Polycyclic aromatic hydrocarbons(PAHs)and their nitrated derivatives(NPAHs)attract continuous attention due to their outstanding carcinogenicity and mutagenicity.In order to investigate the diurnal variations,sources,...Polycyclic aromatic hydrocarbons(PAHs)and their nitrated derivatives(NPAHs)attract continuous attention due to their outstanding carcinogenicity and mutagenicity.In order to investigate the diurnal variations,sources,formation mechanism,and health risk assessment of them in heating season,particulate matter(PM)were collected in Beijing urban area from December 26,2017 to January 17,2018.PAHs and NPAHs in PM were quantitatively analyzed via gas chromatography-mass spectrometry(GC-MS).Average daily concentrations of PAHs and NPAHs were(78±54)ng/m^(3)and(783±684)pg/m^(3),respectively.The concentrations of them were significantly higher at nighttime than at daytime,and NPAHs concentrations were 1-2 orders of magnitude lower than PAHs concentrations.In the heating season,the dominant species of PAHs include benzo[b]fluoranthene,fluoranthene,pyrene,and chrysene,while 9-nitroanthracene,2+3-nitrofluoranthene,and 2-nitropyrene were dominant species for NPAHs.NPAHs were found to have a single peak during heating and to be primarily distributed in the 0.4-0.7μm particle size.Primary emissions such as biomass burning,coal combustion,and traffic emissions were the major sources of PAHs.NPAHs were produced by the primary source of vehicle emissions and the secondary reaction triggered by OH radicals,as well as biomass burning during daytime.According to the health risk assessment,the total carcinogenic risk was higher in adults than in children.While upon oral ingestion,the carcinogenic risk in children was higher than that of adults,but the risk of adults was higher than children through skin contact and respiratory inhalation.展开更多
Thiourea nitrate (TN) was easily prepared from thiourea and nitric acid to explore its use as a new nitration reagent, Nitrations of various aromatic compounds utilizing TN in concentrated sulfuric acid were studied...Thiourea nitrate (TN) was easily prepared from thiourea and nitric acid to explore its use as a new nitration reagent, Nitrations of various aromatic compounds utilizing TN in concentrated sulfuric acid were studied, TN could convert aromatic compounds to the corresponding nitrated derivatives with various abnormal yields under mild conditions. The results suggested that the reaction mechanism might be different from those of traditional nitration reagents.展开更多
Nitrated polycyclic aromatic hydrocarbons(NPAHs)have toxic potentials that are higher than those of their corresponding parent polycyclic aromatic hydrocarbons(PAHs)and thus have received increasing attention in recen...Nitrated polycyclic aromatic hydrocarbons(NPAHs)have toxic potentials that are higher than those of their corresponding parent polycyclic aromatic hydrocarbons(PAHs)and thus have received increasing attention in recent years.In this study,the occurrence,distribution,source,and human health risk assessment of 15 NPAHs and 16 PAHs were investigated in the surface water from 20 sampling sites of Lake Taihu during the dry,normal,and flood seasons of 2018.The PAH concentrations ranged from 255 to 7298 ng/L and the NPAH concentrations ranged from not-detected(ND)to 212 ng/L.Among the target analytes,2-nitrofluorene(2-n Flu)was the predominant NPAH,with a detection frequency ranging from 85%to 90%and a maximum concentration of 56.2 ng/L.The three-ringed and four-ringed NPAHs and PAHs comprised the majority of the detected compounds.In terms of seasonal variation,the highest levels of the NPAHs and PAHs were in the dry season and flood season,respectively.Diagnostic ratio analysis indicated that the prime source of NPAHs was direct combustion,whereas in the case of PAHs the contribution was predominantly from a mixed pattern including pollution from unburned petroleum and petroleum combustion.The human health risk of NPAHs and PAHs was evaluated using a lifetime carcinogenic risk assessment model.The carcinogenic risk level of the targets ranged from 2.09×10^(-7)to 5.75×10^(-5)and some surface water samples posed a potential health risk.展开更多
