To address the issue of extreme thermal-induced arching in CRTS II slab tracks due to joint damage,an optimized joint repair model was proposed.First,the formula for calculating the safe temperature rise of the track ...To address the issue of extreme thermal-induced arching in CRTS II slab tracks due to joint damage,an optimized joint repair model was proposed.First,the formula for calculating the safe temperature rise of the track was derived based on the principle of stationary potential energy.Considering interlayer evolution and structural crack propagation,an optimized joint repair model for the track was established and validated.Subsequently,the impact of joint repair on track damage and arch stability under extreme temperatures was studied,and a comprehensive evaluation of the feasibility of joint repair and the evolution of damage after repair was conducted.The results show that after the joint repair,the temperature rise of the initial damage of the track structure can be increased by 11℃.Under the most unfavorable heating load with a superimposed temperature gradient,the maximum stiffness degradation index SDEG in the track structure is reduced by about 81.16%following joint repair.The joint repair process could effectively reduce the deformation of the slab arching under high temperatures,resulting in a reduction of 93.96%in upward arching deformation.After repair,with the damage to interfacing shear strength,the track arch increases by 2.616 mm.展开更多
Due to space constraints in urban areas,metro tunnels are typically constructed in pairs,with a small clearance.The interaction between twin tunnels leads to a significantly more complex ground deformation and stress ...Due to space constraints in urban areas,metro tunnels are typically constructed in pairs,with a small clearance.The interaction between twin tunnels leads to a significantly more complex ground deformation and stress distribution than that observed in a single tunnel scenario,particularly if the tunnels are excavated in sequence.A series of physical model tests were conducted to investigate soil deformation and stress disturbances caused by the excavation of twin tunnels.The test results indicate that the interaction between the twin tunnels was observed.Due to the soil arching effect,the excavation of Tunnel 2 increases the soil stress acting on Tunnel 1.An analytical method was proposed to determine soil stress considering the soil arching effect and the interaction between twin tunnels.The method categorized the relative locations between twin tunnels into non-influenced,partially influenced,and fully influenced scenarios.For non-influenced and fully influenced scenarios,the soil stresses above twin tunnels were calculated based on a symmetric major principal stress trace.For the partially influenced scenario,however,the soil arch above Tunnel 2 was asymmetric due to the interaction,and the stress distribution was obtained based on a new asymmetric major principal stress trace.The soil stress on Tunnel 1 was influenced by the load transferred from Tunnel 2 and calculated based on the force equilibrium.A comparison of the analytical and test results indicates that the proposed method effectively predicts the soil stress in the cover layer above twin tunnels excavated sequentially,considering the interaction and soil arching effects.展开更多
In current underground mining, the stability of the exposed backfill face is a basic issue associated with mining design and has been the subject of considerable research in mining safety and efficiency. In this study...In current underground mining, the stability of the exposed backfill face is a basic issue associated with mining design and has been the subject of considerable research in mining safety and efficiency. In this study, an improved analytical solution for evaluating the safety of vertically exposed faces in backfilling was proposed. Based on a differential slice method, the proposed solution emphasizes the arching effect as having the advantages of more rigor and wider scalability. Feasibility of the proposed solution was validated with classic centrifuge results. Good agreement between compared results indicated that the proposed solution skillfully predicts the behavior of the paste centrifuge model. Additionally, calculation of exposed face safety in sequential filling was presented. The proposed solution has practical significance in mine backfill design.展开更多
Piled embankments are widely used in highway and railway engineering due to their economy and efficiency inovercoming several issues encountered in constructing embankments over weak soils. Soil arching, caused by the...Piled embankments are widely used in highway and railway engineering due to their economy and efficiency inovercoming several issues encountered in constructing embankments over weak soils. Soil arching, caused by the pile-subsoilrelative displacement (△s), plays an important role in reducing the embankment load falling on weak soil, however, the funda-mental characteristics (e.g., formation and features) of soil arching remain poorly understood. In this study, a series of discreteelement method (DEM) modellings are performed to study the formation and features of soil arching with the variation of As inpiled embankments with or without