This study aims to propose a decision-making method based on artificial potential fields(APFs)and finite state machines(FSMs)in emergency conditions.This study presents a decision-making method based on APFs and FSMs ...This study aims to propose a decision-making method based on artificial potential fields(APFs)and finite state machines(FSMs)in emergency conditions.This study presents a decision-making method based on APFs and FSMs for emergency conditions.By modeling the longitudinal and lateral potential energy fields of the vehicle,the driving state is identified,and the trigger conditions are provided for path planning during lane changing.In addition,this study also designed the state transition rules based on the longitudinal and lateral virtual forces.It established the vehicle decision-making model based on the finite state machine to ensure driving safety in emergency situations.To illustrate the performance of the decision-making model by considering APFs and finite state machines.The version of the model in the co-simulation platform of MATLAB and CarSim shows that the developed decision model in this study accurately generates driving behaviors of the vehicle at different time intervals.The contributions of this study are two-fold.A hierarchical vehicle state machine decision model is proposed to enhance driving safety in emergency scenarios.Mathematical models for determining the transition thresholds of lateral and longitudinal vehicle states are established based on the vehicle potential field model,leading to the formulation of transition rules between different states of autonomous vehicles(AVs).展开更多
Path planning for recovery is studied on the engineering background of double unmanned surface vehicles(USVs)towing oil booms for oil spill recovery.Given the influence of obstacles on the sea,the improved artificial ...Path planning for recovery is studied on the engineering background of double unmanned surface vehicles(USVs)towing oil booms for oil spill recovery.Given the influence of obstacles on the sea,the improved artificial potential field(APF)method is used for path planning.For addressing the two problems of unreachable target and local minimum in the APF,three improved algorithms are proposed by combining the motion performance constraints of the double USV system.These algorithms are then combined as the final APF-123 algorithm for oil spill recovery.Multiple sets of simulation tests are designed according to the flaws of the APF and the process of oil spill recovery.Results show that the proposed algorithms can ensure the system’s safety in tracking oil spills in a complex environment,and the speed is increased by more than 40%compared with the APF method.展开更多
Anti-rollover is a critical factor to consider when planning the motion of autonomous heavy trucks.This paper proposed a method for autonomous heavy trucks to generate a path that avoids collisions and minimizes rollo...Anti-rollover is a critical factor to consider when planning the motion of autonomous heavy trucks.This paper proposed a method for autonomous heavy trucks to generate a path that avoids collisions and minimizes rollover risk.The corresponding rollover index is deduced from a 5-DOF heavy truck dynamic model that includes longitudinal motion,lateral motion,yaw motion,sprung mass roll motion,unsprung mass roll motion,and an anti-rollover artificial potential field(APF)is proposed based on this.The motion planning method,which is based on model predictive control(MPC),combines trajectory tracking,anti-rollover APF,and the improved obstacle avoidance APF and considers the truck dynamics constraints,obstacle avoidance,and anti-rollover.Furthermore,by using game theory,the coefficients of the two APF functions are optimised,and an optimal path is planned.The effectiveness of the optimised motion planning method is demonstrated in a variety of scenarios.The results demonstrate that the optimised motion planning method can effectively and efficiently avoid collisions and prevent rollover.展开更多
The Tethered Space Net Robot(TSNR)is an innovative solution for active space debris capture and removal.Its large envelope and simple capture method make it an attractive option for this task.However,capturing maneuve...The Tethered Space Net Robot(TSNR)is an innovative solution for active space debris capture and removal.Its large envelope and simple capture method make it an attractive option for this task.However,capturing maneuverable debris with the flexible and elastic underactuated net poses significant challenges.To address this,a novel formation control method for the TSNR is proposed through the integration of differential game theory and robust adaptive control in this paper.Specifically,the trajectory of the TSNR is obtained through the solution of a real-time feedback pursuit-evasion game with a dynamic target,where the primary condition is to ensure the stability of the TSNR.Furthermore,to minimize tracking errors and maintain a specific configuration,a robust adaptive formation control scheme with Artificial Potential Field(APF)based on a Finite-Time Convergent Extended State Observer(FTCESO)is investigated.The proposed control method has a key advantage in suppressing complex oscillations by a new adaptive law,thus precisely maintaining the configuration.Finally,numerical simulations are performed to demonstrate the effectiveness of the proposed scheme.展开更多
Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Fir...Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.展开更多
