期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Surface Integrity Analysis of TC4 Machined by Combined Machining of Electric Arc-Mechanical Milling
1
作者 XIN Shaokun LI Xuezhi +2 位作者 ZHOU Jianping ZHANG Zhaoming ZUO Hang 《新疆大学学报(自然科学版中英文)》 2025年第2期225-237,共13页
To address problems in surface integrity and machining allowance distribution during combined electric arc-mechanical milling,this paper takes TC4 as the research object,examines the influence of electric arc milling(... To address problems in surface integrity and machining allowance distribution during combined electric arc-mechanical milling,this paper takes TC4 as the research object,examines the influence of electric arc milling(EAM)depth on recast layer thickness and surface roughness,alongside an analysis of the recast layer’s organization characteristics and sur-face morphology.A comparative evaluation of cutting forces,surface roughness,and surface hardening is conducted between combined milling and conventional mechanical milling.Key findings reveal that electric arc machining produces a recast layer with a hardness of 313.21 HV.As the EAM depth increases,the localized recast layer thickness and peak-to-valley(PV)differ-ences also rise.To ensure effective surface defect removal,the machining allowance for subsequent mechanical milling must exceed the combined thickness of the recast layer and the PV difference.Under identical parameters,combined milling yields higher surface roughness(0.584μm)and greater surface hardening(10.4%)compared to mechanical milling alone,alongside an 18.716 N increase in cutting force.Response surface methodology(RSM)analysis identifies feed per tooth as the most significant factor affecting surface roughness,followed by spindle speed,with milling depth having the least influence. 展开更多
关键词 combined electric arc-mechanical milling TC4 surface integrity machining allowances recast layer
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部