geosynthetic reinforcement. Firstly, calibration for the modelling parameters is carried out bycomparing the DEM results with the experimental data obtained from the existing literature. Secondly, the analysis of the macro-and micro-behaviours is performed in detail. Finally, a parametric study is conducted in an effort to identify the influences of threekey factors on soil arching: the friction coefficient of the embankment fill (f), the embankment height (h), and the pile clear spacing(s-a). Numerical results indicate that △s is a key factor governing the formation and features of soil arching in embankments. Tobe specific, soil arching gradually evolves from two inclined shear planes at a small △s to a hemispherical arch at a relatively largeAs. Then, with a continuous increase in △s, the soil arching height gradually increases and finally approaches a constant value of0.8(s-a) (i.e., the maximum soil arching height). For a given case, the higher the soil arching height, the greater the degree of soilarching effect. The parametric study shows that the friction coefficient of the embankment fill has a negligible influence on theformation and features of soil arching. However, embankment height is a key factor governing the formation and features of soilarching. In addition, pile clear spacing has a significant effect on the formation of soil arching, but not on its features.展开更多
In this study,2D and 3D soil arching phenomena associated with piled embankments were evaluated by performing a series of discrete numerical analyses using the particle flow code(PFC3D)software.After validating the mi...In this study,2D and 3D soil arching phenomena associated with piled embankments were evaluated by performing a series of discrete numerical analyses using the particle flow code(PFC3D)software.After validating the micro-parameters with experimental results,we compared the stress-displacement distribution,force chain evolution,maximum vertical displacement of particles,and deformation characteristics induced by 2D and 3D arching effects.Additional analyses were carried out to understand the influence of the fill height,pile clear spacing,friction coefficient,and porosity on soil arching with respect to the stress concentration ratio(SCR)and settlement along the elevation at various sections.The numerical results indicated that a plane soil arch in a 2D embankment overestimates the degree of load transfer and underestimates the settlement at the crest and within the embankment along the elevation in a 3D embankment.A lower equal settlement plane can be found in a 2D embankment.Furthermore,an increase of fill height and friction angle,and a decrease of pile clear spacing and porosity can help to improve the degree of reduction in load transfer and settlement in both 2D and 3D embankments.However,for partially mobilized soil arching in the 3D condition,the increase of fill height reduces the settlement of soils mainly in the portion above the square subsoil area,but has less influence over the portion above the rectangular subsoil area.展开更多
To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement a...To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement and shear strain during the active failure of soil with height H and friction angle φ. The test results show that there are 3 stages of soil deformation under retaining wall translation: the initial stage, the expansion stage and the stability stage. The stable sliding surface in the model tests can be considered to be composed of two parts. Within the height range of 0.82 H-1.0 H, it is a plane at an angle of π/4+φ/2 to the horizontal plane. In the height range of 0-0.82 H, it is a curve between a logarithmic spiral and a plane at an angle of π/4+φ/2 to the horizontal. A new method applicable to any sliding surface is proposed for active earth pressure with the consideration of arching effect. The active earth pressure is computed with the actual shape of the slip surface and compared with model test data and with predictions obtained by existing methods. The comparison shows that predictions from the newly proposed method are more consistent with the measured data than the predictions from the other methods.展开更多
The stability of an arching slope in deformable materials above strong rocks strongly depends on the shape and width of the span.Equations for a free surface problem that incorporate these two parameters were derived ...The stability of an arching slope in deformable materials above strong rocks strongly depends on the shape and width of the span.Equations for a free surface problem that incorporate these two parameters were derived using a simplified two-dimensional arching slope model,and were validated using physical model tests under 1 g and centrifugal conditions.The results are used to estimate the maximum excavation width for a weak claystone slope in a lignite mine,for which we calculate a safety factor of 1.31.展开更多
