The character of droplet transfer arc light sense signal is studied and validated in oscillating feed mode. And a novel mini photoelectric arc light sensor together with the controlling circuit used to automatically...The character of droplet transfer arc light sense signal is studied and validated in oscillating feed mode. And a novel mini photoelectric arc light sensor together with the controlling circuit used to automatically stabilize the signal range is developed. Further more the automatically identifying of the droplet transfer character signal from arc light is realized reliably.展开更多
Metal device rapid prototyping with welding is one of the research interests at present. A controlled inertial droplet transfer MAG welding (CIDTMAGW) process was developed for the 3D steel device rapid prototyping wi...Metal device rapid prototyping with welding is one of the research interests at present. A controlled inertial droplet transfer MAG welding (CIDTMAGW) process was developed for the 3D steel device rapid prototyping with metal deposition. In this process, by using a special designed wire feeder, a controlled inertia is imposed on the droplet formed on the wire tip and combines with the arc force to make it detached. Thus, according to the requirements of rapid prototyping, the arc heat and the droplet detaching force can be separately controlled to attain a stable and satisfactory metal deposition process. A CIDTMAGW system and a testing manipulator for the 3D steel device rapid prototyping are presented. The required software is completed as well. The experiments proved that the geometric formation of the rapid prototyping device with welding deposition is well agreed the data of the device CAD modeling. The surface of the deposited device is comparatively smooth.展开更多
基金ThispaperissupportedbyNationalNaturalScienceFoundation (No .5 9775 0 62 )
文摘The character of droplet transfer arc light sense signal is studied and validated in oscillating feed mode. And a novel mini photoelectric arc light sensor together with the controlling circuit used to automatically stabilize the signal range is developed. Further more the automatically identifying of the droplet transfer character signal from arc light is realized reliably.
文摘Metal device rapid prototyping with welding is one of the research interests at present. A controlled inertial droplet transfer MAG welding (CIDTMAGW) process was developed for the 3D steel device rapid prototyping with metal deposition. In this process, by using a special designed wire feeder, a controlled inertia is imposed on the droplet formed on the wire tip and combines with the arc force to make it detached. Thus, according to the requirements of rapid prototyping, the arc heat and the droplet detaching force can be separately controlled to attain a stable and satisfactory metal deposition process. A CIDTMAGW system and a testing manipulator for the 3D steel device rapid prototyping are presented. The required software is completed as well. The experiments proved that the geometric formation of the rapid prototyping device with welding deposition is well agreed the data of the device CAD modeling. The surface of the deposited device is comparatively smooth.