The developments of modern mathematics and computer science make artificial neural networks become most useful tools in wide range of fields. Modeling methods of artificial neural networks are described in this paper...The developments of modern mathematics and computer science make artificial neural networks become most useful tools in wide range of fields. Modeling methods of artificial neural networks are described in this paper. The programming technique by using Matlab neural networks toolbox is discussed. The application in Material Hot Working of neural networks is also introduced.展开更多
An effective approach for describing complicated water quality processes is very important for river water quality management.We built two artificial neural network(ANN)models,a feed-forward back-propagation(BP)model ...An effective approach for describing complicated water quality processes is very important for river water quality management.We built two artificial neural network(ANN)models,a feed-forward back-propagation(BP)model and a radial basis function(RBF)model,to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of Chongqing,P.R.China.Our models used the historical monitoring data of biological oxygen demand,dissolved oxygen,ammonia,oil and volatile phenolic compounds.Comparison with the one-dimensional traditional water quality model suggest that both BP and RBF models are superior;their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water quality agrees better with measurement.It is demonstrated that ANN modeling can be a tool for estimating the water quality of the Yangtze River.Of the two ANN models,the RBF model calculates with a smaller mean error,but a larger root mean square error.More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality models.展开更多
In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integr...In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.展开更多
Artificial neural networks have been studied for applicability for modeling of spot welding process. Some basic concepts relating to neural networks are explained as well as how they can be used to model welding quali...Artificial neural networks have been studied for applicability for modeling of spot welding process. Some basic concepts relating to neural networks are explained as well as how they can be used to model welding qualitv parameters in terms of the welding process parameter. The performance of the neural networks for modeling is presented and evaluated using actual welding data. It is concluded that neural network modeling is a good means of estimating spot welding quality on-line.展开更多
Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for the estimation of hydraulic data. In this study, they were used as alternative tools to estimate the characteristics of hy...Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for the estimation of hydraulic data. In this study, they were used as alternative tools to estimate the characteristics of hydraulic jumps, such as the free surface location and energy dissipation. The dimensionless hydraulic parameters, including jump depth, jump length, and energy dissipation, were determined as functions of the Froude number and the height and length of corrugations. The estimations of the ANN and GP models were found to be in good agreement with the measured data. The results of the ANN model were compared with those of the GP model, showing that the proposed ANN models are much more accurate than the GP models.展开更多
Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on...Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To exploit the benefits presented by the laser hardening process, it is necessary to develop an integrated strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive modelling approach for predicting the hardened surface physical and geometrical attributes. The laser surface transformation hardening of cylindrical AISI 4340 steel workpieces is modeled using the conventional regression equation method as well as artificial neural network method. The process parameters included in the study are laser power, beam scanning speed, and the workpiece rotational speed. The upper and the lower limits for each parameter are chosen considering the start of the transformation hardening and the maximum hardened zone without surface melting. The resulting models are able to predict the depths representing the maximum hardness zone, the hardness drop zone, and the overheated zone without martensite transformation. Because of its ability to model highly nonlinear problems, the ANN based model presents the best modelling results and can predict the hardness profile with good accuracy.展开更多
Water resources management is nowadays a significant stake for the world. However, missing or bad quality of the hydro-climatic historical data available of the studied area makes sometimes hydrological studies diffic...Water resources management is nowadays a significant stake for the world. However, missing or bad quality of the hydro-climatic historical data available of the studied area makes sometimes hydrological studies difficult. Generally, conceptual rain-flow models are designed to bring an appropriate answer with the correction of gaps and prediction of the flows. Historical hydro-climatic data of the Ity station, located on Cavally River, contain gaps which must be bridged. This study aims to establish a rainfall-runoff model through artificial neural networks for filling the gaps into the flow data series of the hydrometric station of Ity on the watershed of Cavally River. A multi-layer perceptron of feed forwards with two entries (monthly average rain and evapotranspiration) and an exit (flows) was established with flow evapotranspiration data. Comparison of the criteria of performance of the various architectures of the neural network model showed that architecture 2-3-1 gives best results. This architecture provides Nash coefficients of 75.79% and correlation linear coefficient of 95.64% for the calibration and Nash coefficients of 73.32% and correlation linear coefficient of 98.33% for the validation. The correlations between simulated flows and observed flows are strong. The correlation coefficients are 83.89% and 83.08% respectively for the calibration and validation.展开更多
