期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Artificial cognitive systems: the next generation of the digital twin. An opinion. [version 2;peer review: 2 approved]
1
作者 David Jones 《Digital Twin》 2021年第1期77-87,共11页
The digital twin is often presented as the solution to Industry 4.0 and,while there are many areas where this may be the case,there is a risk that a reliance on existing machine learning methods will not be able to de... The digital twin is often presented as the solution to Industry 4.0 and,while there are many areas where this may be the case,there is a risk that a reliance on existing machine learning methods will not be able to deliver the high level cognitive capabilities such as adaptability,cause and effect,and planning that Industry 4.0 requires.As the limitations of machine learning are beginning to be understood,the paradigm of strong artificial intelligence is emerging.The field of artificial cognitive systems is part of the strong artificial intelligence paradigm and is aimed at generating computational systems capable of mimicking biological systems in learning and interacting with the world.This paper presents an argument that artificial cognitive systems offer solutions to the higher level cognitive challenges of Industry 4.0 and that digital twin research should be driven in the direction of artificial cognition accordingly.This argument is based on the inherent similarities between the digital twin and artificial cognitive systems,and the insights that can already be seen in aligning the two approaches. 展开更多
关键词 Digital Twin artificial cognitive systems Industry 4.0
在线阅读 下载PDF
Artificial cognitive systems:the next generation of the digital twin.An opinion.
2
作者 David Jones 《Digital Twin》 2024年第1期83-93,共11页
The digital twin is often presented as the solution to Industry 4.0 and,while there are many areas where this may be the case,there is a risk that a reliance on existing machine learning methods will not be able to de... The digital twin is often presented as the solution to Industry 4.0 and,while there are many areas where this may be the case,there is a risk that a reliance on existing machine learning methods will not be able to deliver the high level cognitive capabilities such as adaptability,cause and effect,and planning that Industry 4.0 requires.As the limitations of machine learning are beginning to be understood,the paradigm of strong artificial intelligence is emerging.The field of artificial cognitive systems is part of the strong artificial intelligence paradigm and is aimed at generating computational systems capable of mimicking biological systems in learning and interacting with the world.This paper presents an argument that artificial cognitive systems offer solutions to the higher level cognitive challenges of Industry 4.0 and that digital twin research should be driven in the direction of artificial cognition accordingly.This argument is based on the inherent similarities between the digital twin and artificial cognitive systems,and the insights that can already be seen in aligning the two approaches. 展开更多
关键词 Digital Twin artificial cognitive systems Industry 4.0
在线阅读 下载PDF
C-HMAX: Artificial Cognitive Model Inspired by the Color Vision Mechanism of the Human Brain 被引量:1
3
作者 Bo Yang Lipu Zhou Zhidong Deng 《Tsinghua Science and Technology》 SCIE EI CAS 2013年第1期51-56,共6页
Artificial cognitive models and computational neuroscience methods have garnered great interest from both neurologist and leading analysts in recent years. Among the cognitive models, HMAX has been widely used in comp... Artificial cognitive models and computational neuroscience methods have garnered great interest from both neurologist and leading analysts in recent years. Among the cognitive models, HMAX has been widely used in computer vision systems for its robustness shape and texture features inspired by the ventral stream of the human brain. This work presents a Color-HMAX (C-HMAX) model based on the HMAX model which imitates the color vision mechanism of the human brain that the HMAX model does not include. C-HMAX is then applied to the German Traffic Sign Recognition Benchmark (GTSRB) which has 43 categories and 51 840 sample traffic signs with an accuracy of 98.41%, higher than most other models including linear discriminant analysis and multi-scale convoiutional neural network. 展开更多
关键词 artificial cognitive model machine learning traffic sign recognition
原文传递
Complex Problems Solution as a Service Based on Predictive Optimization and Tasks Orchestration in Smart Cities
4
作者 Shabir Ahmad Jehad Ali +2 位作者 Faisal Jamil Taeg Keun Whangbo DoHyeun Kim 《Computers, Materials & Continua》 SCIE EI 2021年第10期1271-1288,共18页
Smart cities have different contradicting goals having no apparent solution.The selection of the appropriate solution,which is considered the best compromise among the candidates,is known as complex problem-solving.Sm... Smart cities have different contradicting goals having no apparent solution.The selection of the appropriate solution,which is considered the best compromise among the candidates,is known as complex problem-solving.Smart city administrators face different problems of complex nature,such as optimal energy trading in microgrids and optimal comfort index in smart homes,to mention a few.This paper proposes a novel architecture to offer complex problem solutions as a service(CPSaaS)based on predictive model optimization and optimal task orchestration to offer solutions to different problems in a smart city.Predictive model optimization uses a machine learning module and optimization objective to compute the given problem’s solutions.The task orchestration module helps decompose the complex problem in small tasks and deploy them on real-world physical sensors and actuators.The proposed architecture is hierarchical and modular,making it robust against faults and easy to maintain.The proposed architecture’s evaluation results highlight its strengths in fault tolerance,accuracy,and processing speed. 展开更多
关键词 Internet of things complex problem solving task modeling embedded IoT systems predictive optimization artificial cognition task orchestration
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部