Formation keeping is important for multiple Unmanned Aerial Vehicles(multi-UAV)to fully play their roles in cooperative combats and improve their mission success rate.However,in practical applications,it is difficult ...Formation keeping is important for multiple Unmanned Aerial Vehicles(multi-UAV)to fully play their roles in cooperative combats and improve their mission success rate.However,in practical applications,it is difficult to achieve formation keeping precisely and obstacle avoidance autonomously at the same time.This paper proposes a joint control method based on robust H∞ controller and improved Artificial Potential Field(APF)method.Firstly,we build a formation flight model based on the “Leader-Follower”structure and design a robust H∞ controller with three channels X,Y and Z to eliminate dynamic uncertainties,so as to realize high-precision formation keeping.Secondly,to fulfill obstacle avoidance efficiently in complex situations where UAVs fly at high speed with high inertia,this paper comes up with the improved APF method with deformation factor considered.The judgment criterion is proposed and applied to ensure flight safety.In the end,the simulation results show that the designed controller is effective with the formation keeping a high accuracy and in the meantime,it enables UAVs to avoid obstacles autonomously and recover the formation rapidly when coming close to obstacles.Therefore,the method proposed here boasts good engineering application prospect.展开更多
An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed...An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed architecture where each UAV is considered as an ant and makes decision autonomously.At each decision step,the ants choose the next gird according to the state transition rule and update its own artificial potential field and pheromone map based on the current search results.Through iterations of this process,the cooperative search of UAV swarm for mission area is realized.The state transition rule is divided into two types.If the artificial potential force is larger than a threshold,the deterministic transition rule is adopted,otherwise a heuristic transition rule is used.The deterministic transition rule can ensure UAVs to avoid the threat or approach the target quickly.And the heuristics transition rule considering the pheromone and heuristic information ensures the continuous search of area with the goal of covering more unknown area and finding more targets.Finally,simulations are carried out to verify the effectiveness of the proposed ACOAPF algorithm for cooperative search mission of UAV swarm.展开更多
For real-time and distributed features of multi-robot system,the strategy of combining the improved artificial potential field method and the rules based on priority is proposed to study the collision avoidance planni...For real-time and distributed features of multi-robot system,the strategy of combining the improved artificial potential field method and the rules based on priority is proposed to study the collision avoidance planning in multi-robot systems. The improved artificial potential field based on simulated annealing algorithm satisfactorily overcomes the drawbacks of traditional artificial potential field method,so that robots can find a local collision-free path in the complex environment. According to the movement vector trail of robots,collisions between robots can be detected,thereby the collision avoidance rules can be obtained. Coordination between robots by the priority based rules improves the real-time property of multi-robot system. The combination of these two methods can help a robot to find a collision-free path from a starting point to the goal quickly in an environment with many obstacles. The feasibility of the proposed method is validated in the VC-based simulated environment.展开更多
A novel method was designed to solve reinforcement learning problems with artificial potential field.Firstly a reinforcement learning problem was transferred to a path planning problem by using artificial potential fi...A novel method was designed to solve reinforcement learning problems with artificial potential field.Firstly a reinforcement learning problem was transferred to a path planning problem by using artificial potential field(APF),which was a very appropriate method to model a reinforcement learning problem.Secondly,a new APF algorithm was proposed to overcome the local minimum problem in the potential field methods with a virtual water-flow concept.The performance of this new method was tested by a gridworld problem named as key and door maze.The experimental results show that within 45 trials,good and deterministic policies are found in almost all simulations.In comparison with WIERING's HQ-learning system which needs 20 000 trials for stable solution,the proposed new method can obtain optimal and stable policy far more quickly than HQ-learning.Therefore,the new method is simple and effective to give an optimal solution to the reinforcement learning problem.展开更多
In order to overcome the drawbacks of conventional artificial potential fields (APF) based methods for the motion planning problems of mobile robots in dynamic uncertain environments, an artificial coordinating fields...In order to overcome the drawbacks of conventional artificial potential fields (APF) based methods for the motion planning problems of mobile robots in dynamic uncertain environments, an artificial coordinating fields (ACF) based method has been proposed recently. This paper deals with the reachability problem of the ACF, that is, how to design and choose the parameters of the ACF and how the environment should be such that the robot can reach its goal without being trapped in local minima. Some sufficient conditions for these purposes are developed theoretically. Theoretical analyses show that, the ACF can effectively remove local minima in dynamic uncertain environments with V-shape or U-shape obstacles, and guide the mobile robot to reach its goal with some necessary environment constraints and based on the methods provided in this paper to properly choose the parameters of the ACF. Comparisons between the ACF and APF, and simulations are provided to illustrate the advantages of the ACF.展开更多
