We propose a scheme for the teleportation of an arbitrary two-atom state by using two pairs of two-atom nonmaximally entangled states as the quantum channel in cavity QED. It is Shown that no matter whether the arbitr...We propose a scheme for the teleportation of an arbitrary two-atom state by using two pairs of two-atom nonmaximally entangled states as the quantum channel in cavity QED. It is Shown that no matter whether the arbitrary two-atom pure state to be teleported is entangled or not, our teleportation scheme can always be probabilistically realized. The success prohability of teleportation is determined by the smaller coemcients of the two initially entangled atom pairs.展开更多
Higher-order topological insulators,which host topologically protected states at boundaries that are at least two dimensions lower than the bulk,are an emerging class of topological materials.They provide great opport...Higher-order topological insulators,which host topologically protected states at boundaries that are at least two dimensions lower than the bulk,are an emerging class of topological materials.They provide great opportunities for exploring novel topological phenomena and fascinating applications.Utilizing a low-temperature scanning tunneling microscope,we construct breathing-kagome lattices with Fe adatoms on Ag(111)and investigate their electronic properties.We observe the higher-order topological boundary states in the topological phase but not in the trivial one,which is consistent with the theory.These states are found to be robust against the removal of bulk or edge adatoms.Further,we show the arbitrary positioning of these states either at corner,edge,or bulk sites by slightly modifying their neighbors.Our study not only demonstrates the formation and robustness of the electronic higher-order topological boundary states in real atomic systems but also provides a route for controlling their positions.展开更多
A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two ...A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.展开更多
A new representation of an arbitrary and unknown N-particle state is presented at first. As an application, a scheme for teleporting an arbitrary and unknown N-particle state is proposed when N pairs of two-particle n...A new representation of an arbitrary and unknown N-particle state is presented at first. As an application, a scheme for teleporting an arbitrary and unknown N-particle state is proposed when N pairs of two-particle non- maximally entangled states are utilized as quantum channels. After Alice (sender) makes Bell-state measurement on her particles, Bob (recipient) introduces an auxiliary particle and carries out appropriate unitary transformation on his particle and the auxiliary particle depending on classical information from Alice. Then, von Neumann measurement that confirms whether the teleportation succeeds or not is performed by Bob on the auxiliary particle. In order to complete the teleportation, another N-1 times operations need to be performed which are similar to the above ones. It can be successfully realized with a certain probability which is determined by the product of the smaller coefficients of non-maximally entangled pairs. All possible unitary transformations are given in detail.展开更多
An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity i...An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom-cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger-Horne-Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.展开更多
This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state t...This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.展开更多
A scheme of teleportation of an arbitrary three-particle state is presented when three pairs of entangled particles are used as quantum channels. After the Bell state measurements are operated by the sender, the origi...A scheme of teleportation of an arbitrary three-particle state is presented when three pairs of entangled particles are used as quantum channels. After the Bell state measurements are operated by the sender, the original state with deterministic probability can be reconstructed by the receiver when a corresponding unitary transformation is followed.展开更多
A scheme for remotely preparing a two-atom entangled state via entanglement swapping in cavity quantum electronic dynamics (QED) with the help of separate measurements is proposed. And the effect of cavity decay is ...A scheme for remotely preparing a two-atom entangled state via entanglement swapping in cavity quantum electronic dynamics (QED) with the help of separate measurements is proposed. And the effect of cavity decay is eliminated in our scheme.展开更多
We present a scheme for teleporting an unknown arbitrary two-particle state from a sender to either one of two receivers. The quantum channel is composed of two partial entangled three-particle GHZ states. An unknown ...We present a scheme for teleporting an unknown arbitrary two-particle state from a sender to either one of two receivers. The quantum channel is composed of two partial entangled three-particle GHZ states. An unknown arbitrary two-particle state can be perfectly teleported probabilistically if the sender performs two generalized Bell-state measurements and each receiver introduces an appropriate unitary transformation with the help of the other receiver's Hadamard operations and simple measurements.展开更多
