A boundary integral equation method is applied to the study of the interaction of plane elastic waves with a periodic array of collinear inplane cracks.Numerical results are presented for the dynamic stress in- tensit...A boundary integral equation method is applied to the study of the interaction of plane elastic waves with a periodic array of collinear inplane cracks.Numerical results are presented for the dynamic stress in- tensity factors.The effects of the wave type,wave frequency,wave incidence angle,and crack spacing on the dynamic stress intensity factors are analyzed in detail.展开更多
Orthotropic materials weakened by a doubly periodic array of cracks under far-field antiplane shear are investigated, where the fundamental cell contains four cracks of unequal size. By applying the mapping technique,...Orthotropic materials weakened by a doubly periodic array of cracks under far-field antiplane shear are investigated, where the fundamental cell contains four cracks of unequal size. By applying the mapping technique, the elliptical function theory and the theory of analytical function boundary value problems, a closed form solution of the whole-field stress is obtained. The exact formulae for the stress intensity factor at the crack tip and the effective antiplane shear modulus of the cracked orthotropic material are derived. A comparison with the finite element method shows the efficiency and accuracy of the present method. Several illustrative examples are provided, and an interesting phenomenon is observed, that is, the stress intensity factor and the dimensionless effective modulus are independent of the material property for a doubly periodic cracked isotropic material, but depend strongly on the material property for the doubly periodic cracked orthotropic material. Such a phenomenon for antiplane problems is similar to that for in-plane problems. The present solution can provide benchmark results for other numerical and approximate methods.展开更多
基金The project supported bythe Committee of Science and Technology of Shanghai and Tongji University
文摘A boundary integral equation method is applied to the study of the interaction of plane elastic waves with a periodic array of collinear inplane cracks.Numerical results are presented for the dynamic stress in- tensity factors.The effects of the wave type,wave frequency,wave incidence angle,and crack spacing on the dynamic stress intensity factors are analyzed in detail.
基金supported by the National Natural Science Foundation of China (No.10672008).
文摘Orthotropic materials weakened by a doubly periodic array of cracks under far-field antiplane shear are investigated, where the fundamental cell contains four cracks of unequal size. By applying the mapping technique, the elliptical function theory and the theory of analytical function boundary value problems, a closed form solution of the whole-field stress is obtained. The exact formulae for the stress intensity factor at the crack tip and the effective antiplane shear modulus of the cracked orthotropic material are derived. A comparison with the finite element method shows the efficiency and accuracy of the present method. Several illustrative examples are provided, and an interesting phenomenon is observed, that is, the stress intensity factor and the dimensionless effective modulus are independent of the material property for a doubly periodic cracked isotropic material, but depend strongly on the material property for the doubly periodic cracked orthotropic material. Such a phenomenon for antiplane problems is similar to that for in-plane problems. The present solution can provide benchmark results for other numerical and approximate methods.