Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distribu...Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distributed ranges of the superconductive transition temperature (Tc) for complex oxides, and Tc values for cuprate superconductors. The calculated results indicated that the adjusted ANN can be used to predict superconductive properties for unknown oxides.展开更多
Tsunami ran-up height is a significant parameter for dimensions of coastal structures. In the present study, tsunami run-up heights are estimated by three different Artificial Neural Network (ANN) models, i.e. Feed ...Tsunami ran-up height is a significant parameter for dimensions of coastal structures. In the present study, tsunami run-up heights are estimated by three different Artificial Neural Network (ANN) models, i.e. Feed Forward Back Propagation (FFBP), Radial Basis Functions (RBF) and Generalized Regression Neural Network (GRNN). As the input for the ANN configuration, the wave height (H) values are employed. It is shown that the tsunami ran-up height values are closely approximated with all of the applied ANN methods. The ANN estimations are slightly superior to those of the empirical equation. It can be seen that the ANN applications are especially significant in the absence of adequate number of laboratory experiments. The results also prove that the available experiment data set can be extended with ANN simulations. This may be helpful to decrease the burden of the experimental studies and to supply results for comparisons.展开更多
In this paper,an approach is developed to optimize the quality of the training samples in the conventional Artificial Neural Network(ANN)by incorporating expert knowledge in the means of constructing expert-rule sampl...In this paper,an approach is developed to optimize the quality of the training samples in the conventional Artificial Neural Network(ANN)by incorporating expert knowledge in the means of constructing expert-rule samples from rules in an expert system,and through training by using these samples,an ANN based on expert-knowledge is further developed.The method is introduced into the field of quantitative identification of potential seismic sources on the basis of the rules in an expert system.Then it is applied to the quantitative identification of the potential seismic sources in Beijing and its adjacent area.The result indicates that the expert rule based on ANN method can well incorporate and represent the expert knowledge in the rules in an expert system,and the quality of the samples and the efficiency of training and the accuracy of the result are optimized.展开更多
The simulation for particle or soliton propagation based on linear or nonlinear Schrodinger equations on unbounded domains requires the computational domain to be bounded,and therefore,a special boundary treatment suc...The simulation for particle or soliton propagation based on linear or nonlinear Schrodinger equations on unbounded domains requires the computational domain to be bounded,and therefore,a special boundary treatment such as an absorbing boundary condition(ABC)or a perfectly matched layer(PML)is needed so that the reflections of outgoing waves at the boundary can be minimized in order to prevent the destruction of the simulation.This article presents a new artificial neural network(ANN)method for solving linear and nonlinear Schrodinger equations on unbounded domains.In particular,this method randomly selects training points only from the bounded computational space-time domain,and the loss function involves only the initial condition and the Schrodinger equation itself in the computational domainwithout any boundary conditions.Moreover,unlike standard ANNmethods that calculate gradients using expensive automatic differentiation,this method uses accurate finitedifference approximations for the physical gradients in the Schrodinger equation.In addition,a Metropolis-Hastings algorithm is implemented for preferentially selecting regions of high loss in the computational domain allowing for the use of fewer training points in each batch.As such,the present training method uses fewer training points and less computation time for convergence of the loss function as compared with the standard ANN methods.This new ANN method is illustrated using three examples.展开更多
A new analytical method using Back-Propagation (BP) artificial neural network and kinetic spectrophotometry for simultaneous determination of iron and magnesium in tap water, the Yellow River water and seawater is est...A new analytical method using Back-Propagation (BP) artificial neural network and kinetic spectrophotometry for simultaneous determination of iron and magnesium in tap water, the Yellow River water and seawater is established. By conditional experiments, the optimum analytical conditions and parameters are obtained. Levenberg-Marquart (L-M) algorithm is used for calculation in BP neural network. The topological structure of three-layer BP ANN network architecture is chosen as 15-16-2 (nodes). The initial value of gradient coefficient μ is fixed at 0.001 and the increase factor and reduction factor of μ take the default values of the system. The data are processed by computers with our own programs written in MATLAB 7.0. The relative standard deviation of the calculated results for iron and manganese is 2.30% and 2.67% respectively. The results of standard addition method show that for the tap water, the recoveries of iron and manganese are in the ranges of 98.0%-104.3% and 96.5%-104.5%, and the RSD is in the range of 0.23%-0.98%; for the Yellow River water (Lijin district of Shandong Province), the recoveries of iron