An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propag...An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propagation (BP) algorithm. Latitude, longitude, and height are chosen as the input vectors of the network while temperature is the output vector. The temperature observations during the period from 13 January through 16 March 2007, which are in the same satellite yaw, are taken as samples to train an ANN. Results suggest that the network has high quality for modeling spatial variations of temperature. Quantitative comparisons between the ANN outputs and those from the popular empirical NRLMSISE-00 model illustrate their generally consistent features and some specific differences. The NRLMSISE-00 model's zonal mean temperatures are too high by ~6 K-10 K near the stratopause, and the amplitude and phase of the planetary wave number 1 activity are different in some respects from the ANN simulations above 45-50 km, suggesting improvement is needed in the NRLMSISE-00 model for more accurate simulation near and above the stratopause.展开更多
The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid ...The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid percentage, P50 of particle, NaCN content in cyanide media, temperature of solution and pH value were used. For selecting the best model, the outputs of models were compared with measured data. A fourth-layer ANN is found to be optimum with architecture of twenty, fifteen, ten and five neurons in the first, second, third and fourth hidden layers, respectively, and one neuron in output layer. The results of artificial neural network show that the square correlation coefficients (R2) of training, testing and validating data achieve 0.999 1, 0.996 4 and 0.9981, respectively. Sensitivity analysis shows that the highest and lowest effects on the gold dissolution rise from time and pH, respectively It is verified that the predicted values of ANN coincide well with the experimental results.展开更多
To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are anal...To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are analyzed, and artificial neural networks based PEMFC modeling is advanced. The structure, algorithm, training and simulation of PEMFC modeling based on improved BP networks are given out in detail. The computer simulation and conducted experiment verify that this model is fast and accurate, and can be used as a suitable operational model for PEMFC real-time control.展开更多
An artificial neural network (ANN) model is established to predict plastic flow behaviors of the 603 armor steel, based on experiments over wide ranges of strain rates (0. 001 -4 500 s -1 ) and temperatures (288 ...An artificial neural network (ANN) model is established to predict plastic flow behaviors of the 603 armor steel, based on experiments over wide ranges of strain rates (0. 001 -4 500 s -1 ) and temperatures (288 -873 K). The descriptive and predictive capabilities of the ANN model are com- pared with several phenomenological and physically based constitutive models. The ANN model has a much better applicability than the other models in characterization of the flow stress. The tempera- ture and the strain rate effects on the flow stress can be described successfully by the ANN model, with an average error of 1.78% for both quasi-static and dynamic loading conditions. Besides its high accuracy in prediction of the strain rate jump tests, the ANN model is more convenient in model es- tablishment and data processing. The ANN model developed in this study may serve as a valid and ef- fective tool to predict plastic behaviors of the 603 steel under complex loading conditions.展开更多
Sonic log is the most versatile reservoir evaluation tool that has been introduced to the industry. Compaction,erosion and over pressurized zone can be evaluated by sonic log.Also primary porosity can be determined fr...Sonic log is the most versatile reservoir evaluation tool that has been introduced to the industry. Compaction,erosion and over pressurized zone can be evaluated by sonic log.Also primary porosity can be determined from compressional sonic wave transit time and secondary porosity will be calculated by comparing sonic derived porosity log with neutron and density based porosity log.On the other hand all of the rock mechanical properties can be evaluated using simultaneous use of compressional and shear sonic wave transit time.It is essential to have展开更多
The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system...The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption.展开更多
The constitutive models of shape memory alloys(SMAs)play an important role in facilitating the widespread application of such types of alloys in various engineering fields.However,to accurately describe the deformatio...The constitutive models of shape memory alloys(SMAs)play an important role in facilitating the widespread application of such types of alloys in various engineering fields.However,to accurately describe the deformation behaviors of SMAs,the concepts in classical plasticity are employed in the existing constitutive models,and a series of complex mathematical equations are involved.Such complexity brings inconvenience for the construction,implementation,and application of the constitutive models.To overcome these shortcomings,a data-driven constitutive model of SMAs is developed in this work based on the artificial neural network(ANN).In the proposed model,the components of the strain tensor in principal space,ambient temperature,and the maximum equivalent strain in the deformation history from the initial state to the current loading state are chosen as the input features,and the components of the stress tensor in principal space are set as the output.The proposed ANN-based constitutive model is implemented into the finite element program ABAQUS by deriving its consistent tangent modulus and writing a user-defined material subroutine.The stress-strain responses of SMA material under various loading paths and at different ambient temperatures are used to train the ANN model,which is generated from the existing constitutive model(numerical experiments).To validate the capability of the proposed model,the predicted stress-strain responses of SMA material,and the global and local responses of two typical SMA structures are compared with the corresponding numerical experiments.This work demonstrates a good potential to obtain the constitutive model of SMAs by pure data and avoid the need for vast stores of knowledge for the construction of constitutive models.展开更多