To discuss the soil arching effect on the load transferring model and sharing ratios by the piles and inter-pile subsoil in the bidirectionally reinforced composite ground, the forming mechanism, mechanical behavior a...To discuss the soil arching effect on the load transferring model and sharing ratios by the piles and inter-pile subsoil in the bidirectionally reinforced composite ground, the forming mechanism, mechanical behavior and its effect factors were discussed in detail. Then, the unified strength theory was introduced to set up the elastoplastic equilibrium differential equation of the subsoil under the limit equilibrium state. And from the equation, the solutions were derived with the corresponding formulas presented to calculate the earth pressure over and beneath the horizontal reinforced cushion or pillow, the stress of inter-pile subsoil and the pile-soil stress ratio. Based on the obtained solutions and measured data from an engineering project, the influence rules by the soil property parameters (i.e., the cohesion c and internal friction angle φ) and pile spacing on the pile-soil stress ratio n were discussed respectively. The results show that to improve the load sharing ratio by the piles, the more effective means for filling materials with a larger value of φ is to increase the ratio of pile cap size to spacing, while to reduce the pile spacing properly and increase the value of cohesion c is advisable for those filling materials with a smaller value of φ.展开更多
Piled embankments have many advantages that have been applied in high-speed railway construction engineering.However,the load transfer mechanism of piled embankments,such as soil arching and tension membranes,is still...Piled embankments have many advantages that have been applied in high-speed railway construction engineering.However,the load transfer mechanism of piled embankments,such as soil arching and tension membranes,is still unclear,especially under dynamic loads.To investigate the soil arching and tension membrane under dynamic train loads on high-speed railways,a large-scale piled embankment model test with X-shaped piles as vertical reinforcement was performed,in which twenty-eight earth pressure cells were installed in the piled embankment and an M-shaped wave was adopted to simulate the high-speed railway train load.The results show that dynamic soil arching only occurs when two bogies of a carriage pass by and disappears at other times.The dynamic soil arching and membrane effect are the most significant under the concrete base.The arching height,stress concentration ratio and pile-soil load sharing ratio have a minimal value at 25 Hz.The dynamic soil arching degrades severely at 25 Hz,whose height at 25 Hz is only 0.35 times that at 5 Hz.The arching height fluctuates over a narrow range with increasing loading amplitude.The stress concentration ratio and the pile-soil load sharing ratio increase monotonically as the loading amplitude increases.展开更多
The Tunnel Oberau, with a length of 2.9 km, forms the core of the local bypass of Oberau. Between the two massifs Kirchbichl and Mühlberg, the tunnel is situated in the valley of the Gießenbach in alluvial g...The Tunnel Oberau, with a length of 2.9 km, forms the core of the local bypass of Oberau. Between the two massifs Kirchbichl and Mühlberg, the tunnel is situated in the valley of the Gießenbach in alluvial gravel with only a small overlap underneath settlement-sensitive buildings. In this paper, the measures in the tunnel to minimize the settlements of the buildings during the shotcrete excavations are described. Basis for this planning were extensive 3D-FE-calculations. Furthermore, under two buildings a compensation grouting measure was carried out, in order to compensate the occurring settlements. This paper describes how the required time and the amount of injection material (grout) could be reduced during the compensation grouting in highly permeable gravel.展开更多
Seismic pile–slope stability analysis and the formation mechanism of soil arching have not been well studied. This study used a threedimensional(3D) finite difference to determine soil and pile parameter changes in t...Seismic pile–slope stability analysis and the formation mechanism of soil arching have not been well studied. This study used a threedimensional(3D) finite difference to determine soil and pile parameter changes in the static and seismic stability of the pile–slope caused by the interaction between stabilizing piles. Pile–slope stability analysis was performed to determine the optimal design of piles along a slope and the corresponding failure mode involving the formation of soil arching around two adjacent piles. The Factor of Safety(FS) of the slope was evaluated using the shear strength reduction method for static and seismic analyses. The results of the analysis show that suitable pile spacing(S) and a suitable pile diameter(D) in the middle of a slope result in the maximum FS for the pile–slope system and the formation of soil arching around two adjacent piles. FS of the pile–slope increased negligibly in the seismic analysis of piles located at the slope crest and toe. An optimized pile diameter and installation location afforded the maximum FS for the slope that corresponded to a specified slope failure mode for different pile locations. A pile spacing S ≤ 2.5D for piles installed in the middle of the slope is suggested for increasing the static and seismic pile–slope stability.展开更多