To overcome the shortcomings of the traditional artificial potential field method in mobile robot path planning, an improved artificial potential field model (IAPFM) was established, then a new path planning method ...To overcome the shortcomings of the traditional artificial potential field method in mobile robot path planning, an improved artificial potential field model (IAPFM) was established, then a new path planning method combining the IAPFM with optimization algorithm (trust region algorithm) is proposed. Attractive force between the robot and the target location, and repulsive force between the robot and the obstacles are both converted to the potential field intensity; and filled potential field is used to guide the robot to go out of the local minimum points ; on this basis, the effect of dynamic obstacles velocity and the robot's velocity is consid thers and the IAPFM is established, then both the expressions of the attractive potential field and the repulsive potential field are obtained. The trust region algorithm is used to search the minimum value of the sum of all the potential field inten- sities within the movement scope which the robot can arrive in a sampling period. Connecting of all the points which hare the minimum intensity in every sampling period constitutes the global optimization path. Experiment result shows that the method can meet the real-time requirement, and is able to execute the mobile robot path planning task effectively in the dynamic environment.展开更多
A novel approach for collision-free path planning of a multiple degree-of-freedom (DOF) articulated robot in a complex environment is proposed. Firstly, based on visual neighbor point (VNP), a numerical artificial...A novel approach for collision-free path planning of a multiple degree-of-freedom (DOF) articulated robot in a complex environment is proposed. Firstly, based on visual neighbor point (VNP), a numerical artificial potential field is constructed in Cartesian space, which provides the heuristic information, effective distance to the goal and the motion direction for the motion of the robot joints. Secondly, a genetic algorithm, combined with the heuristic rules, is used in joint space to determine a series of contiguous configurations piecewise from initial configuration until the goal configuration is attained. A simulation shows that the method can not only handle issues on path planning of the articulated robots in environment with complex obstacles, but also improve the efficiency and quality of path planning.展开更多
The method of artificial potential field has obvious advantages among the robot path planning methods including simple structure,small amount of calculation and relatively mature in theory.This paper puts forward the&...The method of artificial potential field has obvious advantages among the robot path planning methods including simple structure,small amount of calculation and relatively mature in theory.This paper puts forward the"Integral method"focusing on solving the problem of local minimization.The method analyses the distribution of obstructions in a given environment and regards adjacent obstacles as a whole,By changing the parameters of the repulsive force field,robots can quickly get out of the minimum point and move to the target point.This paper uses the Simurosot platform to carry on the simulation experiment on the improved artificial potential field method,which projects a feasible path successfully and verifies this method.展开更多
An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and coll...An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.展开更多
With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater envir...With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater environments.However,nowadays AUVs generally have drawbacks such as weak endurance,low intelligence,and poor detection ability.The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks.To improve the underwater operation ability of the AUV,this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm.In response to the limitations of a single algorithm,an optimization scheme is proposed to improve the artificial potential field ant colony(APF-AC)algorithm.Compared with traditional ant colony and comparative algorithms,the APF-AC reduced the path length by 1.57%and 0.63%(in the simple environment),8.92%and 3.46%(in the complex environment).The iteration time has been reduced by approximately 28.48%and 18.05%(in the simple environment),18.53%and 9.24%(in the complex environment).Finally,the improved APF-AC algorithm has been validated on the AUV platform,and the experiment is consistent with the simulation.Improved APF-AC algorithm can effectively reduce the underwater operation time and overall power consumption of the AUV,and shows a higher safety.展开更多
Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase...Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase and higher mass center.To improve the performance mentioned above comprehensively,the control strategy based on improved artificial potential field(APF)algorithm is proposed.In the paper,time to lane crossing(TLC)is introduced into the potential field function to enhance the accuracy of path tracking,meanwhile the vehicle dynamics parameters including yaw rate and lateral acceleration are chosen as the repulsive force field source.The lane keeping controller based on improved APF algorithm is designed and the stability of the control system is proved based on Lyapunov theory.In addition,adaptive inertial weight particle swarm optimization algorithm(AIWPSO)is applied to optimize the gain of each potential field function.The co-simulation results indicate that the comprehensive evaluation index respecting lane tracking accuracy and lateral stability is reduced remarkably.Finally,the proposed control strategy is verified by the HiL test.It provides a beneficial reference for dynamics control of commercial vehicles and enriches the theoretical development and practical application of artificial potential field method in the field of intelligent driving.展开更多
In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone ...In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account.展开更多