Nitrated polycyclic aromatic hydrocarbons(NPAHs)are widespread organic pollutants that possess carcinogenic and mutagenic properties,so they may pose a risk to the environment and human health.In this study,the concen...Nitrated polycyclic aromatic hydrocarbons(NPAHs)are widespread organic pollutants that possess carcinogenic and mutagenic properties,so they may pose a risk to the environment and human health.In this study,the concentrations of 15 NPAHs and 16 polycyclic aromatic hydrocarbons(PAHs)in 30 surface water samples and 26 sediment samples were measured in 2018 from the Taige Canal,one of the main rivers flowing into Taihu Lake,China.The total NPAH concentrations in water and sediment ranged from 14.7 to 235 ng/L and 22.9 to 96.5 ng/g dw,respectively.9-nitrophenanthrene(nd–76.3 ng/L)was the dominant compound in surface water,while 2+3-nitrofluoranthene(1.73–18.1 ng/g dw)dominated in sediment.Among PAHs,concentration ranging from 1,097 to 2,981 ng/L and 1,089 to 4,489 ng/g dw in surface water and sediment,respectively.There was a strong positive correlation between the log octanol-water partition coefficient(Kow)and log sediment-water partition coefficient due to hydrophobic interaction.The fugacity fraction value increased with the decrease of log Kow,and chrysene was transferred from water into sediment.The residual NPAHs in surface water and sediment of the Taige Canal have partial correlation.Diesel engine and coal combustion emissions were probably the principal sources of NPAHs in surface water and sediment.The results of ecological risk assessment showed that some NPAHs inwater(e.g,1-nitropyrene and 6-nitrochrysene)and sediment(e.g.,2-nitrobiphenyl,5-nitroacenaphthene,9-nitrophenanthrene and 2+3-nitrofluoranthene)had moderate ecological risks,which should be of concern.展开更多
基金supported by the National Natural Science Foundation of China(No.41907197)the Fundamental Research Funds for Central Public Welfare Scientific Research Institutes of China,Chinese Research Academy of Environmental Sciences(No.2019YSKY-018)+1 种基金the National Key R&D Program of China(No.2019YFC0214800)the Standard System and Key Standards Research of National Ecological Environment Protection and Risk Prevention(No.2020YFC18063)。
文摘Polycyclic aromatic hydrocarbons(PAHs)and their nitrated derivatives(NPAHs)attract continuous attention due to their outstanding carcinogenicity and mutagenicity.In order to investigate the diurnal variations,sources,formation mechanism,and health risk assessment of them in heating season,particulate matter(PM)were collected in Beijing urban area from December 26,2017 to January 17,2018.PAHs and NPAHs in PM were quantitatively analyzed via gas chromatography-mass spectrometry(GC-MS).Average daily concentrations of PAHs and NPAHs were(78±54)ng/m^(3)and(783±684)pg/m^(3),respectively.The concentrations of them were significantly higher at nighttime than at daytime,and NPAHs concentrations were 1-2 orders of magnitude lower than PAHs concentrations.In the heating season,the dominant species of PAHs include benzo[b]fluoranthene,fluoranthene,pyrene,and chrysene,while 9-nitroanthracene,2+3-nitrofluoranthene,and 2-nitropyrene were dominant species for NPAHs.NPAHs were found to have a single peak during heating and to be primarily distributed in the 0.4-0.7μm particle size.Primary emissions such as biomass burning,coal combustion,and traffic emissions were the major sources of PAHs.NPAHs were produced by the primary source of vehicle emissions and the secondary reaction triggered by OH radicals,as well as biomass burning during daytime.According to the health risk assessment,the total carcinogenic risk was higher in adults than in children.While upon oral ingestion,the carcinogenic risk in children was higher than that of adults,but the risk of adults was higher than children through skin contact and respiratory inhalation.
