The main objective of this investigation is to study the influence of arc constriction current frequency(ACCF)on tensile properties and microstructural evolution of aerospace Alloy 718 sheets(2 mm in thickness)joined ...The main objective of this investigation is to study the influence of arc constriction current frequency(ACCF)on tensile properties and microstructural evolution of aerospace Alloy 718 sheets(2 mm in thickness)joined by constricted arc TIG(CA-TIG)welding process.One variable at a time approach of design of experiments(DOE)was used,in which ACCF was varied from 4 to 20 kHz at an interval of 5 levels while other parameters were kept constant.The joints welded using ACCF of 4 kHz exhibited superior tensile properties extending joint efficiency up to 99.20%.It is attributed to the grain refinement in fusion zone leading to the evolution of finer,discrete Laves phase in interdendritic areas.An increase of ACCF above 12 kHz caused severe grain growth and evolution of coarser Laves phase in fusion zone.Alloy 718 welds showed more obvious tendency for Nb segregation and Laves phase formation at higher levels of ACCF due to the slower cooling rate.The volume fraction of Laves phase was increased by 62.31%at ACCF of 20 kHz compared to that at 4 kHz,thereby reducing the tensile properties of joints.This is mainly due to the stacking of heat input in weld thermal cycles at increased levels of ACCF.展开更多
The influence of laser parameters on are beharior of laser-TIC, dauble-side welding was investigated by utilizing CCD sensor and intage processing methods. It was found that are images had an obvious transformation fr...The influence of laser parameters on are beharior of laser-TIC, dauble-side welding was investigated by utilizing CCD sensor and intage processing methods. It was found that are images had an obvious transformation from laser preheating to laser plasma ejected from the keyhole bottom, resulting in the phenomena of arc column convergence and arc root constrictian. The attraction phenomenon of the laser and the arc is also found in laser-TIG double-side welding. More noteworthy is that the behavior of arc attraction or constriction became much obvious at a lower current or laser plasma ejected from the keyhole bottom. The decrease in arc voltage had a certain relation u'ith the improvement of arc stabilio.展开更多
Ultra-narrow gap welding (UNGW) process with high stabilization, reliability and without spatter can be achieved with constricted arc by molten slag wall, which is made from melted flux. The experiments are carried ...Ultra-narrow gap welding (UNGW) process with high stabilization, reliability and without spatter can be achieved with constricted arc by molten slag wall, which is made from melted flux. The experiments are carried out by changing voltage under different currents. The results indicate voltage range being fit for UNGW is about 22 -31 V under the current range of 200 -320 A. With the increasing of voltage, weld formation of UNGW has the law of lack of fusion on sidewall, good weld and undercut in turn under a certain current. In addition, the action relationships among arc, molten slag wall and sidewalls can be improved by properly adjusting voltage and current of arc, which makes cathode spot properly distribute in ultra-narrow gap. Therefore, the effective control of weld formation of UNGW has been achieved.展开更多
The magnetically constricted arc technique was implemented to mitigate the heat input related metallurgical problems in Gas Tungsten Arc Welding(GTAW)of Inconel 718 alloy particularly Nb segregation and subsequent lav...The magnetically constricted arc technique was implemented to mitigate the heat input related metallurgical problems in Gas Tungsten Arc Welding(GTAW)of Inconel 718 alloy particularly Nb segregation and subsequent laves phase evolution in fusion zone.This paper reports the direct effect of magnetically constricted arc traverse speed(MCATS)on bead profile,tensile properties and microstructural evolution of Inconel 718 alloy sheets joined by Gas Tungsten Constricted Arc Welding(GTCAW)process.The mechanism amenable for the microstructural modification and corresponding influence on the tensile properties of joints is investigated both in qualitative and quantitative manner related to the mechanics of arc constriction and pulsing.It is correlated to the solidification conditions during welding.The relationship between MCATS and Arc Constriction Current(ACC)was derived.Its interaction effect on the magnetic arc constriction and joint performance was analysed.Results showed that the joints fabricated using CATS of 70 mm/min exhibited superior tensile properties(98.39% of base metal strength with 31.50% elongation).It is attributed to the grain refinement in fusion zone microstructure leading to the evolution of finer,discrete laves phase in interdendritic areas.展开更多
基金This work was supported by the Indian Space Research Organization(ISRO),Department of Space,India,under ISRO RESPOND scheme(Project No.ISRO/RES/3/728/16-17).
