio(80)in long-term potentiation and depression(LTP/LTD)further contribute to the high pattern recognition accuracy(90%)in artificial neural network simulation.The proposed device with attentive band engineering can promote the future development of energy-efficient memory and neuromorphic devices.展开更多
The emulation of biological synapses with learning and memory functions and versatile plasticity is significantly promising for neuromorphic computing systems.Here,a robust and continuously adjustable mechanoplastic s...The emulation of biological synapses with learning and memory functions and versatile plasticity is significantly promising for neuromorphic computing systems.Here,a robust and continuously adjustable mechanoplastic semifloating-gate transistor is demonstrated based on an integrated graphene/hexagonal boron nitride/tungsten diselenide van der Waals heterostructure and a triboelectric nanogenerator(TENG).The working states(p-n junction or n;-n junction)can be manipulated and switched under the sophisticated modulation of triboelectric potential derived from mechanical actions,which is attributed to carriers trapping and detrapping in the graphene layer.Furthermore,a reconfigurable artificial synapse is constructed based on such mechanoplastic transistor that can simulate typical synaptic plasticity and implement dynamic control correlations in each response mode by further designing the amplitude and duration.The artificial synapse can work with ultra-low energy consumption at 74.2 f J per synaptic event and the extended synaptic weights.Under the synergetic effect of the semifloating gate,the synaptic device can enable successive mechanical facilitation/depression,short-/long-term plasticity and learning-experience behavior,exhibiting the mechanical behavior derived synaptic plasticity.Such reconfigurable and mechanoplastic features provide an insight into the applications of energyefficient and real-time interactive neuromodulation in the future artificial intelligent system beyond von Neumann architecture.展开更多
基金supported by the National Research Foundation(NRF)of Korea through the Basic Science Research Programs(Nos.2019R1A2C1085448,2023R1A2C1005421,RS-2024-00356939)funded by the Korean Government.
文摘To present an advanced device scheme of high-performance optoelectronic synapses,herein,we demonstrated the electrically-and/or optically-drivable multifaceted synaptic capabilities on the 2D semiconductor channel-based ferroelectric field-effect transistor(FeFET)architecture.The device was fabricated in the form of the MoS_(2)/PZT FeFET,and its synaptic weights were effectively controlled by dual stimuli(i.e.,both electrical and optical pulses simultaneously)as well as single stimuli(i.e.,either electrical or optical pulses alone).This could be attributed to the electrical pulse-tunable strong ferroelectric polarization in PbZrxTi_(1−x)O_(3)(PZT)as well as the polarization field-enhanced persistent photoconductivity effect in MoS_(2).Additionally,it was confirmed that the proposed device possesses substantial activity,achieving approximately 95%pattern recognition accuracy.The results substantiate the great potential of the 2D semiconductor channel-based FeFET device as a high-performance optoelectronic synaptic platform,marking a pivotal stride towards the realization of advanced neuromorphic computing systems.
基金supported by the National Natural Science Foundation of China(Grant No.62074163)Beijing Natural Science Foundation(Grant No.JQ24030).
文摘Organic electrochemical transistors have emerged as a solution for artificial synapses that mimic the neural functions of the brain structure,holding great potentials to break the bottleneck of von Neumann architectures.However,current artificial synapses rely primarily on electrical signals,and little attention has been paid to the vital role of neurotransmitter-mediated artificial synapses.Dopamine is a key neurotransmitter associated with emotion regulation and cognitive processes that needs to be monitored in real time to advance the development of disease diagnostics and neuroscience.To provide insights into the development of artificial synapses with neurotransmitter involvement,this review proposes three steps towards future biomimic and bioinspired neuromorphic systems.We first summarize OECT-based dopamine detection devices,and then review advances in neurotransmitter-mediated artificial synapses and resultant advanced neuromorphic systems.Finally,by exploring the challenges and opportunities related to such neuromorphic systems,we provide a perspective on the future development of biomimetic and bioinspired neuromorphic systems.
