期刊文献+
共找到2,248篇文章
< 1 2 113 >
每页显示 20 50 100
ARTIFICIAL NEURAL NETWORKS-MODELING, PROGRAMMING AND APPLICATION IN MATERIAL HOT WORKING 被引量:4
1
作者 H. T. Li Y. Deng and J. T. Niu (Analysis and Measurement Center, Harbin Institute of Technology, Harbin 150001, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期825-831,共7页
The developments of modern mathematics and computer science make artificial neural networks become most useful tools in wide range of fields. Modeling methods of artificial neural networks are described in this paper... The developments of modern mathematics and computer science make artificial neural networks become most useful tools in wide range of fields. Modeling methods of artificial neural networks are described in this paper. The programming technique by using Matlab neural networks toolbox is discussed. The application in Material Hot Working of neural networks is also introduced. 展开更多
关键词 artificial neural network modeling programming
在线阅读 下载PDF
Artificial neural network modeling of water quality of the Yangtze River system:a case study in reaches crossing the city of Chongqing 被引量:11
2
作者 郭劲松 李哲 《Journal of Chongqing University》 CAS 2009年第1期1-9,共9页
An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) mod... An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) model and a radial basis function(RBF) model,to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of Chongqing,P. R. China. Our models used the historical monitoring data of biological oxygen demand,dissolved oxygen,ammonia,oil and volatile phenolic compounds. Comparison with the one-dimensional traditional water quality model suggest that both BP and RBF models are superior; their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water quality agrees better with measurement. It is demonstrated that ANN modeling can be a tool for estimating the water quality of the Yangtze River. Of the two ANN models,the RBF model calculates with a smaller mean error,but a larger root mean square error. More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality models. 展开更多
关键词 water quality modeling Yangtze River artificial neural network back-propagation model radial basis functionmodel
在线阅读 下载PDF
Integrating artificial neural networks and geostatistics for optimum 3D geological block modeling in mineral reserve estimation:A case study 被引量:4
3
作者 Jalloh Abu Bakarr Kyuro Sasaki +1 位作者 Jalloh Yaguba Barrie Abubakarr Karim 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期581-585,共5页
In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integr... In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design. 展开更多
关键词 artificial neural network Model with Geostatistics(ANNMG) 3D geological block modeling Mine design KRIGING
在线阅读 下载PDF
Artificial neural networks applied to spot welding process modeling
4
作者 张忠典 李严 +2 位作者 何幸平 吴林 徐清 《China Welding》 EI CAS 1997年第1期44-51,共8页
Artificial neural networks have been studied for applicability for modeling of spot welding process. Some basic concepts relating to neural networks are explained as well as how they can be used to model welding quali... Artificial neural networks have been studied for applicability for modeling of spot welding process. Some basic concepts relating to neural networks are explained as well as how they can be used to model welding qualitv parameters in terms of the welding process parameter. The performance of the neural networks for modeling is presented and evaluated using actual welding data. It is concluded that neural network modeling is a good means of estimating spot welding quality on-line. 展开更多
关键词 artificial neural network spot welding process modeling
在线阅读 下载PDF
Estimation of hydraulic jump on corrugated bed using artificial neural networks and genetic programming
5
作者 Akram ABBASPOUR Davood FARSADIZADEH Mohammad Ali GHORBANI 《Water Science and Engineering》 EI CAS CSCD 2013年第2期189-198,共10页
Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for the estimation of hydraulic data. In this study, they were used as alternative tools to estimate the characteristics of hy... Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for the estimation of hydraulic data. In this study, they were used as alternative tools to estimate the characteristics of hydraulic jumps, such as the free surface location and energy dissipation. The dimensionless hydraulic parameters, including jump depth, jump length, and energy dissipation, were determined as functions of the Froude number and the height and length of corrugations. The estimations of the ANN and GP models were found to be in good agreement with the measured data. The results of the ANN model were compared with those of the GP model, showing that the proposed ANN models are much more accurate than the GP models. 展开更多
关键词 artificial neural networks genetic programming corrugated bed Froude number hydraulic jump
在线阅读 下载PDF
A Predictive Modeling Based on Regression and Artificial Neural Network Analysis of Laser Transformation Hardening for Cylindrical Steel Workpieces
6
作者 Ahmed Ghazi Jerniti Abderazzak El Ouafi Noureddine Barka 《Journal of Surface Engineered Materials and Advanced Technology》 2016年第4期149-163,共15页
Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on... Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To exploit the benefits presented by the laser hardening process, it is necessary to develop an integrated strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive modelling approach for predicting the hardened surface physical and geometrical attributes. The laser surface transformation hardening of cylindrical AISI 4340 steel workpieces is modeled using the conventional regression equation method as well as artificial neural network method. The process parameters included in the study are laser power, beam scanning speed, and the workpiece rotational speed. The upper and the lower limits for each parameter are chosen considering the start of the transformation hardening and the maximum hardened zone without surface melting. The resulting models are able to predict the depths representing the maximum hardness zone, the hardness drop zone, and the overheated zone without martensite transformation. Because of its ability to model highly nonlinear problems, the ANN based model presents the best modelling results and can predict the hardness profile with good accuracy. 展开更多
关键词 Heat Treatment Laser Surface Hardening Hardness Predictive modeling Regression Analysis artificial neural network Cylindrical Steel Workpieces AISI 4340 Steel Nd:Yag Laser System
在线阅读 下载PDF
Rain-Flow Modeling Using a Multi-Layer Artificial Neural Network on the Watershed of the Cavally River(Cote d’Ivoire)
7
作者 Brou Loukou Alexis Kouassi Kouakou Lazare +3 位作者 Konan Kouakou Seraphin Kouadio Zile Alex Konan Koffi Felix Kamagate Bamory 《Journal of Water Resource and Protection》 2017年第12期1403-1413,共11页
Water resources management is nowadays a significant stake for the world. However, missing or bad quality of the hydro-climatic historical data available of the studied area makes sometimes hydrological studies diffic... Water resources management is nowadays a significant stake for the world. However, missing or bad quality of the hydro-climatic historical data available of the studied area makes sometimes hydrological studies difficult. Generally, conceptual rain-flow models are designed to bring an appropriate answer with the correction of gaps and prediction of the flows. Historical hydro-climatic data of the Ity station, located on Cavally River, contain gaps which must be bridged. This study aims to establish a rainfall-runoff model through artificial neural networks for filling the gaps into the flow data series of the hydrometric station of Ity on the watershed of Cavally River. A multi-layer perceptron of feed forwards with two entries (monthly average rain and evapotranspiration) and an exit (flows) was established with flow evapotranspiration data. Comparison of the criteria of performance of the various architectures of the neural network model showed that architecture 2-3-1 gives best results. This architecture provides Nash coefficients of 75.79% and correlation linear coefficient of 95.64% for the calibration and Nash coefficients of 73.32% and correlation linear coefficient of 98.33% for the validation. The correlations between simulated flows and observed flows are strong. The correlation coefficients are 83.89% and 83.08% respectively for the calibration and validation. 展开更多
关键词 Rain-Flow modeling artificial neural network Cavally River Cote d’Ivoire
暂未订购
Applying Artificial Neural Networks to Modeling the Middle Atmosphere 被引量:2
8
作者 肖存英 胡雄 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第4期883-890,共8页
An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propag... An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propagation (BP) algorithm. Latitude, longitude, and height are chosen as the input vectors of the network while temperature is the output vector. The temperature observations during the period from 13 January through 16 March 2007, which are in the same satellite yaw, are taken as samples to train an ANN. Results suggest that the network has high quality for modeling spatial variations of temperature. Quantitative comparisons between the ANN outputs and those from the popular empirical NRLMSISE-00 model illustrate their generally consistent features and some specific differences. The NRLMSISE-00 model's zonal mean temperatures are too high by ~6 K-10 K near the stratopause, and the amplitude and phase of the planetary wave number 1 activity are different in some respects from the ANN simulations above 45-50 km, suggesting improvement is needed in the NRLMSISE-00 model for more accurate simulation near and above the stratopause. 展开更多
关键词 artificial neural network middle atmosphere modeling back-propagation algorithm NRLMSISE- 00 model
在线阅读 下载PDF
Artificial neural network modeling of gold dissolution in cyanide media 被引量:3
9
作者 S.Khoshjavan M.Mazloumi B.Rezai 《Journal of Central South University》 SCIE EI CAS 2011年第6期1976-1984,共9页
The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid ... The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid percentage, P50 of particle, NaCN content in cyanide media, temperature of solution and pH value were used. For selecting the best model, the outputs of models were compared with measured data. A fourth-layer ANN is found to be optimum with architecture of twenty, fifteen, ten and five neurons in the first, second, third and fourth hidden layers, respectively, and one neuron in output layer. The results of artificial neural network show that the square correlation coefficients (R2) of training, testing and validating data achieve 0.999 1, 0.996 4 and 0.9981, respectively. Sensitivity analysis shows that the highest and lowest effects on the gold dissolution rise from time and pH, respectively It is verified that the predicted values of ANN coincide well with the experimental results. 展开更多