基金Fundamental Research Funds for the Central Universities(2011)Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,PR China(2011)for the financial support
文摘Thiourea nitrate (TN) was easily prepared from thiourea and nitric acid to explore its use as a new nitration reagent, Nitrations of various aromatic compounds utilizing TN in concentrated sulfuric acid were studied, TN could convert aromatic compounds to the corresponding nitrated derivatives with various abnormal yields under mild conditions. The results suggested that the reaction mechanism might be different from those of traditional nitration reagents.
基金supported by the National Natural Science Foundation of China(No.41671493)the State Key Laboratory of Pollution Control and Resource Reuse Foundation(No.PCRRF17030)the National Major Project of the Science and Technology Ministry of China(No.2017ZX07202-004 and 2017X07301002-3)。
文摘Nitrated polycyclic aromatic hydrocarbons(NPAHs)have toxic potentials that are higher than those of their corresponding parent polycyclic aromatic hydrocarbons(PAHs)and thus have received increasing attention in recent years.In this study,the occurrence,distribution,source,and human health risk assessment of 15 NPAHs and 16 PAHs were investigated in the surface water from 20 sampling sites of Lake Taihu during the dry,normal,and flood seasons of 2018.The PAH concentrations ranged from 255 to 7298 ng/L and the NPAH concentrations ranged from not-detected(ND)to 212 ng/L.Among the target analytes,2-nitrofluorene(2-n Flu)was the predominant NPAH,with a detection frequency ranging from 85%to 90%and a maximum concentration of 56.2 ng/L.The three-ringed and four-ringed NPAHs and PAHs comprised the majority of the detected compounds.In terms of seasonal variation,the highest levels of the NPAHs and PAHs were in the dry season and flood season,respectively.Diagnostic ratio analysis indicated that the prime source of NPAHs was direct combustion,whereas in the case of PAHs the contribution was predominantly from a mixed pattern including pollution from unburned petroleum and petroleum combustion.The human health risk of NPAHs and PAHs was evaluated using a lifetime carcinogenic risk assessment model.The carcinogenic risk level of the targets ranged from 2.09×10^(-7)to 5.75×10^(-5)and some surface water samples posed a potential health risk.
基金supported by the National Natural Science Foundation of China (No. 41671493)the Natural Science Foundation of Jiangsu Province (No. BK20191372)the National Major Project of the Science and Technology Ministry of China (No. 2017ZX07202-004)
文摘Nitrated polycyclic aromatic hydrocarbons(NPAHs)are widespread organic pollutants that possess carcinogenic and mutagenic properties,so they may pose a risk to the environment and human health.In this study,the concentrations of 15 NPAHs and 16 polycyclic aromatic hydrocarbons(PAHs)in 30 surface water samples and 26 sediment samples were measured in 2018 from the Taige Canal,one of the main rivers flowing into Taihu Lake,China.The total NPAH concentrations in water and sediment ranged from 14.7 to 235 ng/L and 22.9 to 96.5 ng/g dw,respectively.9-nitrophenanthrene(nd–76.3 ng/L)was the dominant compound in surface water,while 2+3-nitrofluoranthene(1.73–18.1 ng/g dw)dominated in sediment.Among PAHs,concentration ranging from 1,097 to 2,981 ng/L and 1,089 to 4,489 ng/g dw in surface water and sediment,respectively.There was a strong positive correlation between the log octanol-water partition coefficient(Kow)and log sediment-water partition coefficient due to hydrophobic interaction.The fugacity fraction value increased with the decrease of log Kow,and chrysene was transferred from water into sediment.The residual NPAHs in surface water and sediment of the Taige Canal have partial correlation.Diesel engine and coal combustion emissions were probably the principal sources of NPAHs in surface water and sediment.The results of ecological risk assessment showed that some NPAHs inwater(e.g,1-nitropyrene and 6-nitrochrysene)and sediment(e.g.,2-nitrobiphenyl,5-nitroacenaphthene,9-nitrophenanthrene and 2+3-nitrofluoranthene)had moderate ecological risks,which should be of concern.