基金financially supported by National R&D Program(2018M3D1A1058793,2021M3H4A3A02086430)through NRF(National Research Foundation of Korea)funded by the Ministry of Science and ICTsupported by SAIT,Samsung Electronics Co.,Ltd。
文摘Recently,artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties.Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reliable synaptic characteristics by exploiting the advantage of nondistributed weight updates owing to stable ion migrations.However,the three-terminal configurations with large and complex structures impede the crossbar array implementation required for hardware neuromorphic systems.Meanwhile,achieving adequate synaptic performances through effective Li-ion intercalation in vertical two-terminal synaptic devices for array integration remains challenging.Here,two-terminal Au/LixCoO_(2)/Pt artificial synapses are proposed with the potential for practical implementation of hardware neural networks.The Au/LixCoO_(2)/Pt devices demonstrated extraordinary neuromorphic behaviors based on a progressive dearth of Li in LixCoO_(2)films.The intercalation and deintercalation of Li-ion inside the films are precisely controlled over the weight control spike,resulting in improved weight control functionality.Various types of synaptic plasticity were imitated and assessed in terms of key factors such as nonlinearity,symmetricity,and dynamic range.Notably,the LixCoO_(2)-based neuromorphic system outperformed three-terminal synaptic transistors in simulations of convolutional neural networks and multilayer perceptrons due to the high linearity and low programming error.These impressive performances suggest the vertical two-terminal Au/LixCoO_(2)/Pt artificial synapses as promising candidates for hardware neural networks.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.12104462 and 62104134)support from the China Postdoctoral Science Foundation(Grant No.2021M700154)support from the Young Scholars Program of Shandong University。
文摘Memtransistor,a multi-terminal device that combines both the characteristics of a memristor and a transistor,has been intensively studied in two-dimensional layered materials(2 DLM),which show potential for applications in such as neuromorphic computation.However,while often based on the migration of ions or atomic defects in the conduction channels,performances of memtransistors suffer from the poor reliability and tunability.Furthermore,those known 2 DLM-based memtransistors are mostly constructed in a lateral manner,which hinders the further increasing of the transistor densities per area.Until now,fabricating non-atomic-diffusion based memtransistors with vertical structure remains challenging.Here,we demonstrate a vertically-integrated ferroelectric memristor by hetero-integrating the 2 D ferroelectric materials CuInP_(2)S_(6)(CIPS)into a graphite/CuInP_(2)S_(6)/MoS_(2)vertical heterostructure.Memristive behaviour and multi-level resistance states were realized.Essential synaptic behaviours including excitatory postsynaptic current,paired-pulse-facilitation,and spike-amplitude-dependent plasticity are successfully mimicked.Moreover,by applying a gate potential,the memristive behaviour and synaptic features can be effectively gate tuned.Our findings pave the way for the realization of novel gate-tunable ferroelectric synaptic devices with the capability to perform complex neural functions.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020R1A2C2004864)。
文摘Neuromorphic devices inspired by the human brain have attracted significant attention because of their excellent ability for cognitive and parallel computing.This study presents ZnO-based artificial synapses with peptide insulators for the electrical emulation of biological synapses.We demonstrated the dynamic responses of the device under various environmental conditions.The proton-conducting property of the tyrosine-rich peptide enables time-dependent responses under ambient conditions such that various aspects of synaptic behaviors are emulated by the devices.The transition from short-term memory to longterm memory is achieved via electrochemical doping of ZnO by protons.Furthermore,we demonstrate an image classification simulation using a multi-layer perceptron model to evaluate the potential of the device for use in neuromorphic computing.The neural network based on our device achieved a recognition accuracy of 87.47% for the MNIST handwritten digit images.This work proposes a novel device platform inspired by biosystems for brain-mimetic hardware systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.51922023,61874011)the China Postdoctoral Science Foundation(Grant No.2021M703159)Fundamental Research Funds for the Central Universities(Grant No.E1EG6804).
文摘As key components of artificial afferent nervous systems,synaptic devices can mimic the physiological synaptic behaviors,which have attracted extensive attentions.Here,a flexible tribotronic artificial synapse(TAS)with bioinspired neurosensory behavior is developed.The triboelectric potential generated by the external contact electrification is used as the ion-gel-gate voltage of the organic thin film transistor,which can tune the carriers transport through the migration/accumulation of ions.The TAS successfully demonstrates a series of synaptic behaviors by external stimuli,such as excitatory postsynaptic current,paired-pulse facilitation,and the hierarchical memory process from sensory memory to short-term memory and long-term memory.Moreover,the synaptic behaviors remained stable under the strain condition with a bending radius of 20 mm,and the TAS still exhibits excellent durability after 1000 bending cycles.Finally,Pavlovian conditioning has been successfully mimicked by applying force and vibration as food and bell,respectively.This work demonstrates a bioinspired flexible artificial synapse that will help to facilitate the development of artificial afferent nervous systems,which is great significance to the practical application of artificial limbs,robotics,and bionics in future.