关键词 artificial neural network GOLD CYANIDATION modeling sensitivity analysis
在线阅读 下载PDF
Proton exchange membrane fuel cells modeling based on artificial neural networks 被引量:4
10
作者 YudongTian XinjianZhu GuangyiCao 《Journal of University of Science and Technology Beijing》 CSCD 2005年第1期72-77,共6页
To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are anal... To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are analyzed, and artificial neural networks based PEMFC modeling is advanced. The structure, algorithm, training and simulation of PEMFC modeling based on improved BP networks are given out in detail. The computer simulation and conducted experiment verify that this model is fast and accurate, and can be used as a suitable operational model for PEMFC real-time control. 展开更多
关键词 fuel cells proton exchange membrane artificial neural networks improved BP algorithm modeling
在线阅读 下载PDF
Artificial neural network modeling of mechanical properties of armor steel under complex loading conditions
11
作者 许泽建 黄风雷 《Journal of Beijing Institute of Technology》 EI CAS 2012年第2期157-163,共7页
An artificial neural network (ANN) model is established to predict plastic flow behaviors of the 603 armor steel, based on experiments over wide ranges of strain rates (0. 001 -4 500 s -1 ) and temperatures (288 ... An artificial neural network (ANN) model is established to predict plastic flow behaviors of the 603 armor steel, based on experiments over wide ranges of strain rates (0. 001 -4 500 s -1 ) and temperatures (288 -873 K). The descriptive and predictive capabilities of the ANN model are com- pared with several phenomenological and physically based constitutive models. The ANN model has a much better applicability than the other models in characterization of the flow stress. The tempera- ture and the strain rate effects on the flow stress can be described successfully by the ANN model, with an average error of 1.78% for both quasi-static and dynamic loading conditions. Besides its high accuracy in prediction of the strain rate jump tests, the ANN model is more convenient in model es- tablishment and data processing. The ANN model developed in this study may serve as a valid and ef- fective tool to predict plastic behaviors of the 603 steel under complex loading conditions. 展开更多
关键词 artificial neural network (ANN) armor steel high strain rate high temperature plas-tic behavior constitutive model
在线阅读 下载PDF
Artificial Neural Network Modeling Enhancing Shear Wave Transit Time Prediction
12
作者 Mohammad Nabaei Arash Shadravan Khalil Shahbazi 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期85-85,共1页
Sonic log is the most versatile reservoir evaluation tool that has been introduced to the industry. Compaction,erosion and over pressurized zone can be evaluated by sonic log.Also primary porosity can be determined fr... Sonic log is the most versatile reservoir evaluation tool that has been introduced to the industry. Compaction,erosion and over pressurized zone can be evaluated by sonic log.Also primary porosity can be determined from compressional sonic wave transit time and secondary porosity will be calculated by comparing sonic derived porosity log with neutron and density based porosity log.On the other hand all of the rock mechanical properties can be evaluated using simultaneous use of compressional and shear sonic wave transit time.It is essential to have 展开更多
关键词 sonic VELOCITY geomechnical modeling artificial neural networkS
在线阅读 下载PDF
An Intelligent Control Method Based on the Artificial Neural Network Model
13
作者 Liangkai Zhou Dan Han +1 位作者 Qinzhe Wang Nv Yang 《Journal of Electronic Research and Application》 2025年第5期299-303,共5页
The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system... The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption. 展开更多
关键词 artificial neural network MODEL Control method Optimization scheme
在线阅读 下载PDF
An artificial neural network-based data-driven constitutive model of shape memory alloys
14
作者 Xingyu Zhou Ziang Liu +1 位作者 Chao Yu Guozheng Kang 《Acta Mechanica Sinica》 2025年第8期108-125,共18页
The constitutive models of shape memory alloys(SMAs)play an important role in facilitating the widespread application of such types of alloys in various engineering fields.However,to accurately describe the deformatio... The constitutive models of shape memory alloys(SMAs)play an important role in facilitating the widespread application of such types of alloys in various engineering fields.However,to accurately describe the deformation behaviors of SMAs,the concepts in classical plasticity are employed in the existing constitutive models,and a series of complex mathematical equations are involved.Such complexity brings inconvenience for the construction,implementation,and application of the constitutive models.To overcome these shortcomings,a data-driven constitutive model of SMAs is developed in this work based on the artificial neural network(ANN).In the proposed model,the components of the strain tensor in principal space,ambient temperature,and the maximum