This paper presents a hydrodynamic analysis of a hybrid system consisting of a floating platform coupled with an array of oscillating bodies that move along the weather sidewall of the platform.Using the Lagrange mult...This paper presents a hydrodynamic analysis of a hybrid system consisting of a floating platform coupled with an array of oscillating bodies that move along the weather sidewall of the platform.Using the Lagrange multiplier method,the motion equation governing this type of motion characteristic is formulated,and the formula of the extracted wave power is derived.The numerical results demonstrate a significant increase in the hydrodynamic efficiency of oscillating bodies within specific frequency ranges in the presence of the floating platform.The incorporation of proper power take-off damping of the oscillating bodies results in a reduction in the heave motion of the platform,but it may lead to an increase in pitch motion.The analysis of the response behaviour of the system shows that both the heave motion and pitch motion of the platform contribute to the power extraction and relative motion between the buoys and the platform.Parametric investigations are conducted to explore the hydrodynamic interactions between the floating platform and the buoy array.Additionally,the concept of“hydrodynamic synergy”is proposed to describe the synergetic effect of different components of a multi-purpose platform,which is of considerable engineering interest.展开更多
ZTE Corporation, a leading global provider of telecommunications equipment and network solutions, unveiled its 3G strategy to make life "easier, freer and trendier" for consumers by combining Telecom and IT ...ZTE Corporation, a leading global provider of telecommunications equipment and network solutions, unveiled its 3G strategy to make life "easier, freer and trendier" for consumers by combining Telecom and IT with 3G展开更多
Acoustic array sensor device for partial discharge detection is widely used in power equipment inspection with the advantages of non-contact and precise positioning compared with partial discharge detection methods su...Acoustic array sensor device for partial discharge detection is widely used in power equipment inspection with the advantages of non-contact and precise positioning compared with partial discharge detection methods such as ultrasonic method and pulse current method.However,due to the sensitivity of the acoustic array sensor and the influence of the equipment operation site interference,the acoustic array sensor device for partial discharge type diagnosis by phase resolved partial discharge(PRPD)map might occasionally presents incorrect results,thus affecting the power equipment operation and maintenance strategy.The acoustic array sensor detection device for power equipment developed in this paper applies the array design model of equal-area multi-arm spiral with machine learning fast fourier transform clean(FFT-CLEAN)sound source localization identification algorithm to avoid the interference factors in the noise acquisition system using a single microphone and conventional beam forming algorithm,improves the spatial resolution of the acoustic array sensor device,and proposes an acoustic array sensor device based on the acoustic spectrogram.The analysis and diagnosis method of discharge type of acoustic array sensor device can effectively reduce the system misjudgment caused by factors such as the resolution of the acoustic imaging device and the time domain pulse of the digital signal,and reduce the false alarm rate of the acoustic array sensor device.The proposed method is tested by selecting power cables as the object,and its effectiveness is proved by laboratory verification and field verification.展开更多
Relaxation rate is a very crucial parameter in physics.For the water surface wave,its relaxation rate is directly relevantto the response time of disturbed spectrum returning back to its quasi-steady state.It is diffi...Relaxation rate is a very crucial parameter in physics.For the water surface wave,its relaxation rate is directly relevantto the response time of disturbed spectrum returning back to its quasi-steady state.It is difficult to be calculated directly asa function of different oceanographic and meteorological parameters.Previous researches were mainly based on experimentalmeasurements or parameterization.In this paper,a method based on the liner array charge-coupled device(CCD)is proposed tomeasure the relaxation rate of the water surface wave.Compared with the traditional methods?it can obtain the information ofsurface wave and current synchronously,and works well under a multi wind-wave environment.Wind wav^tank experimentswere carried out based on this method.The good consistency between the results calculated by this method and the traditionalrelaxation rate models shows the validity of the proposed method.This method can be further used to study the modulation theoryof surface waves by currents.展开更多
As one of the most promising materials for two-dimensional transition metal chalcogenides(2D TMDs),molybdenum diselenide(MoSe_(2))has great potential in photodetectors due to its excellent properties like tunable band...As one of the most promising materials for two-dimensional transition metal chalcogenides(2D TMDs),molybdenum diselenide(MoSe_(2))has great potential in photodetectors due to its excellent properties like tunable bandgap,high carrier mobility,and excellent air stability.Although 2D MoSe_(2)-based photodetectors have been reported to exhibit admired performance,the large-area 2D MoSe_(2)layers are difficult to be achieved via conventional synthesis methods,which severely impedes its future applications.Here,we present the controllable growth of large-area 2D MoSe_(2)layers over 3.5-inch with excellent homogeneity by a simple post-selenization route.Further,a high-quality n-MoSe_(2)/p-Si van der Waals(vdW)heterojunction device is in-situ fabricated by directly growing 2D n-MoSe_(2)layers on the patterned p-Si substrate,which shows a self-driven broadband photoresponse ranging from ultraviolet to mid-wave infrared with an impressive responsivity of 720.5 mA·W^(−1),a high specific detectivity of 10^(13) Jones,and a fast response time to follow nanosecond pulsed optical signal.In addition,thanks to the inch-level 2D MoSe_(2)layers,a 4×4 integrated heterojunction device array is achieved,which has demonstrated good uniformity and satisfying imaging capability.The large-area 2D MoSe_(2)layer and its heterojunction device array have great promise for high-performance photodetection and imaging applications in integrated optoelectronic systems.展开更多