Two simple schemes for probabilistic teleportation of an arbitrary unknown two-particle state using a non-maximally entangled EPR pair and a non-maximally entangled GHZ state as quantum channels are proposed. After re...Two simple schemes for probabilistic teleportation of an arbitrary unknown two-particle state using a non-maximally entangled EPR pair and a non-maximally entangled GHZ state as quantum channels are proposed. After receiving Alice's Bell state measurement results, Bob performs a collective unitary transformation on his inherent particles without introducing the auxiliary qubit. The original state can be probabilistically teleported. Meanwhile, quantum circuits for realization of successful teleportation are also presented.展开更多
A scheme for controlled teleportation of an arbitrary two-particle state using a maximally entangled EPR pair and a cluster state as the quantum channel is proposed. After receiving Alice's Bell state measurement res...A scheme for controlled teleportation of an arbitrary two-particle state using a maximally entangled EPR pair and a cluster state as the quantum channel is proposed. After receiving Alice's Bell state measurement results, the controller performs a joint measurement on his particles under a non-maximally entangled Bell-basis. The receiver needs to introduce an auxiliary qubit, and performs a series of appropriate unitary transformations on his particles. The original state can be teleported successfully with the probability 2 cos2θ.展开更多
A tripartite scheme for securely sharing an arbitrary unknown two-qutrit state is proposed, where two generalized Greenberger-Horne-Zeilinger (GHZ) states serve as the quantum channel linking the three legitimate pa...A tripartite scheme for securely sharing an arbitrary unknown two-qutrit state is proposed, where two generalized Greenberger-Horne-Zeilinger (GHZ) states serve as the quantum channel linking the three legitimate parties. The quantum information (i.e., the arbitrary unknown two-qutrit state) from the sender can be split in such a way that it can be reconstructed deterministically by any agent via a proper unitary operation provided that both agents collaborates together. Moreover, the generalization of the tripartite scheme to more-party case is also outlined.展开更多
Based on A.K. Pati's original idea [Phys. Rev. A 61 (2000) 022308] on single-qubit-state-assisted clone, very recently Zhan has proposed two assisted quantum cloning protocols of a special class of unknown two-qubi...Based on A.K. Pati's original idea [Phys. Rev. A 61 (2000) 022308] on single-qubit-state-assisted clone, very recently Zhan has proposed two assisted quantum cloning protocols of a special class of unknown two-qubit entangled states [Phys. Lett. A 336 (2005) 317]. In this paper we further generalize Zhan's protocols such that an arbitrary unknown two-qubit entangled state can be treated.展开更多
A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alic...A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alice), a controller (Charlie), and a receiver (Bob). Both the sender and controller only need to perform Bell-state measurements (BSMs), the receiver can reconstruct the arbitrary three-qubit state by performing some appropriately unitary transformations on his qubits after he knows the measured results of both the sender and the controller. This QIS scheme is deterministic.展开更多
We propose a scheme for teleporting a two-atom entangled state in cavity quantum electrodynamics (QED), In the scheme, we choose a single Einstein Podolsky Rosen (EPR) pair as the quantmn channel which is shared b...We propose a scheme for teleporting a two-atom entangled state in cavity quantum electrodynamics (QED), In the scheme, we choose a single Einstein Podolsky Rosen (EPR) pair as the quantmn channel which is shared by the sender and the receiver. By using the atom cavity-field interaction and introducing an additional atom, we can teleport the two-atom entangled state successfully with a probability of 1.0. Moreover, we show that the scheme is insensitive to cavity decay and thermal field.展开更多
This paper proposes a scheme where one can realize quantum cloning of an unknown two-atom entangled state with assistance of a state preparer in cavity QED. The first stage of the scheme requires usual teleportation. ...This paper proposes a scheme where one can realize quantum cloning of an unknown two-atom entangled state with assistance of a state preparer in cavity QED. The first stage of the scheme requires usual teleportation. In the second stage of the scheme, with the assistance of the preparer, the perfect copies of an unknown atomic entangled state can be produced.展开更多