The pneumatic artificial muscles are widely used in the fields of medicalrobots, etc. Neural networks are applied to modeling and controlling of artificial muscle system. Asingle-joint artificial muscle test system is...The pneumatic artificial muscles are widely used in the fields of medicalrobots, etc. Neural networks are applied to modeling and controlling of artificial muscle system. Asingle-joint artificial muscle test system is designed. The recursive prediction error (RPE)algorithm which yields faster convergence than back propagation (BP) algorithm is applied to trainthe neural networks. The realization of RPE algorithm is given. The difference of modeling ofartificial muscles using neural networks with different input nodes and different hidden layer nodesis discussed. On this basis the nonlinear control scheme using neural networks for artificialmuscle system has been introduced. The experimental results show that the nonlinear control schemeyields faster response and higher control accuracy than the traditional linear control scheme.展开更多
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa...This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.展开更多
Rate of penetration of a Tunnel Boring Machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project.This paper presents the results of a study into the appli...Rate of penetration of a Tunnel Boring Machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project.This paper presents the results of a study into the application of an Artificial Neural Network(ANN) technique for modeling the penetration rate of tunnel boring machines.A database,including actual,measured TBM penetration rates,uniaxial compressive strengths of the rock,the distance between planes of weakness in the rock mass and rock quality designation was established.Data collected from three different TBM projects(the Queens Water Tunnel,USA,the Karaj-Tehran water transfer tunnel,Iran,and the Gilgel Gibe II hydroelectric project,Ethiopia).A five-layer ANN was found to be optimum,with an architecture of three neurons in the input layer,9,7 and 3 neurons in the first,second and third hidden layers,respectively,and one neuron in the output layer.The correlation coefficient determined for penetration rate predicted by the ANN was 0.94.展开更多
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic...Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.展开更多
In recent times, membranes have found wide applications in gas separation processes. As most of the industrial membrane separation units use hollow fiber modules, having a proper model for simulating this type of memb...In recent times, membranes have found wide applications in gas separation processes. As most of the industrial membrane separation units use hollow fiber modules, having a proper model for simulating this type of membrane module is very useful in achieving guidelines for design and characterization of membrane separation units. In this study, a model based on Coker, Freeman, and Fleming's study was used for estimating the required membrane area. This model could simulate a multicomponent gas mixture separation by solving the governing differential mass balance equations with numerical methods. Results of the model were validated using some binary and multicomponent experimental data from the literature. Also, the artificial neural network (ANN) technique was applied to predict membrane gas separation behavior and the results of the ANN simulation were compared with the simulation results of the model and the experimental data. Good consistency between these results shows that ANN method can be successfully used for prediction of the separation behavior after suitable training of the network展开更多
Due to high cost of fixing failures, safety concerns, and legal liabilities, organizations need to produce software that is highly reliable. Software reliability growth models have been developed by software developer...Due to high cost of fixing failures, safety concerns, and legal liabilities, organizations need to produce software that is highly reliable. Software reliability growth models have been developed by software developers in tracking and measuring the growth of reliability. Most of the Software Reliability Growth Models, which have been proposed, treat the event of software fault detection in the testing and operational phase as a counting process. Moreover, if the size of software system is large, the number of software faults detected during the testing phase becomes large, and the change of the number of faults which are detected and removed through debugging activities becomes sufficiently small compared with the initial fault content at the beginning of the testing phase. Therefore in such a situation, we can model the software fault detection process as a stochastic process with a continuous state space. Recently, Artificial Neural Networks (ANN) have been applied in software reliability growth prediction. In this paper, we propose an ANN based software reliability growth model based on Ito type of stochastic differential equation. The model has been validated, evaluated and compared with other existing NHPP model by applying it on actual failure/fault removal data sets cited from real software development projects. The proposed model integrated with the concept of stochastic differential equation performs comparatively better than the existing NHPP based model.展开更多
文摘The developments of modern mathematics and computer science make artificial neural networks become most useful tools in wide range of fields. Modeling methods of artificial neural networks are described in this paper. The programming technique by using Matlab neural networks toolbox is discussed. The application in Material Hot Working of neural networks is also introduced.