As the large single-crystalline silicon wafers have revolutionized many industries including electronics and solar cells, it is envisioned that the availability of large single-crystalline perovskite crystals and wafe...As the large single-crystalline silicon wafers have revolutionized many industries including electronics and solar cells, it is envisioned that the availability of large single-crystalline perovskite crystals and wafers will revolutionize its broad applications in photovoltaics, optoelectronics, lasers, photodetectors, light emitting diodes(LEDs), etc. Here we report a method to grow large single-crystalline perovskites including single-halide crystals: CH3NH3PbX3(X=I, Br, Cl), and dual-halide ones:CH3NH3Pb(ClxBr1.x)3 and CH3NH3Pb(BrxI1.x)3, with the largest crystal being 120 mm in length. Meanwhile, we have advanced a process to slice the large perovskite crystals into thin wafers. It is found that the wafers exhibit remarkable features:(1)its trap-state density is a million times smaller than that in the microcrystalline perovskite thin films(MPTF);(2) its carrier mobility is 410 times higher than its most popular organic counterpart P3HT;(3) its optical absorption is expanded to as high as910 nm comparing to 797 nm for the MPTF;(4) while MPTF decomposes at 150 °C, the wafer is stable at high temperature up to270 °C;(5) when exposed to high humidity(75% RH), MPTF decomposes in 5 h while the wafer shows no change for overnight;(6) its photocurrent response is 250 times higher than its MPTF counterpart. A few electronic devices have been fabricated using the crystalline wafers. Among them, the Hall test gives low carrier concentration with high mobility. The trap-state density is measured much lower than common semiconductors. Moreover, the large SC-wafer is found particularly useful for mass production of integrated circuits. By adjusting the halide composition, both the optical absorption and the light emission can be fine-tuned across the entire visible spectrum from 400 nm to 800 nm. It is envisioned that a range of visible lasers and LEDs may be developed using the dual-halide perovskites. With fewer trap states, high mobility, broader absorption, and humidity resistance, it is expected that solar cells with high stable efficiency maybe attainable using the crystalline wafers.展开更多
基金supported by the National Key Research and Development Project of China(Grant No.2023YFC3106904)National Natural Science Foundation of China(Grant No.52001086)+1 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.3072023JC0101)Additionally,this work contributes to the Strategic Research Plan of the Centre for Marine Technology and Ocean Engineering(CENTEC),which is financed by the Portuguese Foundation for Science and Technology(Fundação para a Ciência e Tecnologia-FCT)under contract UIDB/UIDP/00134/2020.
文摘This paper presents a hydrodynamic analysis of a hybrid system consisting of a floating platform coupled with an array of oscillating bodies that move along the weather sidewall of the platform.Using the Lagrange multiplier method,the motion equation governing this type of motion characteristic is formulated,and the formula of the extracted wave power is derived.The numerical results demonstrate a significant increase in the hydrodynamic efficiency of oscillating bodies within specific frequency ranges in the presence of the floating platform.The incorporation of proper power take-off damping of the oscillating bodies results in a reduction in the heave motion of the platform,but it may lead to an increase in pitch motion.The analysis of the response behaviour of the system shows that both the heave motion and pitch motion of the platform contribute to the power extraction and relative motion between the buoys and the platform.Parametric investigations are conducted to explore the hydrodynamic interactions between the floating platform and the buoy array.Additionally,the concept of“hydrodynamic synergy”is proposed to describe the synergetic effect of different components of a multi-purpose platform,which is of considerable engineering interest.
文摘ZTE Corporation, a leading global provider of telecommunications equipment and network solutions, unveiled its 3G strategy to make life "easier, freer and trendier" for consumers by combining Telecom and IT with 3G
基金This work was supported by the science and technology project of State Grid Shanghai Municipal Electric Power Company(No.52090020007F)National Key R&D Program of China(2017YFB0902800).
文摘Acoustic array sensor device for partial discharge detection is widely used in power equipment inspection with the advantages of non-contact and precise positioning compared with partial discharge detection methods such as ultrasonic method and pulse current method.However,due to the sensitivity of the acoustic array sensor and the influence of the equipment operation site interference,the acoustic array sensor device for partial discharge type diagnosis by phase resolved partial discharge(PRPD)map might occasionally presents incorrect results,thus affecting the power equipment operation and maintenance strategy.The acoustic array sensor detection device for power equipment developed in this paper applies the array design model of equal-area multi-arm spiral with machine learning fast fourier transform clean(FFT-CLEAN)sound source localization identification algorithm to avoid the interference factors in the noise acquisition system using a single microphone and conventional beam forming algorithm,improves the spatial resolution of the acoustic array sensor device,and proposes an acoustic array sensor device based on the acoustic spectrogram.The analysis and diagnosis method of discharge type of acoustic array sensor device can effectively reduce the system misjudgment caused by factors such as the resolution of the acoustic imaging device and the time domain pulse of the digital signal,and reduce the false alarm rate of the acoustic array sensor device.The proposed method is tested by selecting power cables as the object,and its effectiveness is proved by laboratory verification and field verification.
