Event extraction extracts event frames from text, while grounded situation recognition detects events in images. As real-world applications frequently encounter a multitude of unforeseen events, certain researchers ha...Event extraction extracts event frames from text, while grounded situation recognition detects events in images. As real-world applications frequently encounter a multitude of unforeseen events, certain researchers have introduced cross-domain and in-domain event extraction, while grounded situation recognition primarily explores in-domain scenarios. Therefore, in this paper, we propose cross-domain grounded situation recognition and establish a new benchmark SWiG-XD. In this more challenging setting, we deepen the connection between the two tasks based on their underlying unity in two different modalities and explore how to transfer the generalization ability from text to images. Firstly, we utilize ChatGPT to automatically generate textual data, which can be divided into two categories. One category is directly matched with images, establishing a direct connection with the images. The other category encompasses all event types and possesses greater generalization. Then we employ a unified model framework to establish the association between textual concepts and local image features and achieve cross-domain generalization transfer across modalities through modality-shared prompts and self-attention mechanism. Furthermore, we incorporate textual data with higher generalization to further assist in improving generalization on images. The experimental results on the newly constructed benchmark demonstrate the effectiveness of our method.展开更多
Document-level financial event extraction(DFEE) is the task of detecting events and extracting the corresponding event arguments in financial documents, which plays an important role in information extraction in the f...Document-level financial event extraction(DFEE) is the task of detecting events and extracting the corresponding event arguments in financial documents, which plays an important role in information extraction in the financial domain. This task is challenging as the financial documents are generally long text and event arguments of one event may be scattered in different sentences. To address this issue, we proposed a novel Prior Information Enhanced Extraction framework(PIEE) for DFEE, leveraging prior information from both event types and pre-trained language models. Specifically, PIEE consists of three components: event detection, event argument extraction, and event table filling. In event detection, we identify the event type. Then, the event type is explicitly used for event argument extraction. Meanwhile, the implicit information within language models also provides considerable cues for event arguments localization. Finally, all the event arguments are filled in an event table by a set of predefined heuristic rules. To demonstrate the effectiveness of our proposed framework, we participated in the share task of CCKS2020 Task 4-2: Documentlevel Event Arguments Extraction. On both Leaderboard A and Leaderboard B, PIEE took the first place and significantly outperformed the other systems.展开更多
基金supported by National Natural Science Foundation of China(No.62176058)National Key RD Program of China(2023YFF1204800).
文摘Event extraction extracts event frames from text, while grounded situation recognition detects events in images. As real-world applications frequently encounter a multitude of unforeseen events, certain researchers have introduced cross-domain and in-domain event extraction, while grounded situation recognition primarily explores in-domain scenarios. Therefore, in this paper, we propose cross-domain grounded situation recognition and establish a new benchmark SWiG-XD. In this more challenging setting, we deepen the connection between the two tasks based on their underlying unity in two different modalities and explore how to transfer the generalization ability from text to images. Firstly, we utilize ChatGPT to automatically generate textual data, which can be divided into two categories. One category is directly matched with images, establishing a direct connection with the images. The other category encompasses all event types and possesses greater generalization. Then we employ a unified model framework to establish the association between textual concepts and local image features and achieve cross-domain generalization transfer across modalities through modality-shared prompts and self-attention mechanism. Furthermore, we incorporate textual data with higher generalization to further assist in improving generalization on images. The experimental results on the newly constructed benchmark demonstrate the effectiveness of our method.
基金The research is supported by the National Natural Science Foundation of China(No.61936010 and No.61876115)This work was partially supported by Collaborative Innovation Center of Novel Software Technology and Industrialization.
文摘Document-level financial event extraction(DFEE) is the task of detecting events and extracting the corresponding event arguments in financial documents, which plays an important role in information extraction in the financial domain. This task is challenging as the financial documents are generally long text and event arguments of one event may be scattered in different sentences. To address this issue, we proposed a novel Prior Information Enhanced Extraction framework(PIEE) for DFEE, leveraging prior information from both event types and pre-trained language models. Specifically, PIEE consists of three components: event detection, event argument extraction, and event table filling. In event detection, we identify the event type. Then, the event type is explicitly used for event argument extraction. Meanwhile, the implicit information within language models also provides considerable cues for event arguments localization. Finally, all the event arguments are filled in an event table by a set of predefined heuristic rules. To demonstrate the effectiveness of our proposed framework, we participated in the share task of CCKS2020 Task 4-2: Documentlevel Event Arguments Extraction. On both Leaderboard A and Leaderboard B, PIEE took the first place and significantly outperformed the other systems.