In this paper we propose a tripartite scheme for splitting an arbitrary 2-qubit quantum information by using two asymmetric W states as the quantum channel. In the schemem if the two recipients collaborate together, t...In this paper we propose a tripartite scheme for splitting an arbitrary 2-qubit quantum information by using two asymmetric W states as the quantum channel. In the schemem if the two recipients collaborate together, they can deterministically recover the quantum information by performing first a 4-qubit collective unitary operation and then two single-qubit unitary operations. In addition, since the asymmetric W states are employed as the quantum channel, the scheme is robust against decoherence.展开更多
We demonstrate that four sets of W-class states can be used to realize the deterministic quantum information splitting of an arbitrary three-atom state in cavity QED.The scheme does not involve Bell-state measurement ...We demonstrate that four sets of W-class states can be used to realize the deterministic quantum information splitting of an arbitrary three-atom state in cavity QED.The scheme does not involve Bell-state measurement and is insensitive to both the cavity decay and the thermal field.展开更多
The scheme for probabilistic teleportation of an arbitrary three-particle state is proposed. By using single qubit gate and three two-qubit gates, efficient quantum logic networks for probabilistic teleportation of an...The scheme for probabilistic teleportation of an arbitrary three-particle state is proposed. By using single qubit gate and three two-qubit gates, efficient quantum logic networks for probabilistic teleportation of an arbitrary three-particle state are constructed.展开更多
Quantum discord in any mixture of two bi-qubit arbitrary product states is studied with two different approaches. In the first approach the maximM classicM correlations are obtained via numerical computations, while i...Quantum discord in any mixture of two bi-qubit arbitrary product states is studied with two different approaches. In the first approach the maximM classicM correlations are obtained via numerical computations, while in the second approach they are analytically derived. Quantum correlations captured with both approaches completely coincide, as is in accord with the conclusion of Cen et al. [Phys. Rev. A 83 (2011) 054101]. The symmetry reduction of the concerned states concerning quantum correlations is accomplished. The captured discords are amply analyzed so that some inherent distinct properties are revealed.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 60578050
文摘We propose a scheme for the teleportation of an arbitrary two-atom state by using two pairs of two-atom nonmaximally entangled states as the quantum channel in cavity QED. It is Shown that no matter whether the arbitrary two-atom pure state to be teleported is entangled or not, our teleportation scheme can always be probabilistically realized. The success prohability of teleportation is determined by the smaller coemcients of the two initially entangled atom pairs.
基金supported by the National Key R&D Program of China(Grant Nos.2024YFA140850,2022YFA1403601,and 2023YFC2410501)the National Natural Science Foundation of China(Grants Nos.12241402,12474059,12274203,12374113,and 12274204)。
文摘Higher-order topological insulators,which host topologically protected states at boundaries that are at least two dimensions lower than the bulk,are an emerging class of topological materials.They provide great opportunities for exploring novel topological phenomena and fascinating applications.Utilizing a low-temperature scanning tunneling microscope,we construct breathing-kagome lattices with Fe adatoms on Ag(111)and investigate their electronic properties.We observe the higher-order topological boundary states in the topological phase but not in the trivial one,which is consistent with the theory.These states are found to be robust against the removal of bulk or edge adatoms.Further,we show the arbitrary positioning of these states either at corner,edge,or bulk sites by slightly modifying their neighbors.Our study not only demonstrates the formation and robustness of the electronic higher-order topological boundary states in real atomic systems but also provides a route for controlling their positions.
文摘A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.
文摘A new representation of an arbitrary and unknown N-particle state is presented at first. As an application, a scheme for teleporting an arbitrary and unknown N-particle state is proposed when N pairs of two-particle non- maximally entangled states are utilized as quantum channels. After Alice (sender) makes Bell-state measurement on her particles, Bob (recipient) introduces an auxiliary particle and carries out appropriate unitary transformation on his particle and the auxiliary particle depending on classical information from Alice. Then, von Neumann measurement that confirms whether the teleportation succeeds or not is performed by Bob on the auxiliary particle. In order to complete the teleportation, another N-1 times operations need to be performed which are similar to the above ones. It can be successfully realized with a certain probability which is determined by the product of the smaller coefficients of non-maximally entangled pairs. All possible unitary transformations are given in detail.