基金National Natural Science Foundation of China(No.41276185)
文摘Relaxation rate is a very crucial parameter in physics.For the water surface wave,its relaxation rate is directly relevantto the response time of disturbed spectrum returning back to its quasi-steady state.It is difficult to be calculated directly asa function of different oceanographic and meteorological parameters.Previous researches were mainly based on experimentalmeasurements or parameterization.In this paper,a method based on the liner array charge-coupled device(CCD)is proposed tomeasure the relaxation rate of the water surface wave.Compared with the traditional methods?it can obtain the information ofsurface wave and current synchronously,and works well under a multi wind-wave environment.Wind wav^tank experimentswere carried out based on this method.The good consistency between the results calculated by this method and the traditionalrelaxation rate models shows the validity of the proposed method.This method can be further used to study the modulation theoryof surface waves by currents.
基金This work was financially supported by the National Key R&D Program of China(No.2022YFB2803900)the National Natural Science Foundation of China(Nos.U2004165,U22A20138,and 11974016)+1 种基金the Natural Science Foundation of Henan Province,China(No.202300410376)Key Research and Development Program(social development)of Jiangsu Province(No.BE2021667).
文摘As one of the most promising materials for two-dimensional transition metal chalcogenides(2D TMDs),molybdenum diselenide(MoSe_(2))has great potential in photodetectors due to its excellent properties like tunable bandgap,high carrier mobility,and excellent air stability.Although 2D MoSe_(2)-based photodetectors have been reported to exhibit admired performance,the large-area 2D MoSe_(2)layers are difficult to be achieved via conventional synthesis methods,which severely impedes its future applications.Here,we present the controllable growth of large-area 2D MoSe_(2)layers over 3.5-inch with excellent homogeneity by a simple post-selenization route.Further,a high-quality n-MoSe_(2)/p-Si van der Waals(vdW)heterojunction device is in-situ fabricated by directly growing 2D n-MoSe_(2)layers on the patterned p-Si substrate,which shows a self-driven broadband photoresponse ranging from ultraviolet to mid-wave infrared with an impressive responsivity of 720.5 mA·W^(−1),a high specific detectivity of 10^(13) Jones,and a fast response time to follow nanosecond pulsed optical signal.In addition,thanks to the inch-level 2D MoSe_(2)layers,a 4×4 integrated heterojunction device array is achieved,which has demonstrated good uniformity and satisfying imaging capability.The large-area 2D MoSe_(2)layer and its heterojunction device array have great promise for high-performance photodetection and imaging applications in integrated optoelectronic systems.
基金supported by the National Key Research Project MOST (2016YFA0202400)the National Natural Science Foundation of China (61604090, 61604091, 61674098)+4 种基金National University Research Fund (GK261001009, GK201603107)the Changjiang Scholar and Innovative Research Team (IRT_14R33)the 111 Project (B14041)the Chinese National 1000-talent-plan Program (1110010341)the Innovation Funds of Graduate Programs, SNNU (2015CXS047)
文摘As the large single-crystalline silicon wafers have revolutionized many industries including electronics and solar cells, it is envisioned that the availability of large single-crystalline perovskite crystals and wafers will revolutionize its broad applications in photovoltaics, optoelectronics, lasers, photodetectors, light emitting diodes(LEDs), etc. Here we report a method to grow large single-crystalline perovskites including single-halide crystals: CH3NH3PbX3(X=I, Br, Cl), and dual-halide ones:CH3NH3Pb(ClxBr1.x)3 and CH3NH3Pb(BrxI1.x)3, with the largest crystal being 120 mm in length. Meanwhile, we have advanced a process to slice the large perovskite crystals into thin wafers. It is found that the wafers exhibit remarkable features:(1)its trap-state density is a million times smaller than that in the microcrystalline perovskite thin films(MPTF);(2) its carrier mobility is 410 times higher than its most popular organic counterpart P3HT;(3) its optical absorption is expanded to as high as910 nm comparing to 797 nm for the MPTF;(4) while MPTF decomposes at 150 °C, the wafer is stable at high temperature up to270 °C;(5) when exposed to high humidity(75% RH), MPTF decomposes in 5 h while the wafer shows no change for overnight;(6) its photocurrent response is 250 times higher than its MPTF counterpart. A few electronic devices have been fabricated using the crystalline wafers. Among them, the Hall test gives low carrier concentration with high mobility. The trap-state density is measured much lower than common semiconductors. Moreover, the large SC-wafer is found particularly useful for mass production of integrated circuits. By adjusting the halide composition, both the optical absorption and the light emission can be fine-tuned across the entire visible spectrum from 400 nm to 800 nm. It is envisioned that a range of visible lasers and LEDs may be developed using the dual-halide perovskites. With fewer trap states, high mobility, broader absorption, and humidity resistance, it is expected that solar cells with high stable efficiency maybe attainable using the crystalline wafers.