基金Project supported by the National Science and Technology Major Project of China(Grant No.2017ZX02301007-002)the National Key R&D Plan of China(Grant No.2017YFB0701701)the National Natural Science Foundation of China(Grant Nos.61774068 and 51772113).The authors acknowledge the support from Hubei Key Laboratory of Advanced Memories&Hubei Engineering Research Center on Microelectronics.
文摘Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continuous synaptic depression.The relatively large power consumption and poor analog behavior of PCM devices greatly limit their applications.Here,we fabricate a GeTe/Sb2Te3 superlattice-like PCM device which allows a progressive RESET process.Our devices feature low-power consumption operation and potential high-density integration,which can effectively simulate biological synaptic characteristics.The programming energy can be further reduced by properly selecting the resistance range and operating method.The fabricated devices are implemented in both artificial neural networks(ANN)and convolutional neural network(CNN)simulations,demonstrating high accuracy in brain-like pattern recognition.
基金supported by the National Key Research and Development Program of China(No.2021YFA1101303)the National Natural Science Foundation of China(Nos.62074111,62088101)+2 种基金the Science&Technology Foundation of Shanghai(No.20JC1415600)Shanghai Municipal Science and Technology Major Project(No.2021SHZDZX0100)the Innovation Program of Shanghai Municipal Education Commission(No.2021-01-07-0007-E00096)。
文摘Organic electrochemical transistors(OECTs)have emerged as one type of promising building block for neuromorphic systems owing to their capability of mimicking the morphology and functions of biological neurons and synapses.Currently,numerous kinds of OECTs have been developed,while self-healing performance has been neglected in most reported OECTs.In this work,the OECTs using self-healing polymer electrolytes as dielectric layers are proposed.Several important synaptic behaviors are simulated in the OECTs by doping the channel layers with ions from the electrolytes.Benefitting from the dynamic hydrogen bonds in the self-healing polymer electrolytes,the OECTs can successfully maintain their electrical performance and the ability of emulating synaptic behaviors after self-healing compared with the initial state.More significantly,the sublinear spatial summation function is demonstrated in the OECTs and their potential in flexible electronics is also validated.These results suggest that our devices are expected to be a vital component in the development of future wearable and bioimplantable neuromorphic systems.
基金supported by the National Science Fund for Distinguished Young Scholars of China(No.T2125005)the National Key R&D Program of China(Nos.2022YFE0198200,2022YFA1204500,2022YFA1204504)+3 种基金the Shenzhen Science and Technology Project(No.JCYJ20210324121002008)the Natural Science Foundation of Tianjin(Nos.22JCYBJC01290,23JCQNJC01440)the Key Project of Nature Science Foundation of Tianjin(No.22JCZDJC00120)the Fundamental Research Funds for the Central Universities,Nankai University(Nos.BEG124901,BEG124401)。
文摘Artificial synapses are essential building blocks for neuromorphic electronics.Here,solid polymer electrolyte-gated artificial synapses(EGASs)were fabricated using ITO fibers as channels,which possess an ultra-high sensitivity of 5 m V and a long-term memory time exceeding 3 min.Notably,digitally printed ITO-fiber arrays exhibit an ultra-high transmittance of approximately 99.67%.Biological synaptic plasticity,such as excitatory postsynaptic current,paired-pulse facilitation,spike frequency-dependent plasticity,and synaptic potentiation and depression,were successfully mimicked using the EGASs.Based on the synaptic properties of the EGASs,an artificial neural network was constructed to perform supervised learning using the Fashion-MNIST dataset,achieving high pattern recognition rate(82.39%)due to the linear and symmetric synaptic plasticity.This work provides insights into high-sensitivity artificial synapses for future neuromorphic computing.
基金sponsored by the National Natural Science Foundation of China(Grant Nos 11574057,and 12172093)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012607).
文摘Artificial synapse inspired by the biological brain has great potential in the field of neuromorphic computing and artificial intelligence.The memristor is an ideal artificial synaptic device with fast operation and good tolerance.Here,we have prepared a memristor device with Au/CsPbBr_(3)/ITO structure.The memristor device exhibits resistance switching behavior,the high and low resistance states no obvious decline after 400 switching times.The memristor device is stimulated by voltage pulses to simulate biological synaptic plasticity,such as long-term potentiation,long-term depression,pair-pulse facilitation,short-term depression,and short-term potentiation.The transformation from short-term memory to long-term memory is achieved by changing the stimulation frequency.In addition,a convolutional neural network was constructed to train/recognize MNIST handwritten data sets;a distinguished recognition accuracy of~96.7%on the digital image was obtained in 100 epochs,which is more accurate than other memristor-based neural networks.These results show that the memristor device based on CsPbBr3 has immense potential in the neuromorphic computing system.
