This paper deals with blind identification and deconvolution algorithm for an arbitrary, possibly white or colored, stationary or nonstationary signal, which is observed through array sensors. By using multiple sensor...This paper deals with blind identification and deconvolution algorithm for an arbitrary, possibly white or colored, stationary or nonstationary signal, which is observed through array sensors. By using multiple sensors with their individual outputs sampled at a rate 1/T, one can obtain cyclostationary signals. They can be considered as a single-input multiple-output model with an identical but unknown input signal. With the array measurement, an algorithm for estimating the system transfer function model and its parameters is presented.展开更多
Photo Diode Array (PDA) has been successfully applied in HT-7 tokamak experiments. The PDA system is almost free of electromagnetic interference from the machine. The system is compact and inexpensive, and it is conve...Photo Diode Array (PDA) has been successfully applied in HT-7 tokamak experiments. The PDA system is almost free of electromagnetic interference from the machine. The system is compact and inexpensive, and it is convenient to be arranged in experiment. With the PDA system, the particle confinement time (τp) has been systematically investigated. The relations such as τp on the center-line-averaged electron density (ne), τp on plasma current (Ip), and τp, on the toroidal magnetic field (Bt) have been obtained. The particle confinement under the Ion Berstain Wave (IBW) Heating has also been measured and analyzed.展开更多
Accurate determination of rockhead is crucial for underground construction.Traditionally,borehole data are mainly used for this purpose.However,borehole drilling is costly,time-consuming,and sparsely distributed.Non-i...Accurate determination of rockhead is crucial for underground construction.Traditionally,borehole data are mainly used for this purpose.However,borehole drilling is costly,time-consuming,and sparsely distributed.Non-invasive geophysical methods,particularly those using passive seismic surface waves,have emerged as viable alternatives for geological profiling and rockhead detection.This study proposes three interpretation methods for rockhead determination using passive seismic surface wave data from Microtremor Array Measurement(MAM)and Horizontal-to-Vertical Spectral Ratio(HVSR)tests.These are:(1)the Wavelength-Normalized phase velocity(WN)method in which a nonlinear relationship between rockhead depth and wavelength is established;(2)the Statistically Determined-shear wave velocity(SD-V_(s))method in which the representative V_(s) value for rockhead is automatically determined using a statistical method;and(3)the empirical HVSR method in which the rockhead is determined by interpreting resonant frequencies using a reliably calibrated empirical equation.These methods were implemented to determine rockhead depths at 28 locations across two distinct geological formations in Singapore,and the results were evaluated using borehole data.The WN method can determine rockhead depths accurately and reliably with minimal absolute errors(average RMSE=3.11 m),demonstrating robust performance across both geological formations.Its advantage lies in interpreting dispersion curves alone,without the need for the inversion process.The SD-V_(s) method is practical in engineering practice owing to its simplicity.The empirical HVSR method reasonably determines rockhead depths with moderate accuracy,benefiting from a reliably calibrated empirical equation.展开更多
The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks i...The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks in the urban area of 8569.15 km^(2),predominantly consists of concealed karst areas where occasional ground collapse events occur,posing significant threats to underground engineering projects.To address these challenges,a comprehensive geological survey was conducted in Wuhan,focusing on major karstrelated issues.Geophysical methods offer advantages over drilling in detecting concealed karst areas due to their efficiency,non-destructiveness,and flexibility.This paper reviewed the karst geological characteristics in Wuhan and the geophysical exploration methods for karst,selected eight effective geophysical methods for field experimentation,evaluated their suitability,and proposed method combinations for different karst scenarios.The results show that different geophysical methods have varying applicability for karst detection in Wuhan,and combining multiple methods enhances detection effectiveness.The specific recommendations for method combinations provided in this study serve as a valuable reference for karst detection in Wuhan.展开更多
A large planar microphone array, which consists of 111 microphones, was successfully developed. The positions of 111 microphones in the array were determined by a random optimization procedure for the largest possible...A large planar microphone array, which consists of 111 microphones, was successfully developed. The positions of 111 microphones in the array were determined by a random optimization procedure for the largest possible amplification and dynamic range. The beam pattern of planar array was obtained by numerical calculation. This planar array was applied to measure a two-dimensional mapping of the sound sources on landing aircraft. It is shown that important airframe noise sources can be identified. The spectra and directivity of any interested noise source can also be obtained by this measurement.展开更多
文摘This paper deals with blind identification and deconvolution algorithm for an arbitrary, possibly white or colored, stationary or nonstationary signal, which is observed through array sensors. By using multiple sensors with their individual outputs sampled at a rate 1/T, one can obtain cyclostationary signals. They can be considered as a single-input multiple-output model with an identical but unknown input signal. With the array measurement, an algorithm for estimating the system transfer function model and its parameters is presented.