equivalent strain in the deformation history from the initial state to the current loading state are chosen as the input features,and the components of the stress tensor in principal space are set as the output.The proposed ANN-based constitutive model is implemented into the finite element program ABAQUS by deriving its consistent tangent modulus and writing a user-defined material subroutine.The stress-strain responses of SMA material under various loading paths and at different ambient temperatures are used to train the ANN model,which is generated from the existing constitutive model(numerical experiments).To validate the capability of the proposed model,the predicted stress-strain responses of SMA material,and the global and local responses of two typical SMA structures are compared with the corresponding numerical experiments.This work demonstrates a good potential to obtain the constitutive model of SMAs by pure data and avoid the need for vast stores of knowledge for the construction of constitutive models. 展开更多
关键词 Shape memory alloys Constitutive model DATA-DRIVEN artificial neural network
原文传递
A sub-grid scale model for Burgers turbulence based on the artificial neural network method
15
作者 Xin Zhao Kaiyi Yin 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期162-165,共4页
The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis... The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence. 展开更多
关键词 artificial neural network Back propagation method Burgers turbulence Large eddy simulation Sub-grid scale model
在线阅读 下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
16
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
在线阅读 下载PDF
The Actuarial Data Intelligent Based Artificial Neural Network (ANN) Automobile Insurance Inflation Adjusted Frequency Severity Loss Reserving Model
17
作者 Brighton Mahohoho 《Open Journal of Statistics》 2024年第5期634-665,共32页
This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the ch... This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the challenges of accurately predicting insurance claim frequencies, severities, and overall loss reserves while accounting for inflation adjustments. Through comprehensive data analysis and model development, this research explores the effectiveness of ANN methodologies in capturing complex nonlinear relationships within insurance data. The study leverages a data set comprising automobile insurance policyholder information, claim history, and economic indicators to train and validate the ANN-based reserving model. Key aspects of the methodology include data preprocessing techniques such as one-hot encoding and scaling, followed by the construction of frequency, severity, and overall loss reserving models using ANN architectures. Moreover, the model incorporates inflation adjustment factors to ensure the accurate estimation of future loss reserves in real terms. Results from the study demonstrate the superior predictive performance of the ANN-based reserving model compared to traditional actuarial methods, with substantial improvements in accuracy and robustness. Furthermore, the model’s ability to adapt to changing market conditions and regulatory requirements, such as IFRS17, highlights its practical relevance in the insurance industry. The findings of this research contribute to the advancement of actuarial science and provide valuable insights for insurance companies seeking more accurate and efficient loss reserving techniques. The proposed ANN-based approach offers a promising avenue for enhancing risk management practices and optimizing financial decision-making processes in the automobile insurance sector. 展开更多
关键词 artificial neural network Actuarial Loss Reserving Machine Learning Intelligent Model
在线阅读 下载PDF
Developing a Hybrid Wavelet-Artificial Neural Network model for simulating high-resolution Antarctic ice core CO_(2)concentration records during 9–120 thousand years ago
18
作者 Nasrin Salehnia Jinho Ahn 《Episodes》 2024年第3期497-510,共14页
The most reliable archive of atmospheric CO_(2) information comprises ice core records spanning the last 800 ka(thousand years ago).The connection between temperature and greenhouse gases,as deduced from ice core reco... The most reliable archive of atmospheric CO_(2) information comprises ice core records spanning the last 800 ka(thousand years ago).The connection between temperature and greenhouse gases,as deduced from ice core records,may help better simulate CO_(2) variations.This research aimed to explore the model methods to precisely predict the atmospheric CO_(2) concentrations and fill the CO_(2) data gaps with CH4 concentration and temperature proxies(δD andδ18O)from Antarctica ice cores,employing Artificial Neural Network(ANN)and Wavelet Transform(WT)techniques.This study was divided into three sections to examine various timescales and resolutions.First,coarse-resolution CO_(2) records from the Vostok and EPICA Dronning Maud Land cores from 70–120 ka were used.Second,the models were applied to the Dome Fuji core for 9–120 ka.Finally,a high-resolution West Antarctic Ice Sheet(WAIS)Divide ice core record,focusing on the 9–70 ka,was employed.The results showed that between 70–120 ka,the hybrid method surpasses the traditional ANN approach.The hybrid method maintained superior performance in the last phase by utilizing high-resolution WAIS record.The results indicated improved accuracy(r=0.98),reinforcing the notion that hybrid methods yield better outcomes than those relying solely on AI methods. 展开更多