基金Funded by the Natural Science Foundation of China(No.59778021)
文摘An effective approach for describing complicated water quality processes is very important for river water quality management.We built two artificial neural network(ANN)models,a feed-forward back-propagation(BP)model and a radial basis function(RBF)model,to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of Chongqing,P.R.China.Our models used the historical monitoring data of biological oxygen demand,dissolved oxygen,ammonia,oil and volatile phenolic compounds.Comparison with the one-dimensional traditional water quality model suggest that both BP and RBF models are superior;their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water quality agrees better with measurement.It is demonstrated that ANN modeling can be a tool for estimating the water quality of the Yangtze River.Of the two ANN models,the RBF model calculates with a smaller mean error,but a larger root mean square error.More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality models.
基金the management of Sierra Rutile Company for providing the drillhole dataset used in this studythe Japanese Ministry of Education Science and Technology (MEXT) Scholarship for academic funding
文摘In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.
文摘Artificial neural networks have been studied for applicability for modeling of spot welding process. Some basic concepts relating to neural networks are explained as well as how they can be used to model welding qualitv parameters in terms of the welding process parameter. The performance of the neural networks for modeling is presented and evaluated using actual welding data. It is concluded that neural network modeling is a good means of estimating spot welding quality on-line.
文摘Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for the estimation of hydraulic data. In this study, they were used as alternative tools to estimate the characteristics of hydraulic jumps, such as the free surface location and energy dissipation. The dimensionless hydraulic parameters, including jump depth, jump length, and energy dissipation, were determined as functions of the Froude number and the height and length of corrugations. The estimations of the ANN and GP models were found to be in good agreement with the measured data. The results of the ANN model were compared with those of the GP model, showing that the proposed ANN models are much more accurate than the GP models.
文摘Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To exploit the benefits presented by the laser hardening process, it is necessary to develop an integrated strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive modelling approach for predicting the hardened surface physical and geometrical attributes. The laser surface transformation hardening of cylindrical AISI 4340 steel workpieces is modeled using the conventional regression equation method as well as artificial neural network method. The process parameters included in the study are laser power, beam scanning speed, and the workpiece rotational speed. The upper and the lower limits for each parameter are chosen considering the start of the transformation hardening and the maximum hardened zone without surface melting. The resulting models are able to predict the depths representing the maximum hardness zone, the hardness drop zone, and the overheated zone without martensite transformation. Because of its ability to model highly nonlinear problems, the ANN based model presents the best modelling results and can predict the hardness profile with good accuracy.
文摘Water resources management is nowadays a significant stake for the world. However, missing or bad quality of the hydro-climatic historical data available of the studied area makes sometimes hydrological studies difficult. Generally, conceptual rain-flow models are designed to bring an appropriate answer with the correction of gaps and prediction of the flows. Historical hydro-climatic data of the Ity station, located on Cavally River, contain gaps which must be bridged. This study aims to establish a rainfall-runoff model through artificial neural networks for filling the gaps into the flow data series of the hydrometric station of Ity on the watershed of Cavally River. A multi-layer perceptron of feed forwards with two entries (monthly average rain and evapotranspiration) and an exit (flows) was established with flow evapotranspiration data. Comparison of the criteria of performance of the various architectures of the neural network model showed that architecture 2-3-1 gives best results. This architecture provides Nash coefficients of 75.79% and correlation linear coefficient of 95.64% for the calibration and Nash coefficients of 73.32% and correlation linear coefficient of 98.33% for the validation. The correlations between simulated flows and observed flows are strong. The correlation coefficients are 83.89% and 83.08% respectively for the calibration and validation.