文摘Photo Diode Array (PDA) has been successfully applied in HT-7 tokamak experiments. The PDA system is almost free of electromagnetic interference from the machine. The system is compact and inexpensive, and it is convenient to be arranged in experiment. With the PDA system, the particle confinement time (τp) has been systematically investigated. The relations such as τp on the center-line-averaged electron density (ne), τp on plasma current (Ip), and τp, on the toroidal magnetic field (Bt) have been obtained. The particle confinement under the Ion Berstain Wave (IBW) Heating has also been measured and analyzed.
基金partially supported by the Singapore Ministry of National Development and the National Research Foundation,Prime Minister’s Office,Singapore,under the Land and Liveability National Innovation Challenge(L2 NIC)Research Program(Grant No.L2NICCFP2-2015-1)by the National Research Foundation(NRF)of Singapore,under the Virtual Singapore program(Grant No.NRF2019VSG-GMS-001).
文摘Accurate determination of rockhead is crucial for underground construction.Traditionally,borehole data are mainly used for this purpose.However,borehole drilling is costly,time-consuming,and sparsely distributed.Non-invasive geophysical methods,particularly those using passive seismic surface waves,have emerged as viable alternatives for geological profiling and rockhead detection.This study proposes three interpretation methods for rockhead determination using passive seismic surface wave data from Microtremor Array Measurement(MAM)and Horizontal-to-Vertical Spectral Ratio(HVSR)tests.These are:(1)the Wavelength-Normalized phase velocity(WN)method in which a nonlinear relationship between rockhead depth and wavelength is established;(2)the Statistically Determined-shear wave velocity(SD-V_(s))method in which the representative V_(s) value for rockhead is automatically determined using a statistical method;and(3)the empirical HVSR method in which the rockhead is determined by interpreting resonant frequencies using a reliably calibrated empirical equation.These methods were implemented to determine rockhead depths at 28 locations across two distinct geological formations in Singapore,and the results were evaluated using borehole data.The WN method can determine rockhead depths accurately and reliably with minimal absolute errors(average RMSE=3.11 m),demonstrating robust performance across both geological formations.Its advantage lies in interpreting dispersion curves alone,without the need for the inversion process.The SD-V_(s) method is practical in engineering practice owing to its simplicity.The empirical HVSR method reasonably determines rockhead depths with moderate accuracy,benefiting from a reliably calibrated empirical equation.
基金jointly supported by the project of Chinese National Natural Science Foundation(42107485)National Key R&D Program(2020YFC1512400,2018YFC800804)China Geological Survey(DD20190282,DD20221734,and DD20230323)。
文摘The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks in the urban area of 8569.15 km^(2),predominantly consists of concealed karst areas where occasional ground collapse events occur,posing significant threats to underground engineering projects.To address these challenges,a comprehensive geological survey was conducted in Wuhan,focusing on major karstrelated issues.Geophysical methods offer advantages over drilling in detecting concealed karst areas due to their efficiency,non-destructiveness,and flexibility.This paper reviewed the karst geological characteristics in Wuhan and the geophysical exploration methods for karst,selected eight effective geophysical methods for field experimentation,evaluated their suitability,and proposed method combinations for different karst scenarios.The results show that different geophysical methods have varying applicability for karst detection in Wuhan,and combining multiple methods enhances detection effectiveness.The specific recommendations for method combinations provided in this study serve as a valuable reference for karst detection in Wuhan.
基金the Bundesministerium fur Bildung und Forschung (BMBF) of Germany.
文摘A large planar microphone array, which consists of 111 microphones, was successfully developed. The positions of 111 microphones in the array were determined by a random optimization procedure for the largest possible amplification and dynamic range. The beam pattern of planar array was obtained by numerical calculation. This planar array was applied to measure a two-dimensional mapping of the sound sources on landing aircraft. It is shown that important airframe noise sources can be identified. The spectra and directivity of any interested noise source can also be obtained by this measurement.