基金supported by the National Key R&D Program of China(Nos.2022YFE0198200,2022YFA1200044)the National Science Fund for Distinguished Young Scholars of China(No.T2125005)+1 种基金the Tianjin Science Foundation for Distinguished Young Scholars(No.19JCJQJC61000)the Shenzhen Science and Technology Project(No.JCYj20210324121002008).
文摘A flexible organic artificial synapse(OAS)for tunable time-frequency signal processing was fabricated using a tri-blend film that had been fabricated using a one-step solution method.When combined with a chitosan film,this OAS can achieve an ultrashort-term retention time of only 49 ms for instant electricalcomputing applications;this is the shortest retention time yet achieved by a two-terminal artificial synapse.An array of these flexible OASs can withstand a high bending strain of 5%for 10^(4) cycles;this deformation endurance is a new record.The OAS was also sensitive to the number and frequency of electrical inputs;a tunable cut-off frequency enables dynamic filtering for use in image detail enhancement.This work provides a new resource for development of future neuromorphic computing devices。
基金supported by the National Natural Science Foundation of China(Grant No.62171182)the Natural Scienceof Hunan Province(Grant No.2025JJ50345)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No.CX20240452)。
文摘The regulation of signal transmission speed is one of the most important capabilities of the biological nervous system.This study explores the mechanisms and methods for regulating signal transmission speed among nonmyelinated neurons within the same brain region,starting from spike-timing-dependent plasticity(STDP)of synapses.Building upon the Hodgkin-Huxley model,the dynamic behavior of synapses is incorporated,and the adaptive growth neuron(AGN)model is proposed.Artificial synaptic structures and neuronal physical nodes are also designed.The artificial synaptic structure exhibits unidirectionality,memory capacity,and STDP,enabling it to connect neuronal physical nodes through branching and merging structures.Furthermore,the artificial synapse can adjust signal transmission speed,regulate functional competition between different regions of the neuromorphic network,and promote information interaction.The findings of this study endow neuromorphic networks with the ability to regulate signal transmission speed over the long term,providing new insights into the development of neuromorphic networks.
基金supported by the Natural Science Foundation of Shandong Province(Grant Nos.ZR2024MA019 and ZR2023QA106)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Grant No.2023C01018)。
文摘Two-dimensional(2D)metal oxides are promising candidates for constructing neuromorphic systems because of their intriguing physical properties,such as atomic thinness and ionic activity.In this work,Co_(3)O_(4)nanosheets were synthesized using a solvothermal method and integrated into artificial synapses.Based on the synaptic plasticity of the Co_(3)O_(4)nanosheet-based memristive device,an artificial neural network(ANN)was designed and tested.A recognition accuracy of approximately 96% was achieved for the Modified National Institute of Standards and Technology(MNIST)handwritten digit classification task using this ANN.These results highlight the potential of Co_(3)O_(4)nanosheet-based artificial synapses and Al/Co_(3)O_(4)nanosheet/ITO memristor devices as excellent material candidates for neuromorphic hardware.
基金supported by the Science and Technology Commission of Shanghai Municipality(grant no.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,the Shanghai Frontiers Science Center Program(2021-2025 No.20)the Shanghai Sailing Program(23YF1429500).
文摘The rapid development of neuromorphic computing has led to widespread investigation of artificial synapses.These synapses can perform parallel in-memory computing functions while transmitting signals,enabling low-energy and fast artificial intelligence.Robots are the most ideal endpoint for the application of artificial intelligence.In the human nervous system,there are different types of synapses for sensory input,allowing for signal preprocessing at the receiving end.Therefore,the development of anthropomorphic intelligent robots requires not only an artificial intelligence system as the brain but also the combination of multimodal artificial synapses for multisensory sensing,including visual,tactile,olfactory,auditory,and taste.This article reviews the working mechanisms of artificial synapses with different stimulation and response modalities,and presents their use in various neuromorphic tasks.We aim to provide researchers in this frontier field with a comprehensive understanding of multimodal artificial synapses.
基金supported by the National Key Research and Development Program from Ministry of Science and Technology(No.2023YFB3208102)the National Natural Science Foundation of China(No.52073031)the“Hundred Talents Program”of the Chinese Academy of Sciences.