Owing to the ability to parallel manipulate micro-objects,dynamic holographic optical tweezers(HOTs)are widely used for assembly and patterning of particles or cells.However,for simultaneous control of large-scale tar...Owing to the ability to parallel manipulate micro-objects,dynamic holographic optical tweezers(HOTs)are widely used for assembly and patterning of particles or cells.However,for simultaneous control of large-scale targets,potential collisions could lead to defects in the formed patterns.Herein we introduce the artificial potential field(APF)to develop dynamic HOTs that enable collision-avoidance micro-manipulation.By eliminating collision risks among particles,this method can maximize the degree of parallelism in multi-particle transport,and it permits the implementation of the Hungarian algorithm for matching the particles with their target sites in a minimal pathway.In proof-of-concept experiments,we employ APF-empowered dynamic HOTs to achieve direct assembly of a defect-free 8×8 array of microbeads,which starts from random initial positions.We further demonstrate successive flexible transformations of a 7×7 microbead array,by regulating its tilt angle and inter-particle spacing distances with a minimalist path.We anticipate that the proposed method will become a versatile tool to open up new possibilities for parallel optical micromanipulation tasks in a variety of fields.展开更多
The formation of hybrid underwater gliders has advantages in sustained ocean observation with high resolution and more adaptation for complicated ocean tasks. However, the current work mostly focused on the traditiona...The formation of hybrid underwater gliders has advantages in sustained ocean observation with high resolution and more adaptation for complicated ocean tasks. However, the current work mostly focused on the traditional gliders and AUVs.The research on control strategy and energy consumption minimization for the hybrid gliders is necessary both in methodology and experiment. A multi-layer coordinate control strategy is developed for the fleet of hybrid underwater gliders to control the gliders’ motion and formation geometry with optimized energy consumption. The inner layer integrated in the onboard controller and the outer layer integrated in the ground control center or the deck controller are designed. A coordinate control model is proposed based on multibody theory through adoption of artificial potential fields. Considering the existence of ocean flow, a hybrid motion energy consumption model is constructed and an optimization method is designed to obtain the heading angle, net buoyancy, gliding angle and the rotate speed of screw propeller to minimize the motion energy with consideration of the ocean flow. The feasibility of the coordinate control system and motion optimization method has been verified both by simulation and sea trials. Simulation results show the regularity of energy consumption with the control variables. The fleet of three Petrel-Ⅱ gliders developed by Tianjin University is deployed in the South China Sea. The trajectory error of each glider is less than 2.5 km, the formation shape error between each glider is less than 2 km, and the difference between actual energy consumption and the simulated energy consumption is less than 24% actual energy. The results of simulation and the sea trial prove the feasibility of the proposed coordinate control strategy and energy optimization method. In conclusion, a coordinate control system and a motion optimization method is studied, which can be used for reference in theoretical research and practical fleet operation for both the traditional gliders and hybrid gliders.展开更多
The fact of proportional population growth in many countries drags the attention of researchers in the field of crowd dynamics to the need for developing reliable models to predict the behavior of human crowds in emer...The fact of proportional population growth in many countries drags the attention of researchers in the field of crowd dynamics to the need for developing reliable models to predict the behavior of human crowds in emergency situations such as evacuation processes. Computer based models that simulate human crowd dynamics prove to offer the optimum way to predict the crowd realistic behavior especially in emergency situations. This paper presents a vital extension of my previous work in which an individual-based model to simulate the behavior of human crowd was developed using the artificial potential fields to describe the interaction forces between each crowd member and the environment on one side and amongst the crowd members on the other side to add realistic flavor to the predicted crowd behavior. In this paper, the successive multi-goals (SMG) method, which is a new method to represent the environment in which the crowd moves, is developed. Rather than using the traditional static potential field, the successive multi-goals method uses a dynamic potential field which is vital to solve the reactive problem that is considered as a drawback of the model when simulating the human crowd behavior during evacuation of buildings whose structures are complex such as bottlenecks and narrow corridors. Numerical results that match the real behavior of human individuals in emergency situations prove the efficiency of the new method to solve the problem on an individual basis as well as its applicability.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52102454)the Postdoctoral Science Foundation of China(Grant No.2021M700169)+4 种基金in part by the Natural Science Foundation of Chongqing(Grant No.cstc2021jcyj-msxmX0395)the Special Funding for Postdoctoral Research Projects in Chongqing(Grant No.2021XM3069)the Youth Project of Science and Technology Research Program of Chongqing Education Commission of China(Grant Nos.KJQN202001302 and KJQN202203909)the Natural Science Foundation of Yongchuan District(Grant No.2023yc-jckx20089)the Opening Project of Intelligent Policing Key Laboratory of Sichuan Province(Grant No.ZNJW2023KFQN002).