In piled and geosynthetic-reinforced(PGR) embankment, the arching behavior determines the overburden load on piles and subsoils. Placement of geosynthetic is effective in reducing the relative displacement between pil...In piled and geosynthetic-reinforced(PGR) embankment, the arching behavior determines the overburden load on piles and subsoils. Placement of geosynthetic is effective in reducing the relative displacement between pile and subsoil. When the mobilized shear stress is less than the shear strength, partially developed arching will occur. Consequently, existing analytical methods, adopting the ultimate shear strength failure criterion, need to be improved. This study developed a simplified 2 D analytical method, which is based on the developing arching effect, to evaluate the load redistribution of the PGR embankment. Then, the influences of embankment height and internal friction angle, subsoil depth, ratio of pile cap width to pile clear spacing(RPC) and geosynthetic tensile stiffness on the critical height ratio, stress concentration ratio, soil arching ratio, geosynthetic tension and axial strain were investigated. This study suggests that a RPC of 1:1.0 and a one-way of single-layer geosynthetic tensile stiffness of 2000 kN/m should be considered as the sensitivity thresholds for the PGR embankment.展开更多
In this paper, a model is proposed for the prediction of the width of arching in hoppers resulted from sudden changes in solid feed rates. Such changes in solid feed rate usually come from the collision on the surface...In this paper, a model is proposed for the prediction of the width of arching in hoppers resulted from sudden changes in solid feed rates. Such changes in solid feed rate usually come from the collision on the surface of the moving-bed in the standpipe. The model also takes into account the effect of the powder height in the standpipe of the hopper. The model proves to be adaptable for predicting operational conditions to avoid arching by keeping constant powder height in the main standpipe with interstitial gas flow.展开更多
When the pore pressure in a porous rock changes, stress arching will occur within the rock and the surrounding region. Stress arching ratio is defined as the total stress changes in the porous rock to the pore pressur...When the pore pressure in a porous rock changes, stress arching will occur within the rock and the surrounding region. Stress arching ratio is defined as the total stress changes in the porous rock to the pore pressure change in the region. The region may have the same or different elastic moduli with the surrounding rock, which is usually referred to as inclusion or inhomogeneity. Stress arching is responsible for many geomechanical problems encountered during production or injection; in addition, it is a crucial parameter in stress estimation during field development. This paper aims to present laboratory measurements of vertical stress arching ratio in a material surrounding the inclusion(inhomogeneity).To the authors’ knowledge, few laboratory experiments have been reported on direct measurement of stress arching. The inclusion is a cylindrical sandstone(44 mm in diameter and 50 mm in height)embedded in a larger cylindrical sandstone(150 mm in diameter and 154 mm in height), both of which are made synthetically. These two parts are separated and sealed by a internal polyurethane sleeve.Vertical stress changes are recorded by a mini hydraulic sensor embedded in surrounding rock. Laboratory results are compared to those obtained by numerical models. These models are checked with analytical formulations. The results of numerical models show a good agreement with laboratory data.The numerical results also indicate that the sensor response is affected by elastic properties of the internal sleeve. According to the sensitivity analysis performed, in the absence of the internal sleeve,properties of the inclusion have significant effects on the surrounding stress arching induced.展开更多
Combined with practical engineering, based on the introduction of soil arching theory, we explore the impact of barrier piles in blind sheet-pile bank connecting structure. Besides, we build a plane strain model by AB...Combined with practical engineering, based on the introduction of soil arching theory, we explore the impact of barrier piles in blind sheet-pile bank connecting structure. Besides, we build a plane strain model by ABAQUS sot'cware to study the impact of cross section type, the pile spacing and soil properties on soil arching effect. We find that cross section type of the pile has a certain influence on soil stress distribution in front of the barrier piles by comparing circular cross section and rectangular cross section. We also find that clear distance between the barrier piles and cohesive force of the soil have a great influence on that impact. We can increase clear distance between the barrier piles appropriately to improve the efficiency of construction and reduce the proiect cost.展开更多