文摘The advent of the Internet of Things(IoT)era has significantly accelerated advancements in neuromorphic computing research.Triboelectric nanogenerators(TENGs)exhibit dual functionality as both energy harvesters and synaptic simulators,facilitated by their inherent mechanoelectrical transduction properties and seamless circuit integration capabilities.In this work,we presented a vertically contact-separated paper-based artificial synaptic device employing TENG technology.The fabricated device successfully replicates fundamental synaptic behaviors,including paired-pulse facilitation(PPF),high-pass filtering characteristics,and spatiotemporal dynamic logic operations.Through optimized circuit configurations,we achieved elementary“NOT”logic gate using single devices,while implementing“AND/NAND”logic gates and“OR/NOR”logic gates operations through two-and three-device assemblies,respectively.Capitalizing on the mechanical flexibility and lightweight of paper substrates,we further developed a trilayer artificial synaptic architecture that mimics hierarchical neural information processing.This mechanoelectrical coupling approach establishes a novel paradigm for flexible neuromorphic systems,demonstrating exceptional potential for environmentally interactive robotics and adaptive wearable prosthetics.
基金supported by National Key Research and Development Program of China(Grant 2021YFA0715600,2021YFA0717700,2018YFB2202900)the National Natural Science Foundation of China(52192610,62274127,62374128,62304167)+7 种基金2023 Qinchuangyuan Construction Two Chain Integration Special Project(23LLRH0043)Key Research and Development Program of Shaanxi Province(Grant 2024GXYBXM-512)CAS Project for Young Scientists in Basic Research(YSBR-113)the open fund of State Key Laboratory of Infrared Physics(SITP-NLIST-ZD-2023-03)the open research fund of Songshan Lake Materials Laboratory(2023SLABFN02)the Wuhu and Xidian University special fund for industryuniversity-research cooperation(XWYCXY-012021004)China Postdoctoral Science Foundation(2023TQ0255)the Fundamental Research Funds for the Central Universities and the Innovation Fund of Xidian University.
文摘Optoelectronic memristors possess capabilities of data storage and mimicking human visual perception.They hold great promise in neuromorphic visual systems(NVs).This study introduces the amorphous wide-bandgap Ga_(2)O_(3)photoelectric synaptic memristor,which achieves 3-bit data storage through the adjustment of current compliance(Icc)and the utilization of variable ultraviolet(UV-254 nm)light intensities.The“AND”and“OR”logic gates in memristor-aided logic(MAGIC)are implemented by utilizing voltage polarity and UV light as input signals.The device also exhibits highly stable synaptic characteristics such as paired-pulse facilitation(PPF),spike-intensity dependent plasticity(SIDP),spike-number dependent plasticity(SNDP),spike-time dependent plasticity(STDP),spike-frequency dependent plasticity(SFDP)and the learning experience behavior.Finally,when integrated into an artificial neural network(ANN),the Ag/Ga_(2)O_(3)/Pt memristive device mimicked optical pulse potentiation and electrical pulse depression with high pattern accuracy(90.7%).The single memristive cells with multifunctional features are promising candidates for optoelectronic memory storage,neuromorphic computing,and artificial visual perception applications.
基金National Key Research and Development Program of China,Grant/Award Numbers:2021YFA1101303,2022YFB3203502National Natural Science Foundation of China,Grant/Award Numbers:22105043,22305175,62074111+1 种基金Innovation Program of Shanghai Municipal Education Commission,Grant/Award Number:2021-01-07-00-07-E00096Fundamental Research Funds for the Central Universities。
文摘Various forms of intelligent light-controlled soft actuators and robots rely on advanced material architectures and bionic systems to enable programmable remote actuation and multifunctionality.Despite advancements,significant challenges remain in developing actuators and robots that can effectively mimic the low-intensity,wide-wavelength light signal sensing and processing functions observed in living organisms.Herein,we report a design strategy that integrates light-responsive artificial synapses(AS)with liquid crystal networks(LCNs)to create bionic light-controlled LCN soft actuators(AS-LCNs).Remarkably,AS-LCNs can be controlled with light intensities as low as 0.68 mW cm^(-2),a value comparable to the light intensity perceivable by the human eye.These AS-LCNs can perform programmable intelligent sensing,learning,and memory within a wide wavelength range from 365 nm to 808 nm.Additionally,our system demonstrates time-related proofs of concept for a tachycardia alarm and a porcupine defense behavior simulation.Overall,this work addresses the limitations of traditional light-controlled soft actuators and robots in signal reception and processing,paving the way for the development of intelligent soft actuators and robots that emulate the cognitive abilities of living organisms.