文摘This study aims to propose a decision-making method based on artificial potential fields(APFs)and finite state machines(FSMs)in emergency conditions.This study presents a decision-making method based on APFs and FSMs for emergency conditions.By modeling the longitudinal and lateral potential energy fields of the vehicle,the driving state is identified,and the trigger conditions are provided for path planning during lane changing.In addition,this study also designed the state transition rules based on the longitudinal and lateral virtual forces.It established the vehicle decision-making model based on the finite state machine to ensure driving safety in emergency situations.To illustrate the performance of the decision-making model by considering APFs and finite state machines.The version of the model in the co-simulation platform of MATLAB and CarSim shows that the developed decision model in this study accurately generates driving behaviors of the vehicle at different time intervals.The contributions of this study are two-fold.A hierarchical vehicle state machine decision model is proposed to enhance driving safety in emergency scenarios.Mathematical models for determining the transition thresholds of lateral and longitudinal vehicle states are established based on the vehicle potential field model,leading to the formulation of transition rules between different states of autonomous vehicles(AVs).
基金Supported by the National Natural Science Foundation of China (Grant No. 52071097)Hainan Provincial Natural Science Foundation of China (Grant No. 522MS162)Research Fund from Science and Technology on Underwater Vehicle Technology Laboratory (Grant No. 2021JCJQ-SYSJJ-LB06910)。
文摘Path planning for recovery is studied on the engineering background of double unmanned surface vehicles(USVs)towing oil booms for oil spill recovery.Given the influence of obstacles on the sea,the improved artificial potential field(APF)method is used for path planning.For addressing the two problems of unreachable target and local minimum in the APF,three improved algorithms are proposed by combining the motion performance constraints of the double USV system.These algorithms are then combined as the final APF-123 algorithm for oil spill recovery.Multiple sets of simulation tests are designed according to the flaws of the APF and the process of oil spill recovery.Results show that the proposed algorithms can ensure the system’s safety in tracking oil spills in a complex environment,and the speed is increased by more than 40%compared with the APF method.
基金Supported by National Natural Science Foundation of China(Grant No.51775269)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20211190).
文摘Anti-rollover is a critical factor to consider when planning the motion of autonomous heavy trucks.This paper proposed a method for autonomous heavy trucks to generate a path that avoids collisions and minimizes rollover risk.The corresponding rollover index is deduced from a 5-DOF heavy truck dynamic model that includes longitudinal motion,lateral motion,yaw motion,sprung mass roll motion,unsprung mass roll motion,and an anti-rollover artificial potential field(APF)is proposed based on this.The motion planning method,which is based on model predictive control(MPC),combines trajectory tracking,anti-rollover APF,and the improved obstacle avoidance APF and considers the truck dynamics constraints,obstacle avoidance,and anti-rollover.Furthermore,by using game theory,the coefficients of the two APF functions are optimised,and an optimal path is planned.The effectiveness of the optimised motion planning method is demonstrated in a variety of scenarios.The results demonstrate that the optimised motion planning method can effectively and efficiently avoid collisions and prevent rollover.
基金supported by the National Natural Science Foundation of China(Nos.62222313,62173275,62327809,62303381,and 62303312)in part by the China Postdoctoral Science Foundation(No.2023M732225).
文摘The Tethered Space Net Robot(TSNR)is an innovative solution for active space debris capture and removal.Its large envelope and simple capture method make it an attractive option for this task.However,capturing maneuverable debris with the flexible and elastic underactuated net poses significant challenges.To address this,a novel formation control method for the TSNR is proposed through the integration of differential game theory and robust adaptive control in this paper.Specifically,the trajectory of the TSNR is obtained through the solution of a real-time feedback pursuit-evasion game with a dynamic target,where the primary condition is to ensure the stability of the TSNR.Furthermore,to minimize tracking errors and maintain a specific configuration,a robust adaptive formation control scheme with Artificial Potential Field(APF)based on a Finite-Time Convergent Extended State Observer(FTCESO)is investigated.The proposed control method has a key advantage in suppressing complex oscillations by a new adaptive law,thus precisely maintaining the configuration.Finally,numerical simulations are performed to demonstrate the effectiveness of the proposed scheme.
文摘Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.
基金supported by Funding from the National Key Laboratory of Rotorcraft Aeromechanics,China(No.61422202108)the National Natural Science Foundation of China(No.52176009).