Determining earth pressure on jacked pipes is essential for ensuring lining safety and calculating jacking force,especially for deep-buried pipes.To better reflect the soil arching effect resulting from the excavation...Determining earth pressure on jacked pipes is essential for ensuring lining safety and calculating jacking force,especially for deep-buried pipes.To better reflect the soil arching effect resulting from the excavation of rectangular jacked pipes and the distribution of the earth pressure on jacked pipes,we present an analytical solution for predicting the vertical earth pressure on deep-buried rectangular pipe jacking tunnels,incorporating the tunnelling-induced ground loss distribution.Our proposed analytical model consists of the upper multi-layer parabolic soil arch and the lower friction arch.The key parameters(i.e.,width and height of friction arch B and height of parabolic soil arch H 1)are determined according to the existing research,and an analytical solution for K l is derived based on the distribution characteristics of the principal stress rotation angle.With consideration for the transition effect of the mechanical characteristics of the parabolic arch zone,an analytical solution for soil load transfer is derived.The prediction results of our analytical solution are compared with tests and simulation results to validate the effectiveness of the proposed analytical solution.Finally,the effects of different parameters on the soil pressure are discussed.展开更多
基金Project(K2022G038)supported by the Science Technology Research and Development Program of China State Railway Group Co.,LtdProject(52178405)supported by the National Natural Science Foundation of China。
文摘To address the issue of extreme thermal-induced arching in CRTS II slab tracks due to joint damage,an optimized joint repair model was proposed.First,the formula for calculating the safe temperature rise of the track was derived based on the principle of stationary potential energy.Considering interlayer evolution and structural crack propagation,an optimized joint repair model for the track was established and validated.Subsequently,the impact of joint repair on track damage and arch stability under extreme temperatures was studied,and a comprehensive evaluation of the feasibility of joint repair and the evolution of damage after repair was conducted.The results show that after the joint repair,the temperature rise of the initial damage of the track structure can be increased by 11℃.Under the most unfavorable heating load with a superimposed temperature gradient,the maximum stiffness degradation index SDEG in the track structure is reduced by about 81.16%following joint repair.The joint repair process could effectively reduce the deformation of the slab arching under high temperatures,resulting in a reduction of 93.96%in upward arching deformation.After repair,with the damage to interfacing shear strength,the track arch increases by 2.616 mm.
基金supported by the National Natural Science Foundation of China(Grant No.52308463)the Shanghai Rising-Star Program(Grant No.23YF1449100)the Fundamental Research Funds for the Central Universities(Grant No.2023-2-ZD08).
文摘Due to space constraints in urban areas,metro tunnels are typically constructed in pairs,with a small clearance.The interaction between twin tunnels leads to a significantly more complex ground deformation and stress distribution than that observed in a single tunnel scenario,particularly if the tunnels are excavated in sequence.A series of physical model tests were conducted to investigate soil deformation and stress disturbances caused by the excavation of twin tunnels.The test results indicate that the interaction between the twin tunnels was observed.Due to the soil arching effect,the excavation of Tunnel 2 increases the soil stress acting on Tunnel 1.An analytical method was proposed to determine soil stress considering the soil arching effect and the interaction between twin tunnels.The method categorized the relative locations between twin tunnels into non-influenced,partially influenced,and fully influenced scenarios.For non-influenced and fully influenced scenarios,the soil stresses above twin tunnels were calculated based on a symmetric major principal stress trace.For the partially influenced scenario,however,the soil arch above Tunnel 2 was asymmetric due to the interaction,and the stress distribution was obtained based on a new asymmetric major principal stress trace.The soil stress on Tunnel 1 was influenced by the load transferred from Tunnel 2 and calculated based on the force equilibrium.A comparison of the analytical and test results indicates that the proposed method effectively predicts the soil stress in the cover layer above twin tunnels excavated sequentially,considering the interaction and soil arching effects.
基金financially supported by the China Scholarship Council (No. 201506420049)
文摘In current underground mining, the stability of the exposed backfill face is a basic issue associated with mining design and has been the subject of considerable research in mining safety and efficiency. In this study, an improved analytical solution for evaluating the safety of vertically exposed faces in backfilling was proposed. Based on a differential slice method, the proposed solution emphasizes the arching effect as having the advantages of more rigor and wider scalability. Feasibility of the proposed solution was validated with classic centrifuge results. Good agreement between compared results indicated that the proposed solution skillfully predicts the behavior of the paste centrifuge model. Additionally, calculation of exposed face safety in sequential filling was presented. The proposed solution has practical significance in mine backfill design.
