This paper is concerned with the problem of global output feedback stabilization in probability for a class of switched stochastic nonlinear systems under arbitrary switchings. The subsystems are assumed to be in outp...This paper is concerned with the problem of global output feedback stabilization in probability for a class of switched stochastic nonlinear systems under arbitrary switchings. The subsystems are assumed to be in output feedback form and driven by white noise. By introducing a common Lyapunov function, the common output feedback controller independent of switching signals is constructed based on the backstepping approach. It is proved that the zero solution of the closed-loop system is fourth-moment exponentially stable. An example is given to show the effectiveness of the proposed method.展开更多
This paper addresses the stability problem for a class of switched nonlinear time varying delay systems modeled by delay differential equations. By transforming the system representation under the arrow form and using...This paper addresses the stability problem for a class of switched nonlinear time varying delay systems modeled by delay differential equations. By transforming the system representation under the arrow form and using a new constructed Lyapunov function,the aggregation techniques,the Borne-Gentina practical stability criterion associated with the properties, new delay-independent stability conditions of the considered systems are established. Compared with the existing results in this area, the obtained result is explicit, simple to use and allows us to avoid the problem of searching a common Lyapunov function. Finally, an example is provided, with numerical simulations,to demonstrate the effectiveness of the proposed method.展开更多
This paper is concerned with the problems of robust admissibility and static output feedback( SOF)stabilization for a class of discrete-time switched singular systems with norm-bounded parametric uncertainties.The obj...This paper is concerned with the problems of robust admissibility and static output feedback( SOF)stabilization for a class of discrete-time switched singular systems with norm-bounded parametric uncertainties.The objective is to design a suitable robust SOF controller guaranteeing the regularity,causality and asymptotic stability of the resulting closed-loop system under arbitrary switching laws. Based on the basic matrix inequality sufficient condition for checking the admissibility of switched singular systems,together with some matrix inequality convexifying techniques,the SOF controller synthesis is developed for the underlying systems. It is shown that the controller gains can be obtained by solving a set of strict linear matrix inequalities( LMIs). A simulation example is given to show the effectiveness of the proposed method.展开更多
基金supported by National Basic Research Program of China(973 Program)(No.2012CB821205)National Natural Science Foundation of China(Nos.61021002 and 61203125)Fundamental Research Funds for the Central Universities(No.HIT.NSRIF.2013039)
文摘This paper is concerned with the problem of global output feedback stabilization in probability for a class of switched stochastic nonlinear systems under arbitrary switchings. The subsystems are assumed to be in output feedback form and driven by white noise. By introducing a common Lyapunov function, the common output feedback controller independent of switching signals is constructed based on the backstepping approach. It is proved that the zero solution of the closed-loop system is fourth-moment exponentially stable. An example is given to show the effectiveness of the proposed method.
文摘This paper addresses the stability problem for a class of switched nonlinear time varying delay systems modeled by delay differential equations. By transforming the system representation under the arrow form and using a new constructed Lyapunov function,the aggregation techniques,the Borne-Gentina practical stability criterion associated with the properties, new delay-independent stability conditions of the considered systems are established. Compared with the existing results in this area, the obtained result is explicit, simple to use and allows us to avoid the problem of searching a common Lyapunov function. Finally, an example is provided, with numerical simulations,to demonstrate the effectiveness of the proposed method.
基金Sponsored by the National Natural Science Foundation of China Grant No.61004038
文摘This paper is concerned with the problems of robust admissibility and static output feedback( SOF)stabilization for a class of discrete-time switched singular systems with norm-bounded parametric uncertainties.The objective is to design a suitable robust SOF controller guaranteeing the regularity,causality and asymptotic stability of the resulting closed-loop system under arbitrary switching laws. Based on the basic matrix inequality sufficient condition for checking the admissibility of switched singular systems,together with some matrix inequality convexifying techniques,the SOF controller synthesis is developed for the underlying systems. It is shown that the controller gains can be obtained by solving a set of strict linear matrix inequalities( LMIs). A simulation example is given to show the effectiveness of the proposed method.