文摘Formation keeping is important for multiple Unmanned Aerial Vehicles(multi-UAV)to fully play their roles in cooperative combats and improve their mission success rate.However,in practical applications,it is difficult to achieve formation keeping precisely and obstacle avoidance autonomously at the same time.This paper proposes a joint control method based on robust H∞ controller and improved Artificial Potential Field(APF)method.Firstly,we build a formation flight model based on the “Leader-Follower”structure and design a robust H∞ controller with three channels X,Y and Z to eliminate dynamic uncertainties,so as to realize high-precision formation keeping.Secondly,to fulfill obstacle avoidance efficiently in complex situations where UAVs fly at high speed with high inertia,this paper comes up with the improved APF method with deformation factor considered.The judgment criterion is proposed and applied to ensure flight safety.In the end,the simulation results show that the designed controller is effective with the formation keeping a high accuracy and in the meantime,it enables UAVs to avoid obstacles autonomously and recover the formation rapidly when coming close to obstacles.Therefore,the method proposed here boasts good engineering application prospect.
基金supported by the National Natural Science Foundation of China (Nos.61973158, 61673209)the Aeronautical Science Foundation (No.2016ZA52009)
文摘An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed architecture where each UAV is considered as an ant and makes decision autonomously.At each decision step,the ants choose the next gird according to the state transition rule and update its own artificial potential field and pheromone map based on the current search results.Through iterations of this process,the cooperative search of UAV swarm for mission area is realized.The state transition rule is divided into two types.If the artificial potential force is larger than a threshold,the deterministic transition rule is adopted,otherwise a heuristic transition rule is used.The deterministic transition rule can ensure UAVs to avoid the threat or approach the target quickly.And the heuristics transition rule considering the pheromone and heuristic information ensures the continuous search of area with the goal of covering more unknown area and finding more targets.Finally,simulations are carried out to verify the effectiveness of the proposed ACOAPF algorithm for cooperative search mission of UAV swarm.
基金Sponsored by the Science Foundation for Youths of Heilongjiang province (Grant No.QC08C05)
文摘For real-time and distributed features of multi-robot system,the strategy of combining the improved artificial potential field method and the rules based on priority is proposed to study the collision avoidance planning in multi-robot systems. The improved artificial potential field based on simulated annealing algorithm satisfactorily overcomes the drawbacks of traditional artificial potential field method,so that robots can find a local collision-free path in the complex environment. According to the movement vector trail of robots,collisions between robots can be detected,thereby the collision avoidance rules can be obtained. Coordination between robots by the priority based rules improves the real-time property of multi-robot system. The combination of these two methods can help a robot to find a collision-free path from a starting point to the goal quickly in an environment with many obstacles. The feasibility of the proposed method is validated in the VC-based simulated environment.
基金Projects(30270496,60075019,60575012)supported by the National Natural Science Foundation of China
文摘A novel method was designed to solve reinforcement learning problems with artificial potential field.Firstly a reinforcement learning problem was transferred to a path planning problem by using artificial potential field(APF),which was a very appropriate method to model a reinforcement learning problem.Secondly,a new APF algorithm was proposed to overcome the local minimum problem in the potential field methods with a virtual water-flow concept.The performance of this new method was tested by a gridworld problem named as key and door maze.The experimental results show that within 45 trials,good and deterministic policies are found in almost all simulations.In comparison with WIERING's HQ-learning system which needs 20 000 trials for stable solution,the proposed new method can obtain optimal and stable policy far more quickly than HQ-learning.Therefore,the new method is simple and effective to give an optimal solution to the reinforcement learning problem.
基金This paper was partly supported by the National Natural Science Foundation (No.60131160741,60334010) of China.
文摘In order to overcome the drawbacks of conventional artificial potential fields (APF) based methods for the motion planning problems of mobile robots in dynamic uncertain environments, an artificial coordinating fields (ACF) based method has been proposed recently. This paper deals with the reachability problem of the ACF, that is, how to design and choose the parameters of the ACF and how the environment should be such that the robot can reach its goal without being trapped in local minima. Some sufficient conditions for these purposes are developed theoretically. Theoretical analyses show that, the ACF can effectively remove local minima in dynamic uncertain environments with V-shape or U-shape obstacles, and guide the mobile robot to reach its goal with some necessary environment constraints and based on the methods provided in this paper to properly choose the parameters of the ACF. Comparisons between the ACF and APF, and simulations are provided to illustrate the advantages of the ACF.