基金supported by the National Key Research and Development Program of China(2016YFC0800208)the National Natural Science Foundation of China(Nos.51278216,51478201,51308241,and 51608316)
文摘Piled embankments are widely used in highway and railway engineering due to their economy and efficiency inovercoming several issues encountered in constructing embankments over weak soils. Soil arching, caused by the pile-subsoilrelative displacement (△s), plays an important role in reducing the embankment load falling on weak soil, however, the funda-mental characteristics (e.g., formation and features) of soil arching remain poorly understood. In this study, a series of discreteelement method (DEM) modellings are performed to study the formation and features of soil arching with the variation of As inpiled embankments with or without geosynthetic reinforcement. Firstly, calibration for the modelling parameters is carried out bycomparing the DEM results with the experimental data obtained from the existing literature. Secondly, the analysis of the macro-and micro-behaviours is performed in detail. Finally, a parametric study is conducted in an effort to identify the influences of threekey factors on soil arching: the friction coefficient of the embankment fill (f), the embankment height (h), and the pile clear spacing(s-a). Numerical results indicate that △s is a key factor governing the formation and features of soil arching in embankments. Tobe specific, soil arching gradually evolves from two inclined shear planes at a small △s to a hemispherical arch at a relatively largeAs. Then, with a continuous increase in △s, the soil arching height gradually increases and finally approaches a constant value of0.8(s-a) (i.e., the maximum soil arching height). For a given case, the higher the soil arching height, the greater the degree of soilarching effect. The parametric study shows that the friction coefficient of the embankment fill has a negligible influence on theformation and features of soil arching. However, embankment height is a key factor governing the formation and features of soilarching. In addition, pile clear spacing has a significant effect on the formation of soil arching, but not on its features.
基金Project supported by the National Natural Science Foundation of China(No.41772289)。
文摘In this study,2D and 3D soil arching phenomena associated with piled embankments were evaluated by performing a series of discrete numerical analyses using the particle flow code(PFC3D)software.After validating the micro-parameters with experimental results,we compared the stress-displacement distribution,force chain evolution,maximum vertical displacement of particles,and deformation characteristics induced by 2D and 3D arching effects.Additional analyses were carried out to understand the influence of the fill height,pile clear spacing,friction coefficient,and porosity on soil arching with respect to the stress concentration ratio(SCR)and settlement along the elevation at various sections.The numerical results indicated that a plane soil arch in a 2D embankment overestimates the degree of load transfer and underestimates the settlement at the crest and within the embankment along the elevation in a 3D embankment.A lower equal settlement plane can be found in a 2D embankment.Furthermore,an increase of fill height and friction angle,and a decrease of pile clear spacing and porosity can help to improve the degree of reduction in load transfer and settlement in both 2D and 3D embankments.However,for partially mobilized soil arching in the 3D condition,the increase of fill height reduces the settlement of soils mainly in the portion above the square subsoil area,but has less influence over the portion above the rectangular subsoil area.
基金Projects(51978084, 51678073) supported by the National Natural Science Foundation of ChinaProject(2020JJ4605) supported by the Natural Science Foundation of Hunan Province, ChinaProject(2019IC13) supported by the International Cooperation and Development Project of Double First-Class Scientific Research in Changsha University of Science & Technology, China。
文摘To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement and shear strain during the active failure of soil with height H and friction angle φ. The test results show that there are 3 stages of soil deformation under retaining wall translation: the initial stage, the expansion stage and the stability stage. The stable sliding surface in the model tests can be considered to be composed of two parts. Within the height range of 0.82 H-1.0 H, it is a plane at an angle of π/4+φ/2 to the horizontal plane. In the height range of 0-0.82 H, it is a curve between a logarithmic spiral and a plane at an angle of π/4+φ/2 to the horizontal. A new method applicable to any sliding surface is proposed for active earth pressure with the consideration of arching effect. The active earth pressure is computed with the actual shape of the slip surface and compared with model test data and with predictions obtained by existing methods. The comparison shows that predictions from the newly proposed method are more consistent with the measured data than the predictions from the other methods.
基金the National Key Research and Development Program of China(No.2017YFC1501305)the National Major Scientific Instruments and Equipment Development Projects of China(No.41827808)。
文摘The stability of an arching slope in deformable materials above strong rocks strongly depends on the shape and width of the span.Equations for a free surface problem that incorporate these two parameters were derived using a simplified two-dimensional arching slope model,and were validated using physical model tests under 1 g and centrifugal conditions.The results are used to estimate the maximum excavation width for a weak claystone slope in a lignite mine,for which we calculate a safety factor of 1.31.