基金Project supported by the National Natural Science Foundation of China (Grant No 10225421).
文摘An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom-cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger-Horne-Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.
文摘A scheme of teleportation of an arbitrary three-particle state is presented when three pairs of entangled particles are used as quantum channels. After the Bell state measurements are operated by the sender, the original state with deterministic probability can be reconstructed by the receiver when a corresponding unitary transformation is followed.
基金Project supported by the National Natural Science Foundation of China (Grant No 60261002) and the Science Foundation of Yanbian University (Grant No 2005-20).
文摘A scheme for remotely preparing a two-atom entangled state via entanglement swapping in cavity quantum electronic dynamics (QED) with the help of separate measurements is proposed. And the effect of cavity decay is eliminated in our scheme.
文摘We present a scheme for teleporting an unknown arbitrary two-particle state from a sender to either one of two receivers. The quantum channel is composed of two partial entangled three-particle GHZ states. An unknown arbitrary two-particle state can be perfectly teleported probabilistically if the sender performs two generalized Bell-state measurements and each receiver introduces an appropriate unitary transformation with the help of the other receiver's Hadamard operations and simple measurements.
基金The project supported by the Natural Science Foundation of Jiangsu Province of China under Grant No. Q1108404
文摘Two simple schemes for probabilistic teleportation of an arbitrary unknown two-particle state using a non-maximally entangled EPR pair and a non-maximally entangled GHZ state as quantum channels are proposed. After receiving Alice's Bell state measurement results, Bob performs a collective unitary transformation on his inherent particles without introducing the auxiliary qubit. The original state can be probabilistically teleported. Meanwhile, quantum circuits for realization of successful teleportation are also presented.
基金Supported by the National Natural Science Foundation of China under Grant No. 10774108the Foundation for University Key Young Teacher of Henan Province under Grant No. 2009GGJS-163
文摘A scheme for controlled teleportation of an arbitrary two-particle state using a maximally entangled EPR pair and a cluster state as the quantum channel is proposed. After receiving Alice's Bell state measurement results, the controller performs a joint measurement on his particles under a non-maximally entangled Bell-basis. The receiver needs to introduce an auxiliary qubit, and performs a series of appropriate unitary transformations on his particles. The original state can be teleported successfully with the probability 2 cos2θ.
基金The project partly supported by the Program of New Century Excellent Talents at the Universities of China under Grant No.NCET06-0554National Natural Science Foundation of China under Grant No.60677001+3 种基金the Science-Technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the General Fund of the Educational Committee of Anhui Province under Grant No.2006KJ260Bthe Postgraduate Innovation Research Plan from Anhui University under Grant No.20073039
文摘A tripartite scheme for securely sharing an arbitrary unknown two-qutrit state is proposed, where two generalized Greenberger-Horne-Zeilinger (GHZ) states serve as the quantum channel linking the three legitimate parties. The quantum information (i.e., the arbitrary unknown two-qutrit state) from the sender can be split in such a way that it can be reconstructed deterministically by any agent via a proper unitary operation provided that both agents collaborates together. Moreover, the generalization of the tripartite scheme to more-party case is also outlined.
基金The project supported by National Natural Science Foundation of China under Grant No. 10304022, the Science-Technology Fund of Anhui Province for 0utstanding Youth under Grant No. 06042087, the Key Fund of the Ministry of Education of China under Grant No. 206063, Natural Science Foundation of Hubei Province of China under Grant No, 2006ABA354
文摘Based on A.K. Pati's original idea [Phys. Rev. A 61 (2000) 022308] on single-qubit-state-assisted clone, very recently Zhan has proposed two assisted quantum cloning protocols of a special class of unknown two-qubit entangled states [Phys. Lett. A 336 (2005) 317]. In this paper we further generalize Zhan's protocols such that an arbitrary unknown two-qubit entangled state can be treated.