基金Supported by the National High Technology Research and Development Programme of China( No. 2006AA04Z245 ) and China Postdoctoral Science Foundation ( No. 200904500988 ).
文摘To overcome the shortcomings of the traditional artificial potential field method in mobile robot path planning, an improved artificial potential field model (IAPFM) was established, then a new path planning method combining the IAPFM with optimization algorithm (trust region algorithm) is proposed. Attractive force between the robot and the target location, and repulsive force between the robot and the obstacles are both converted to the potential field intensity; and filled potential field is used to guide the robot to go out of the local minimum points ; on this basis, the effect of dynamic obstacles velocity and the robot's velocity is consid thers and the IAPFM is established, then both the expressions of the attractive potential field and the repulsive potential field are obtained. The trust region algorithm is used to search the minimum value of the sum of all the potential field inten- sities within the movement scope which the robot can arrive in a sampling period. Connecting of all the points which hare the minimum intensity in every sampling period constitutes the global optimization path. Experiment result shows that the method can meet the real-time requirement, and is able to execute the mobile robot path planning task effectively in the dynamic environment.
文摘A novel approach for collision-free path planning of a multiple degree-of-freedom (DOF) articulated robot in a complex environment is proposed. Firstly, based on visual neighbor point (VNP), a numerical artificial potential field is constructed in Cartesian space, which provides the heuristic information, effective distance to the goal and the motion direction for the motion of the robot joints. Secondly, a genetic algorithm, combined with the heuristic rules, is used in joint space to determine a series of contiguous configurations piecewise from initial configuration until the goal configuration is attained. A simulation shows that the method can not only handle issues on path planning of the articulated robots in environment with complex obstacles, but also improve the efficiency and quality of path planning.
文摘The method of artificial potential field has obvious advantages among the robot path planning methods including simple structure,small amount of calculation and relatively mature in theory.This paper puts forward the"Integral method"focusing on solving the problem of local minimization.The method analyses the distribution of obstructions in a given environment and regards adjacent obstacles as a whole,By changing the parameters of the repulsive force field,robots can quickly get out of the minimum point and move to the target point.This paper uses the Simurosot platform to carry on the simulation experiment on the improved artificial potential field method,which projects a feasible path successfully and verifies this method.
基金founded by the National Science and Technology Council of the Republic of China under contract NSTC113-2221-E-019-032.
文摘An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.
基金supported by Research Program supported by the National Natural Science Foundation of China(No.62201249)the Jiangsu Agricultural Science and Technology Innovation Fund(No.CX(21)1007)+2 种基金the Open Project of the Zhejiang Provincial Key Laboratory of Crop Harvesting Equipment and Technology(Nos.2021KY03,2021KY04)University-Industry Collaborative Education Program(No.201801166003)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX22_1042).
文摘With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater environments.However,nowadays AUVs generally have drawbacks such as weak endurance,low intelligence,and poor detection ability.The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks.To improve the underwater operation ability of the AUV,this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm.In response to the limitations of a single algorithm,an optimization scheme is proposed to improve the artificial potential field ant colony(APF-AC)algorithm.Compared with traditional ant colony and comparative algorithms,the APF-AC reduced the path length by 1.57%and 0.63%(in the simple environment),8.92%and 3.46%(in the complex environment).The iteration time has been reduced by approximately 28.48%and 18.05%(in the simple environment),18.53%and 9.24%(in the complex environment).Finally,the improved APF-AC algorithm has been validated on the AUV platform,and the experiment is consistent with the simulation.Improved APF-AC algorithm can effectively reduce the underwater operation time and overall power consumption of the AUV,and shows a higher safety.
基金Supported by National Natural Science Foundation of China(Grant Nos.51605199,U20A20333,52225212)Six Talent Peak Funding Projects in Jiangsu Province of China(Grant No.2019-GDZB-084)Key Science and Technology Support Program in Taizhou City of China(Grant No.TG202307).
文摘Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase and higher mass center.To improve the performance mentioned above comprehensively,the control strategy based on improved artificial potential field(APF)algorithm is proposed.In the paper,time to lane crossing(TLC)is introduced into the potential field function to enhance the accuracy of path tracking,meanwhile the vehicle dynamics parameters including yaw rate and lateral acceleration are chosen as the repulsive force field source.The lane keeping controller based on improved APF algorithm is designed and the stability of the control system is proved based on Lyapunov theory.In addition,adaptive inertial weight particle swarm optimization algorithm(AIWPSO)is applied to optimize the gain of each potential field function.The co-simulation results indicate that the comprehensive evaluation index respecting lane tracking accuracy and lateral stability is reduced remarkably.Finally,the proposed control strategy is verified by the HiL test.It provides a beneficial reference for dynamics control of commercial vehicles and enriches the theoretical development and practical application of artificial potential field method in the field of intelligent driving.