基金Project (07JJ4015) supported by the Natural Science Foundation of Hunan Province, China
文摘To discuss the soil arching effect on the load transferring model and sharing ratios by the piles and inter-pile subsoil in the bidirectionally reinforced composite ground, the forming mechanism, mechanical behavior and its effect factors were discussed in detail. Then, the unified strength theory was introduced to set up the elastoplastic equilibrium differential equation of the subsoil under the limit equilibrium state. And from the equation, the solutions were derived with the corresponding formulas presented to calculate the earth pressure over and beneath the horizontal reinforced cushion or pillow, the stress of inter-pile subsoil and the pile-soil stress ratio. Based on the obtained solutions and measured data from an engineering project, the influence rules by the soil property parameters (i.e., the cohesion c and internal friction angle φ) and pile spacing on the pile-soil stress ratio n were discussed respectively. The results show that to improve the load sharing ratio by the piles, the more effective means for filling materials with a larger value of φ is to increase the ratio of pile cap size to spacing, while to reduce the pile spacing properly and increase the value of cohesion c is advisable for those filling materials with a smaller value of φ.
基金Natural Science Research Project of Anhui Educational Committee under Grant No.2022AH050844Anhui Provincial Natural Science Foundation of China under Grant No.2008085ME143+1 种基金the Doctoral Foundation of Anhui University of Science and Technology under Grant No.13190018Innovation and Entrepreneurship Training Program for College Students under Grant No.S202110361059。
文摘Piled embankments have many advantages that have been applied in high-speed railway construction engineering.However,the load transfer mechanism of piled embankments,such as soil arching and tension membranes,is still unclear,especially under dynamic loads.To investigate the soil arching and tension membrane under dynamic train loads on high-speed railways,a large-scale piled embankment model test with X-shaped piles as vertical reinforcement was performed,in which twenty-eight earth pressure cells were installed in the piled embankment and an M-shaped wave was adopted to simulate the high-speed railway train load.The results show that dynamic soil arching only occurs when two bogies of a carriage pass by and disappears at other times.The dynamic soil arching and membrane effect are the most significant under the concrete base.The arching height,stress concentration ratio and pile-soil load sharing ratio have a minimal value at 25 Hz.The dynamic soil arching degrades severely at 25 Hz,whose height at 25 Hz is only 0.35 times that at 5 Hz.The arching height fluctuates over a narrow range with increasing loading amplitude.The stress concentration ratio and the pile-soil load sharing ratio increase monotonically as the loading amplitude increases.
文摘The Tunnel Oberau, with a length of 2.9 km, forms the core of the local bypass of Oberau. Between the two massifs Kirchbichl and Mühlberg, the tunnel is situated in the valley of the Gießenbach in alluvial gravel with only a small overlap underneath settlement-sensitive buildings. In this paper, the measures in the tunnel to minimize the settlements of the buildings during the shotcrete excavations are described. Basis for this planning were extensive 3D-FE-calculations. Furthermore, under two buildings a compensation grouting measure was carried out, in order to compensate the occurring settlements. This paper describes how the required time and the amount of injection material (grout) could be reduced during the compensation grouting in highly permeable gravel.
文摘Seismic pile–slope stability analysis and the formation mechanism of soil arching have not been well studied. This study used a threedimensional(3D) finite difference to determine soil and pile parameter changes in the static and seismic stability of the pile–slope caused by the interaction between stabilizing piles. Pile–slope stability analysis was performed to determine the optimal design of piles along a slope and the corresponding failure mode involving the formation of soil arching around two adjacent piles. The Factor of Safety(FS) of the slope was evaluated using the shear strength reduction method for static and seismic analyses. The results of the analysis show that suitable pile spacing(S) and a suitable pile diameter(D) in the middle of a slope result in the maximum FS for the pile–slope system and the formation of soil arching around two adjacent piles. FS of the pile–slope increased negligibly in the seismic analysis of piles located at the slope crest and toe. An optimized pile diameter and installation location afforded the maximum FS for the slope that corresponded to a specified slope failure mode for different pile locations. A pile spacing S ≤ 2.5D for piles installed in the middle of the slope is suggested for increasing the static and seismic pile–slope stability.