文摘The main objective of this investigation is to study the influence of arc constriction current frequency(ACCF)on tensile properties and microstructural evolution of aerospace Alloy 718 sheets(2 mm in thickness)joined by constricted arc TIG(CA-TIG)welding process.One variable at a time approach of design of experiments(DOE)was used,in which ACCF was varied from 4 to 20 kHz at an interval of 5 levels while other parameters were kept constant.The joints welded using ACCF of 4 kHz exhibited superior tensile properties extending joint efficiency up to 99.20%.It is attributed to the grain refinement in fusion zone leading to the evolution of finer,discrete Laves phase in interdendritic areas.An increase of ACCF above 12 kHz caused severe grain growth and evolution of coarser Laves phase in fusion zone.Alloy 718 welds showed more obvious tendency for Nb segregation and Laves phase formation at higher levels of ACCF due to the slower cooling rate.The volume fraction of Laves phase was increased by 62.31%at ACCF of 20 kHz compared to that at 4 kHz,thereby reducing the tensile properties of joints.This is mainly due to the stacking of heat input in weld thermal cycles at increased levels of ACCF.
文摘The influence of laser parameters on are beharior of laser-TIC, dauble-side welding was investigated by utilizing CCD sensor and intage processing methods. It was found that are images had an obvious transformation from laser preheating to laser plasma ejected from the keyhole bottom, resulting in the phenomena of arc column convergence and arc root constrictian. The attraction phenomenon of the laser and the arc is also found in laser-TIG double-side welding. More noteworthy is that the behavior of arc attraction or constriction became much obvious at a lower current or laser plasma ejected from the keyhole bottom. The decrease in arc voltage had a certain relation u'ith the improvement of arc stabilio.
基金The work was supported by National Natural Science Foundation of China (51105185) and Advanced Project Foundation of Jinchuan Company(420032).
文摘Ultra-narrow gap welding (UNGW) process with high stabilization, reliability and without spatter can be achieved with constricted arc by molten slag wall, which is made from melted flux. The experiments are carried out by changing voltage under different currents. The results indicate voltage range being fit for UNGW is about 22 -31 V under the current range of 200 -320 A. With the increasing of voltage, weld formation of UNGW has the law of lack of fusion on sidewall, good weld and undercut in turn under a certain current. In addition, the action relationships among arc, molten slag wall and sidewalls can be improved by properly adjusting voltage and current of arc, which makes cathode spot properly distribute in ultra-narrow gap. Therefore, the effective control of weld formation of UNGW has been achieved.
基金funded by Indian Space Research Organization (ISRO) India. Project No. ISRO/RES/3/728/16e17
文摘The magnetically constricted arc technique was implemented to mitigate the heat input related metallurgical problems in Gas Tungsten Arc Welding(GTAW)of Inconel 718 alloy particularly Nb segregation and subsequent laves phase evolution in fusion zone.This paper reports the direct effect of magnetically constricted arc traverse speed(MCATS)on bead profile,tensile properties and microstructural evolution of Inconel 718 alloy sheets joined by Gas Tungsten Constricted Arc Welding(GTCAW)process.The mechanism amenable for the microstructural modification and corresponding influence on the tensile properties of joints is investigated both in qualitative and quantitative manner related to the mechanics of arc constriction and pulsing.It is correlated to the solidification conditions during welding.The relationship between MCATS and Arc Constriction Current(ACC)was derived.Its interaction effect on the magnetic arc constriction and joint performance was analysed.Results showed that the joints fabricated using CATS of 70 mm/min exhibited superior tensile properties(98.39% of base metal strength with 31.50% elongation).It is attributed to the grain refinement in fusion zone microstructure leading to the evolution of finer,discrete laves phase in interdendritic areas.