基金supported by the Hunan Provincial Natural Science Foundation of China(2022JJ40547 and 2024JJ5031)the University of Defense Technology Research Project(ZK22-15)the National Natural Science Foundation of China(61871060 and 51201022).
文摘Organic electrochemical transistors(OECTs)have garnered significant attention as artificial synapses due to their ability to emulate synaptic functionalities.While previous research has predominantly focused on modulating the physical properties of the channel materials to enhance synaptic performance,the role of ion dynamics in influencing device characteristics remains underexplored.Effective regulation of ion dynamics is crucial for improving state retention and achieving long-term plasticity(LTP)in these devices.In this study,we propose a strategy to modulate the interactions between polymer semiconductors and ions in solid-electrolyte-based artificial synapses.Our findings indicate that the interplay between semiconductors and doping counterions significantly influences ion transport dynamics,thereby affecting the electrochemical doping and dedoping pro-cesses in OECTs.Notably,by suppressing the dedoping process,we achieved enhanced synaptic performances,with devices retaining 64%of the peak current after a retention time of 1000 s.Through the judicious selection of anions and optimization of their interactions with polymer semiconductors,we effectively controlled the dedoping process in OECTs,leading to improved state retention.These insights provide a novel perspective on tuning ion-polymer semiconductor interactions for the development of high-performance synaptic devices,advancing neuromorphic computing applications.
基金National Natural Science Foundation of China,Grant/Award Numbers:U2032147,21872100Singapore MOE Grant,Grant/Award Number:MOE-2019-T2-1-002the Science and Engineering Research Council of A*STAR(Agency for Science,Technology and Research)Singapore,Grant/Award Number:A20G9b0135。
文摘Two-dimensional(2D)van der Waals heterostructure(vdWH)-based floating gate devices show great potential for next-generation nonvolatile and multilevel data storage memory.However,high program voltage induced substantial energy consumption,which is one of the primary concerns,hinders their applications in lowenergy-consumption artificial synapses for neuromorphic computing.In this study,we demonstrate a three-terminal floating gate device based on the vdWH of tin disulfide(SnS2),hexagonal boron nitride(h-BN),and few-layer graphene.The large electron affinity of SnS2 facilitates a significant reduction in the program voltage of the device by lowering the hole-injection barrier across h-BN.Our floating gate device,as a nonvolatile multilevel electronic memory,exhibits large on/off current ratio(105),good retention(over 104 s),and robust endurance(over 1000 cycles).Moreover,it can function as an artificial synapse to emulate basic synaptic functions.Further,low energy consumption down to7 picojoule(pJ)can be achieved owing to the small program voltage.High linearity(<1)and conductance ratio(80)in long-term potentiation and depression(LTP/LTD)further contribute to the high pattern recognition accuracy(90%)in artificial neural network simulation.The proposed device with attentive band engineering can promote the future development of energy-efficient memory and neuromorphic devices.
基金supported by the National Natural Science Foundation of China(51872031,52073032,and 61904013)the Fundamental Research Funds for the Central Universities。
文摘The emulation of biological synapses with learning and memory functions and versatile plasticity is significantly promising for neuromorphic computing systems.Here,a robust and continuously adjustable mechanoplastic semifloating-gate transistor is demonstrated based on an integrated graphene/hexagonal boron nitride/tungsten diselenide van der Waals heterostructure and a triboelectric nanogenerator(TENG).The working states(p-n junction or n;-n junction)can be manipulated and switched under the sophisticated modulation of triboelectric potential derived from mechanical actions,which is attributed to carriers trapping and detrapping in the graphene layer.Furthermore,a reconfigurable artificial synapse is constructed based on such mechanoplastic transistor that can simulate typical synaptic plasticity and implement dynamic control correlations in each response mode by further designing the amplitude and duration.The artificial synapse can work with ultra-low energy consumption at 74.2 f J per synaptic event and the extended synaptic weights.Under the synergetic effect of the semifloating gate,the synaptic device can enable successive mechanical facilitation/depression,short-/long-term plasticity and learning-experience behavior,exhibiting the mechanical behavior derived synaptic plasticity.Such reconfigurable and mechanoplastic features provide an insight into the applications of energyefficient and real-time interactive neuromodulation in the future artificial intelligent system beyond von Neumann architecture.