基金Project(51508279) supported by the National Natural Science Foundation of ChinaProject(KFJ170104) supported by the Open Fund of National Engineering Laboratory of Highway Maintenance Technology of Changsha University of Science & Technology, China+1 种基金Project(BK20150885) supported by the Jiangsu Provincial Natural Science Fund, ChinaProject(2019003) supported by the Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering of Hohai University, China。
文摘In piled and geosynthetic-reinforced(PGR) embankment, the arching behavior determines the overburden load on piles and subsoils. Placement of geosynthetic is effective in reducing the relative displacement between pile and subsoil. When the mobilized shear stress is less than the shear strength, partially developed arching will occur. Consequently, existing analytical methods, adopting the ultimate shear strength failure criterion, need to be improved. This study developed a simplified 2 D analytical method, which is based on the developing arching effect, to evaluate the load redistribution of the PGR embankment. Then, the influences of embankment height and internal friction angle, subsoil depth, ratio of pile cap width to pile clear spacing(RPC) and geosynthetic tensile stiffness on the critical height ratio, stress concentration ratio, soil arching ratio, geosynthetic tension and axial strain were investigated. This study suggests that a RPC of 1:1.0 and a one-way of single-layer geosynthetic tensile stiffness of 2000 kN/m should be considered as the sensitivity thresholds for the PGR embankment.
基金Supported by the China Petrochemical Corporation.
文摘In this paper, a model is proposed for the prediction of the width of arching in hoppers resulted from sudden changes in solid feed rates. Such changes in solid feed rate usually come from the collision on the surface of the moving-bed in the standpipe. The model also takes into account the effect of the powder height in the standpipe of the hopper. The model proves to be adaptable for predicting operational conditions to avoid arching by keeping constant powder height in the main standpipe with interstitial gas flow.
文摘When the pore pressure in a porous rock changes, stress arching will occur within the rock and the surrounding region. Stress arching ratio is defined as the total stress changes in the porous rock to the pore pressure change in the region. The region may have the same or different elastic moduli with the surrounding rock, which is usually referred to as inclusion or inhomogeneity. Stress arching is responsible for many geomechanical problems encountered during production or injection; in addition, it is a crucial parameter in stress estimation during field development. This paper aims to present laboratory measurements of vertical stress arching ratio in a material surrounding the inclusion(inhomogeneity).To the authors’ knowledge, few laboratory experiments have been reported on direct measurement of stress arching. The inclusion is a cylindrical sandstone(44 mm in diameter and 50 mm in height)embedded in a larger cylindrical sandstone(150 mm in diameter and 154 mm in height), both of which are made synthetically. These two parts are separated and sealed by a internal polyurethane sleeve.Vertical stress changes are recorded by a mini hydraulic sensor embedded in surrounding rock. Laboratory results are compared to those obtained by numerical models. These models are checked with analytical formulations. The results of numerical models show a good agreement with laboratory data.The numerical results also indicate that the sensor response is affected by elastic properties of the internal sleeve. According to the sensitivity analysis performed, in the absence of the internal sleeve,properties of the inclusion have significant effects on the surrounding stress arching induced.
文摘Combined with practical engineering, based on the introduction of soil arching theory, we explore the impact of barrier piles in blind sheet-pile bank connecting structure. Besides, we build a plane strain model by ABAQUS sot'cware to study the impact of cross section type, the pile spacing and soil properties on soil arching effect. We find that cross section type of the pile has a certain influence on soil stress distribution in front of the barrier piles by comparing circular cross section and rectangular cross section. We also find that clear distance between the barrier piles and cohesive force of the soil have a great influence on that impact. We can increase clear distance between the barrier piles appropriately to improve the efficiency of construction and reduce the proiect cost.
基金Project(2022YJS073)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2024YFE0198500)supported by the National Key Research and Development Program of China:Intergovernmental International Science and Technology Innovation CooperationProject(U2469207)supported by the National Natural Science Foundation Railway Innovation and Development Joint Fund Project,China。
文摘Determining earth pressure on jacked pipes is essential for ensuring lining safety and calculating jacking force,especially for deep-buried pipes.To better reflect the soil arching effect resulting from the excavation of rectangular jacked pipes and the distribution of the earth pressure on jacked pipes,we present an analytical solution for predicting the vertical earth pressure on deep-buried rectangular pipe jacking tunnels,incorporating the tunnelling-induced ground loss distribution.Our proposed analytical model consists of the upper multi-layer parabolic soil arch and the lower friction arch.The key parameters(i.e.,width and height of friction arch B and height of parabolic soil arch H 1)are determined according to the existing research,and an analytical solution for K l is derived based on the distribution characteristics of the principal stress rotation angle.With consideration for the transition effect of the mechanical characteristics of the parabolic arch zone,an analytical solution for soil load transfer is derived.The prediction results of our analytical solution are compared with tests and simulation results to validate the effectiveness of the proposed analytical solution.Finally,the effects of different parameters on the soil pressure are discussed.