基金*Supported by the National Natural Science Foundation of China under Grant No. 60807014, the Natural Science Foundation of Jiangxi Province of China under Grant No. 2009GZW0005, the Research Foundation of state key laboratory of advanced optical communication systems and networks, and the Research Foundation of the Education Department of Jiangxi Province under Grant No. G J J09153
文摘A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alice), a controller (Charlie), and a receiver (Bob). Both the sender and controller only need to perform Bell-state measurements (BSMs), the receiver can reconstruct the arbitrary three-qubit state by performing some appropriately unitary transformations on his qubits after he knows the measured results of both the sender and the controller. This QIS scheme is deterministic.
基金Project supported by the Science Foundation of Yanbian University, China (Grant No 2005-20).
文摘We propose a scheme for teleporting a two-atom entangled state in cavity quantum electrodynamics (QED), In the scheme, we choose a single Einstein Podolsky Rosen (EPR) pair as the quantmn channel which is shared by the sender and the receiver. By using the atom cavity-field interaction and introducing an additional atom, we can teleport the two-atom entangled state successfully with a probability of 1.0. Moreover, we show that the scheme is insensitive to cavity decay and thermal field.
文摘This paper proposes a scheme where one can realize quantum cloning of an unknown two-atom entangled state with assistance of a state preparer in cavity QED. The first stage of the scheme requires usual teleportation. In the second stage of the scheme, with the assistance of the preparer, the perfect copies of an unknown atomic entangled state can be produced.
基金supported by Program for New Century Excellent Talents in Universities of China under Grant No.NCET-06-0554the National Natural Science Foundation of China under Grant Nos.60677001 and 10747146+3 种基金the Science-Technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806the Talent Foundation of High Education of Anhui Province for Outstanding Youth under Grant No.2009SQRZ056
文摘In this paper we propose a tripartite scheme for splitting an arbitrary 2-qubit quantum information by using two asymmetric W states as the quantum channel. In the schemem if the two recipients collaborate together, they can deterministically recover the quantum information by performing first a 4-qubit collective unitary operation and then two single-qubit unitary operations. In addition, since the asymmetric W states are employed as the quantum channel, the scheme is robust against decoherence.
基金Supported by the National Natural Science Foundation of China under Grant No. 60807014the Natural Science Foundation of Jiangxi Province under Grant No. 2009GZW0005+1 种基金the Research Foundation of State Key Laboratory of Advanced Optical Communication Systemsand Networks,Shanghai Jiao Tong Universitythe Research Foundation of the Education Department of Jiangxi Province under GrantNo. GJJ09153
文摘We demonstrate that four sets of W-class states can be used to realize the deterministic quantum information splitting of an arbitrary three-atom state in cavity QED.The scheme does not involve Bell-state measurement and is insensitive to both the cavity decay and the thermal field.
文摘The scheme for probabilistic teleportation of an arbitrary three-particle state is proposed. By using single qubit gate and three two-qubit gates, efficient quantum logic networks for probabilistic teleportation of an arbitrary three-particle state are constructed.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos.20103401110007,20123401110008the National Natural Science Foundation of China under Grant Nos.10975001,11375011,51072002,and 51272003+1 种基金the Program for Excellent Talents at the University of Guangdong Province(Guangdong Teacher Letter[1010]No.79)the 211 Project of Anhui University
文摘Quantum discord in any mixture of two bi-qubit arbitrary product states is studied with two different approaches. In the first approach the maximM classicM correlations are obtained via numerical computations, while in the second approach they are analytically derived. Quantum correlations captured with both approaches completely coincide, as is in accord with the conclusion of Cen et al. [Phys. Rev. A 83 (2011) 054101]. The symmetry reduction of the concerned states concerning quantum correlations is accomplished. The captured discords are amply analyzed so that some inherent distinct properties are revealed.