基金supported by the National Natural Science Foundation of China under Grant No. 40774087
文摘An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propagation (BP) algorithm. Latitude, longitude, and height are chosen as the input vectors of the network while temperature is the output vector. The temperature observations during the period from 13 January through 16 March 2007, which are in the same satellite yaw, are taken as samples to train an ANN. Results suggest that the network has high quality for modeling spatial variations of temperature. Quantitative comparisons between the ANN outputs and those from the popular empirical NRLMSISE-00 model illustrate their generally consistent features and some specific differences. The NRLMSISE-00 model's zonal mean temperatures are too high by ~6 K-10 K near the stratopause, and the amplitude and phase of the planetary wave number 1 activity are different in some respects from the ANN simulations above 45-50 km, suggesting improvement is needed in the NRLMSISE-00 model for more accurate simulation near and above the stratopause.
文摘The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid percentage, P50 of particle, NaCN content in cyanide media, temperature of solution and pH value were used. For selecting the best model, the outputs of models were compared with measured data. A fourth-layer ANN is found to be optimum with architecture of twenty, fifteen, ten and five neurons in the first, second, third and fourth hidden layers, respectively, and one neuron in output layer. The results of artificial neural network show that the square correlation coefficients (R2) of training, testing and validating data achieve 0.999 1, 0.996 4 and 0.9981, respectively. Sensitivity analysis shows that the highest and lowest effects on the gold dissolution rise from time and pH, respectively It is verified that the predicted values of ANN coincide well with the experimental results.
文摘To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are analyzed, and artificial neural networks based PEMFC modeling is advanced. The structure, algorithm, training and simulation of PEMFC modeling based on improved BP networks are given out in detail. The computer simulation and conducted experiment verify that this model is fast and accurate, and can be used as a suitable operational model for PEMFC real-time control.
文摘An artificial neural network (ANN) model is established to predict plastic flow behaviors of the 603 armor steel, based on experiments over wide ranges of strain rates (0. 001 -4 500 s -1 ) and temperatures (288 -873 K). The descriptive and predictive capabilities of the ANN model are com- pared with several phenomenological and physically based constitutive models. The ANN model has a much better applicability than the other models in characterization of the flow stress. The tempera- ture and the strain rate effects on the flow stress can be described successfully by the ANN model, with an average error of 1.78% for both quasi-static and dynamic loading conditions. Besides its high accuracy in prediction of the strain rate jump tests, the ANN model is more convenient in model es- tablishment and data processing. The ANN model developed in this study may serve as a valid and ef- fective tool to predict plastic behaviors of the 603 steel under complex loading conditions.
文摘Sonic log is the most versatile reservoir evaluation tool that has been introduced to the industry. Compaction,erosion and over pressurized zone can be evaluated by sonic log.Also primary porosity can be determined from compressional sonic wave transit time and secondary porosity will be calculated by comparing sonic derived porosity log with neutron and density based porosity log.On the other hand all of the rock mechanical properties can be evaluated using simultaneous use of compressional and shear sonic wave transit time.It is essential to have
文摘The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.12322203).
文摘The constitutive models of shape memory alloys(SMAs)play an important role in facilitating the widespread application of such types of alloys in various engineering fields.However,to accurately describe the deformation behaviors of SMAs,the concepts in classical plasticity are employed in the existing constitutive models,and a series of complex mathematical equations are involved.Such complexity brings inconvenience for the construction,implementation,and application of the constitutive models.To overcome these shortcomings,a data-driven constitutive model of SMAs is developed in this work based on the artificial neural network(ANN).In the proposed model,the components of the strain tensor in principal space,ambient temperature,and the maximum equivalent strain in the deformation history from the initial state to the current loading state are chosen as the input features,and the components of the stress tensor in principal space are set as the output.The proposed ANN-based constitutive model is implemented into the finite element program ABAQUS by deriving its consistent tangent modulus and writing a user-defined material subroutine.The stress-strain responses of SMA material under various loading paths and at different ambient temperatures are used to train the ANN model,which is generated from the existing constitutive model(numerical experiments).To validate the capability of the proposed model,the predicted stress-strain responses of SMA material,and the global and local responses of two typical SMA structures are compared with the corresponding numerical experiments.This work demonstrates a good potential to obtain the constitutive model of SMAs by pure data and avoid the need for vast stores of knowledge for the construction of constitutive models.