基金This work was supported by the Postdoctoral Fund of FDCT,Macao(Grant No.0003/2021/APD).Any opinions,findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the sponsor.
文摘In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account.
基金supported by the National Natural Science Foundation of China(12274181,12127805,62135005)the National Key Research and Development Program of China(2021YFF0700303,2023YFF0613700)Guangdong Basic and Applied Basic Research Foundation(2023A1515030143).
文摘Owing to the ability to parallel manipulate micro-objects,dynamic holographic optical tweezers(HOTs)are widely used for assembly and patterning of particles or cells.However,for simultaneous control of large-scale targets,potential collisions could lead to defects in the formed patterns.Herein we introduce the artificial potential field(APF)to develop dynamic HOTs that enable collision-avoidance micro-manipulation.By eliminating collision risks among particles,this method can maximize the degree of parallelism in multi-particle transport,and it permits the implementation of the Hungarian algorithm for matching the particles with their target sites in a minimal pathway.In proof-of-concept experiments,we employ APF-empowered dynamic HOTs to achieve direct assembly of a defect-free 8×8 array of microbeads,which starts from random initial positions.We further demonstrate successive flexible transformations of a 7×7 microbead array,by regulating its tilt angle and inter-particle spacing distances with a minimalist path.We anticipate that the proposed method will become a versatile tool to open up new possibilities for parallel optical micromanipulation tasks in a variety of fields.
基金Supported by National Key R&D Plan of China(Grant No.2016YFC0301100)National Natural Science Foundation of China(Grant Nos.51475319,51575736,41527901)Aoshan Talents Program of Qingdao National Laboratory for Marine Science and Technology,China
文摘The formation of hybrid underwater gliders has advantages in sustained ocean observation with high resolution and more adaptation for complicated ocean tasks. However, the current work mostly focused on the traditional gliders and AUVs.The research on control strategy and energy consumption minimization for the hybrid gliders is necessary both in methodology and experiment. A multi-layer coordinate control strategy is developed for the fleet of hybrid underwater gliders to control the gliders’ motion and formation geometry with optimized energy consumption. The inner layer integrated in the onboard controller and the outer layer integrated in the ground control center or the deck controller are designed. A coordinate control model is proposed based on multibody theory through adoption of artificial potential fields. Considering the existence of ocean flow, a hybrid motion energy consumption model is constructed and an optimization method is designed to obtain the heading angle, net buoyancy, gliding angle and the rotate speed of screw propeller to minimize the motion energy with consideration of the ocean flow. The feasibility of the coordinate control system and motion optimization method has been verified both by simulation and sea trials. Simulation results show the regularity of energy consumption with the control variables. The fleet of three Petrel-Ⅱ gliders developed by Tianjin University is deployed in the South China Sea. The trajectory error of each glider is less than 2.5 km, the formation shape error between each glider is less than 2 km, and the difference between actual energy consumption and the simulated energy consumption is less than 24% actual energy. The results of simulation and the sea trial prove the feasibility of the proposed coordinate control strategy and energy optimization method. In conclusion, a coordinate control system and a motion optimization method is studied, which can be used for reference in theoretical research and practical fleet operation for both the traditional gliders and hybrid gliders.
文摘The fact of proportional population growth in many countries drags the attention of researchers in the field of crowd dynamics to the need for developing reliable models to predict the behavior of human crowds in emergency situations such as evacuation processes. Computer based models that simulate human crowd dynamics prove to offer the optimum way to predict the crowd realistic behavior especially in emergency situations. This paper presents a vital extension of my previous work in which an individual-based model to simulate the behavior of human crowd was developed using the artificial potential fields to describe the interaction forces between each crowd member and the environment on one side and amongst the crowd members on the other side to add realistic flavor to the predicted crowd behavior. In this paper, the successive multi-goals (SMG) method, which is a new method to represent the environment in which the crowd moves, is developed. Rather than using the traditional static potential field, the successive multi-goals method uses a dynamic potential field which is vital to solve the reactive problem that is considered as a drawback of the model when simulating the human crowd behavior during evacuation of buildings whose structures are complex such as bottlenecks and narrow corridors. Numerical results that match the real behavior of human individuals in emergency situations prove the efficiency of the new method to solve the problem on an individual basis as well as its applicability.