关键词 greenhouse gasesas hybrid wavelet artificial neural network model methods artificial neural CO concentration Antarctic ice core ice core records ice coresemploying
在线阅读 下载PDF
Leveraging artificial neural networks for robust landslide susceptibility mapping:A geospatial modeling approach in the ecologically sensitive Nilgiri District,Tamil Nadu
19
作者 Aneesah Rahamana Abhishek Dondapati +1 位作者 Stutee Gupta Raveena Raj 《Geohazard Mechanics》 2024年第4期258-269,共12页
Landslides pose a significant threat to the lives and livelihoods of marginalised communities residing in rural areas and the delicate ecological balance of the environment.Implementing advanced technologies is crucia... Landslides pose a significant threat to the lives and livelihoods of marginalised communities residing in rural areas and the delicate ecological balance of the environment.Implementing advanced technologies is crucial for improving hazard risk assessment and enhancing preparedness measures in regions characterised by diverse topography and complex geological formations.Geospatial applications and modelling techniques have emerged as indispensable in mitigating landslide risks,particularly in environmentally sensitive areas.This study presents a comprehensive approach to landslide susceptibility mapping in the Nilgiri District of Tamil Nadu,India,leveraging the power of Artificial Neural Networks(ANNs)and integrating multi-dimensional geospatial datasets.Integrating ANN-based modelling and geospatial techniques offers significant advantages in terms of statistical robustness,reproducibility,and the ability to analyze the complex interplay of factors influencing landslide hazards quantitatively.The methodology involves rigorous pre-processing and integrating spatial data,including landslide event occurrences as the dependent variable and ten independent parameters influencing landslide susceptibility.These parameters encompass elevation,slope aspect,slope degree,distance to roads,land use patterns,geomorphology,lithology,drainage density,lineament density,and rainfall distribution.Feature extraction and selection techniques are employed to effectively model the complex interactions between these factors and landslide occurrences.This process identifies the most relevant variables influencing landslide susceptibility,enhancing the model's predictive capabilities.The state-of-the-art ANNs are trained using historical landslide occurrence data and the selected influencing factors,enabling the development of a robust and accurate landslide susceptibility model.The performance of the developed model is rigorously evaluated using a comprehensive suite of metrics,including accuracy,precision,and the Area under the Receiver Operating Characteristic(ROC)curve.Preliminary results indicate that the ANN-based landslide susceptibility model outperforms traditional zonation methods,demonstrating higher accuracy and reliability in predicting landslideprone areas.The resulting Landslide Susceptibility Map(LSM)categorises the study area into five distinct hazard zones,ranging from very high(664.1 km^(2)),high(598.9 km^(2)),moderate(639.7 km^(2)),low(478.9 km^(2))and to very low(170.9 km^(2)).Notably,the eastern and central regions of the district emerge as particularly vulnerable to landslide occurrences.The study's findings have far-reaching implications for disaster risk reduction efforts,landuse planning,and sustainable development strategies in the ecologically sensitive Nilgiri District and beyond. 展开更多
关键词 Landslide susceptibility mapping artificial neural networks Geospatial modeling Feature importance analysis Risk management strategies
在线阅读 下载PDF
NONLINEAR MODELING AND CONTROLLING OF ARTIFICIAL MUSCLE SYSTEM USING NEURAL NETWORKS
20
作者 Tian Sheping Ding Guoqing +1 位作者 Yan Detian Lin Liangming Department of Information Measurement and Instrumentation,Shanghai Jiaotong University,Shanghai 200030, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期306-310,共5页
The pneumatic artificial muscles are widely used in the fields of medicalrobots, etc. Neural networks are applied to modeling and controlling of artificial muscle system. Asingle-joint artificial muscle test system is... The pneumatic artificial muscles are widely used in the fields of medicalrobots, etc. Neural networks are applied to modeling and controlling of artificial muscle system. Asingle-joint artificial muscle test system is designed. The recursive prediction error (RPE)algorithm which yields faster convergence than back propagation (BP) algorithm is applied to trainthe neural networks. The realization of RPE algorithm is given. The difference of modeling ofartificial muscles using neural networks with different input nodes and different hidden layer nodesis discussed. On this basis the nonlinear control scheme using neural networks for artificialmuscle system has been introduced. The experimental results show that the nonlinear control schemeyields faster response and higher control accuracy than the traditional linear control scheme. 展开更多
关键词 artificial muscle neural networks Recursive prediction error algorithm Nonlinear modeling and controlling
在线阅读 下载PDF
上一页 1 2 113 下一页 到第
使用帮助 返回顶部