基金This project is supported by Foundation of Public Laboratory on Robotics of Chinese Academy of Sciences.
文摘The pneumatic artificial muscles are widely used in the fields of medicalrobots, etc. Neural networks are applied to modeling and controlling of artificial muscle system. Asingle-joint artificial muscle test system is designed. The recursive prediction error (RPE)algorithm which yields faster convergence than back propagation (BP) algorithm is applied to trainthe neural networks. The realization of RPE algorithm is given. The difference of modeling ofartificial muscles using neural networks with different input nodes and different hidden layer nodesis discussed. On this basis the nonlinear control scheme using neural networks for artificialmuscle system has been introduced. The experimental results show that the nonlinear control schemeyields faster response and higher control accuracy than the traditional linear control scheme.
基金This paper is supported by the Nature Science Foundation of Heilongjiang Province.
文摘This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.
文摘Rate of penetration of a Tunnel Boring Machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project.This paper presents the results of a study into the application of an Artificial Neural Network(ANN) technique for modeling the penetration rate of tunnel boring machines.A database,including actual,measured TBM penetration rates,uniaxial compressive strengths of the rock,the distance between planes of weakness in the rock mass and rock quality designation was established.Data collected from three different TBM projects(the Queens Water Tunnel,USA,the Karaj-Tehran water transfer tunnel,Iran,and the Gilgel Gibe II hydroelectric project,Ethiopia).A five-layer ANN was found to be optimum,with an architecture of three neurons in the input layer,9,7 and 3 neurons in the first,second and third hidden layers,respectively,and one neuron in the output layer.The correlation coefficient determined for penetration rate predicted by the ANN was 0.94.
基金Funding from The Scientific and Technological Research Council of Turkey(Project No:2130026)is gratefully acknowledged
文摘Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.
文摘In recent times, membranes have found wide applications in gas separation processes. As most of the industrial membrane separation units use hollow fiber modules, having a proper model for simulating this type of membrane module is very useful in achieving guidelines for design and characterization of membrane separation units. In this study, a model based on Coker, Freeman, and Fleming's study was used for estimating the required membrane area. This model could simulate a multicomponent gas mixture separation by solving the governing differential mass balance equations with numerical methods. Results of the model were validated using some binary and multicomponent experimental data from the literature. Also, the artificial neural network (ANN) technique was applied to predict membrane gas separation behavior and the results of the ANN simulation were compared with the simulation results of the model and the experimental data. Good consistency between these results shows that ANN method can be successfully used for prediction of the separation behavior after suitable training of the network
文摘Due to high cost of fixing failures, safety concerns, and legal liabilities, organizations need to produce software that is highly reliable. Software reliability growth models have been developed by software developers in tracking and measuring the growth of reliability. Most of the Software Reliability Growth Models, which have been proposed, treat the event of software fault detection in the testing and operational phase as a counting process. Moreover, if the size of software system is large, the number of software faults detected during the testing phase becomes large, and the change of the number of faults which are detected and removed through debugging activities becomes sufficiently small compared with the initial fault content at the beginning of the testing phase. Therefore in such a situation, we can model the software fault detection process as a stochastic process with a continuous state space. Recently, Artificial Neural Networks (ANN) have been applied in software reliability growth prediction. In this paper, we propose an ANN based software reliability growth model based on Ito type of stochastic differential equation. The model has been validated, evaluated and compared with other existing NHPP model by applying it on actual failure/fault removal data sets cited from real software development projects. The proposed model integrated with the concept of stochastic differential equation performs comparatively better than the existing NHPP based model.