and manganese are in the ranges of 96.0%-101.0% and 98.7%-104.2%, and the RSD is in the range of 0.13%-2.52%; for the seawater in Qingdao offshore, the recoveries of iron and manganese are in the ranges of 95.3%-104.8% and 95.3%-104.7%, and the RSD is in the range of 0.14%-2.66%. It is found that 21 common cations and anions do not interfere with the determination of iron and manganese under the optimum experimental conditions. This method exhibits good reproducibility and high accuracy in the determination of iron and manganese and can be used for the simultaneous determination of iron and manganese in tap water and natural water. By using the established ANN- catalytic spectrophotometric method, the iron and manganese concentrations of the surface seawater at 11 sites in Qingdao offshore are determined and the level distribution maps of iron and manganese are drawn.展开更多
This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube s...This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube sampling technique is adopted to generate input datasets for establishing an ANN model;the random finite element method is then utilized to calculate the corresponding output datasets considering the spatial variability of soil properties;and finally,an ANN model is trained to construct the response surface of failure probability and obtain an approximate function that incorporates the relevant variables.The results of the illustrated example indicate that the proposed method provides credible and accurate estimations of failure probability.As a result,the obtained approximate function can be used as an alternative to the specific analysis process in c-φslope reliability analyses.展开更多
The energy systems of public institutions experience unsatisfactory actual operation and improper operation management, and the level of building energy consumption is increasing annually. Research on the application ...The energy systems of public institutions experience unsatisfactory actual operation and improper operation management, and the level of building energy consumption is increasing annually. Research on the application of key energy-saving technologies in public institutions is an effective method to improve building energy efficiency and reduce energy wastage. In this study, the aperformance of key energy-saving technologies in public institutions were considered as the research object. Combined with the characteristics of different energy-saving technologies and relevant national standards, the evaluation indices were selected from four aspects: comprehensive energy efficiency, economy, environment, and operation management. According to the results of expert investigations and measured data, the index weight was determined using the artificial neural network and expert scoring methods, and a complete evaluation system of indices was built. There were 4 first-level, 10 second-level, and 11 third-level evaluation indices in the evaluation system. The evaluation indices of each level with the largest weights were the comprehensive energy efficiency of the buildings (0.532), technical energy efficiency (0.331), and water pump power consumption to heat (cold) transmission ratio (0.167). The evaluation system for key energy-saving technologies in public institutions is useful for operation managers to identify the weak points of system operations and formulate timely optimisation schemes. This evaluation system can be used as a valuable reference for improving the energy-saving levels of public institutions.展开更多
文摘Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distributed ranges of the superconductive transition temperature (Tc) for complex oxides, and Tc values for cuprate superconductors. The calculated results indicated that the adjusted ANN can be used to predict superconductive properties for unknown oxides.
文摘Tsunami ran-up height is a significant parameter for dimensions of coastal structures. In the present study, tsunami run-up heights are estimated by three different Artificial Neural Network (ANN) models, i.e. Feed Forward Back Propagation (FFBP), Radial Basis Functions (RBF) and Generalized Regression Neural Network (GRNN). As the input for the ANN configuration, the wave height (H) values are employed. It is shown that the tsunami ran-up height values are closely approximated with all of the applied ANN methods. The ANN estimations are slightly superior to those of the empirical equation. It can be seen that the ANN applications are especially significant in the absence of adequate number of laboratory experiments. The results also prove that the available experiment data set can be extended with ANN simulations. This may be helpful to decrease the burden of the experimental studies and to supply results for comparisons.
文摘In this paper,an approach is developed to optimize the quality of the training samples in the conventional Artificial Neural Network(ANN)by incorporating expert knowledge in the means of constructing expert-rule samples from rules in an expert system,and through training by using these samples,an ANN based on expert-knowledge is further developed.The method is introduced into the field of quantitative identification of potential seismic sources on the basis of the rules in an expert system.Then it is applied to the quantitative identification of the potential seismic sources in Beijing and its adjacent area.The result indicates that the expert rule based on ANN method can well incorporate and represent the expert knowledge in the rules in an expert system,and the quality of the samples and the efficiency of training and the accuracy of the result are optimized.
文摘The simulation for particle or soliton propagation based on linear or nonlinear Schrodinger equations on unbounded domains requires the computational domain to be bounded,and therefore,a special boundary treatment such as an absorbing boundary condition(ABC)or a perfectly matched layer(PML)is needed so that the reflections of outgoing waves at the boundary can be minimized in order to prevent the destruction of the simulation.This article presents a new artificial neural network(ANN)method for solving linear and nonlinear Schrodinger equations on unbounded domains.In particular,this method randomly selects training points only from the bounded computational space-time domain,and the loss function involves only the initial condition and the Schrodinger equation itself in the computational domainwithout any boundary conditions.Moreover,unlike standard ANNmethods that calculate gradients using expensive automatic differentiation,this method uses accurate finitedifference approximations for the physical gradients in the Schrodinger equation.In addition,a Metropolis-Hastings algorithm is implemented for preferentially selecting regions of high loss in the computational domain allowing for the use of fewer training points in each batch.As such,the present training method uses fewer training points and less computation time for convergence of the loss function as compared with the standard ANN methods.This new ANN method is illustrated using three examples.
文摘A new analytical method using Back-Propagation (BP) artificial neural network and kinetic spectrophotometry for simultaneous determination of iron and magnesium in tap water, the Yellow River water and seawater is established. By conditional experiments, the optimum analytical conditions and parameters are obtained. Levenberg-Marquart (L-M) algorithm is used for calculation in BP neural network. The topological structure of three-layer BP ANN network architecture is chosen as 15-16-2 (nodes). The initial value of gradient coefficient μ is fixed at 0.001 and the increase factor and reduction factor of μ take the default values of the system. The data are processed by computers with our own programs written in MATLAB 7.0. The relative standard deviation of the calculated results for iron and manganese is 2.30% and 2.67% respectively. The results of standard addition method show that for the tap water, the recoveries of iron and manganese are in the ranges of 98.0%-104.3% and 96.5%-104.5%, and the RSD is in the range of 0.23%-0.98%; for the Yellow River water (Lijin district of Shandong Province), the recoveries of iron and manganese are in the ranges of 96.0%-101.0% and 98.7%-104.2%, and the RSD is in the range of 0.13%-2.52%; for the seawater in Qingdao offshore, the recoveries of iron and manganese are in the ranges of 95.3%-104.8% and 95.3%-104.7%, and the RSD is in the range of 0.14%-2.66%. It is found that 21 common cations and anions do not interfere with the determination of iron and manganese under the optimum experimental conditions. This method exhibits good reproducibility and high accuracy in the determination of iron and manganese and can be used for the simultaneous determination of iron and manganese in tap water and natural water. By using the established ANN- catalytic spectrophotometric method, the iron and manganese concentrations of the surface seawater at 11 sites in Qingdao offshore are determined and the level distribution maps of iron and manganese are drawn.
基金financially supported by the National Natural Science Foundation of China(Grant No.51278217)
文摘This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube sampling technique is adopted to generate input datasets for establishing an ANN model;the random finite element method is then utilized to calculate the corresponding output datasets considering the spatial variability of soil properties;and finally,an ANN model is trained to construct the response surface of failure probability and obtain an approximate function that incorporates the relevant variables.The results of the illustrated example indicate that the proposed method provides credible and accurate estimations of failure probability.As a result,the obtained approximate function can be used as an alternative to the specific analysis process in c-φslope reliability analyses.
基金support provided by the National Natural Science Foundation of China(project number 52108081)the Young and Middle-aged Scientific and Technological Talent Support Program Project of Shenyang City(project number RC210346)and the reviewer's advice and comments.
文摘The energy systems of public institutions experience unsatisfactory actual operation and improper operation management, and the level of building energy consumption is increasing annually. Research on the application of key energy-saving technologies in public institutions is an effective method to improve building energy efficiency and reduce energy wastage. In this study, the aperformance of key energy-saving technologies in public institutions were considered as the research object. Combined with the characteristics of different energy-saving technologies and relevant national standards, the evaluation indices were selected from four aspects: comprehensive energy efficiency, economy, environment, and operation management. According to the results of expert investigations and measured data, the index weight was determined using the artificial neural network and expert scoring methods, and a complete evaluation system of indices was built. There were 4 first-level, 10 second-level, and 11 third-level evaluation indices in the evaluation system. The evaluation indices of each level with the largest weights were the comprehensive energy efficiency of the buildings (0.532), technical energy efficiency (0.331), and water pump power consumption to heat (cold) transmission ratio (0.167). The evaluation system for key energy-saving technologies in public institutions is useful for operation managers to identify the weak points of system operations and formulate timely optimisation schemes. This evaluation system can be used as a valuable reference for improving the energy-saving levels of public institutions.