期刊文献+
共找到3,571篇文章
< 1 2 179 >
每页显示 20 50 100
Prediction of total nitrogen in water based on UV spectroscopy and Bayesian optimized least squares support vector machine
1
作者 ZHENG Peichao YANG Qin +3 位作者 LI Chenglin YIN Xukun WANG Jinmei GUO Lianbo 《Optoelectronics Letters》 2025年第11期698-704,共7页
The total nitrogen(TN)is a major factor contributing to eutrophication and is a crucial parameter in assessing surface water quality.Accurate and rapid methods are crucial for determining the TN content in water.Herei... The total nitrogen(TN)is a major factor contributing to eutrophication and is a crucial parameter in assessing surface water quality.Accurate and rapid methods are crucial for determining the TN content in water.Herein,a fast,highly sensitive,and pollution-free approach is proposed,which combines ultraviolet(UV)absorption spectroscopy with Bayesian optimized least squares support vector machine(LSSVM)for detecting TN content in water.Water samples collected from sampling points near the Yangtze River basin in Chongqing of China were analyzed using national standard methods to measure TN content as reference values.The prediction of TN content in water was achieved by integrating the UV absorption spectra of water samples with LSSVM.To make the model quickly and accurately select the optimal parameters to improve the accuracy of the prediction model,the Bayesian optimization(BO)algorithm was used to optimize the parameters of the LSSVM.Results show that the prediction model performs well in predicting TN concentration,with a high coefficient of prediction determination(R^(2)=0.9413)and a low root mean square error of prediction(RMSE=0.0779 mg/L).Comparative analysis with previous studies indicates that the model used in this paper achieves lower prediction errors and superior predictive performance. 展开更多
关键词 Bayesian optimization EUTROPHICATION total nitrogen tn bayesian optimized least squares support vector machine lssvm least squares support vector machine assessing surface water water quality total nitrogen
原文传递
Research on an Air Pollutant Data Correction Method Based on Bayesian Optimization Support Vector Machine
2
作者 Xingfu Ou Miao Zhang Wenfeng Chen 《Journal of Electronic Research and Application》 2025年第4期190-203,共14页
Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by... Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by environmental interference and sensor drift,highlighting the need for effective calibration methods to improve data reliability.This study proposes a data correction method based on Bayesian Optimization Support Vector Regression(BO-SVR),which combines the nonlinear modeling capability of Support Vector Regression(SVR)with the efficient global hyperparameter search of Bayesian Optimization.By introducing cross-validation loss as the optimization objective and using Gaussian process modeling with an Expected Improvement acquisition strategy,the approach automatically determines optimal hyperparameters for accurate pollutant concentration prediction.Experiments on real-world micro-sensor datasets demonstrate that BO-SVR outperforms traditional SVR,grid search SVR,and random forest(RF)models across multiple pollutants,including PM_(2.5),PM_(10),CO,NO_(2),SO_(2),and O_(3).The proposed method achieves lower prediction residuals,higher fitting accuracy,and better generalization,offering an efficient and practical solution for enhancing the quality of micro-sensor air monitoring data. 展开更多
关键词 Air quality monitoring Data calibration support vector regression Bayesian optimization machine learning
在线阅读 下载PDF
A new support vector machine optimized by improved particle swarm optimization and its application 被引量:3
3
作者 李翔 杨尚东 乞建勋 《Journal of Central South University of Technology》 EI 2006年第5期568-572,共5页
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ... A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM. 展开更多
关键词 support vector machine particle swarm optimization algorithm short-term load forecasting simulated annealing
在线阅读 下载PDF
Optimized Complex Power Quality Classifier Using One vs. Rest Support Vector Machines 被引量:1
4
作者 David De Yong Sudipto Bhowmik Fernando Magnago 《Energy and Power Engineering》 2017年第10期568-587,共20页
Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power ... Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power quality classification techniques focused on single power quality events and did not include an optimal feature selection process. This paper presents a classification system that employs Wavelet Transform and the RMS profile to extract the main features of the measured waveforms containing either single or complex disturbances. A data mining process is designed to select the optimal set of features that better describes each disturbance present in the waveform. Support Vector Machine binary classifiers organized in a “One Vs Rest” architecture are individually optimized to classify single and complex disturbances. The parameters that rule the performance of each binary classifier are also individually adjusted using a grid search algorithm that helps them achieve optimal performance. This specialized process significantly improves the total classification accuracy. Several single and complex disturbances were simulated in order to train and test the algorithm. The results show that the classifier is capable of identifying >99% of single disturbances and >97% of complex disturbances. 展开更多
关键词 Complex Power Quality optimal Feature Selection ONE vs. REST support vector machine Learning Algorithms WAVELET Transform Pattern Recognition
暂未订购
HHO optimized support vector machine classifier for traditional Chinese medicine syndrome differentiation of diabetic retinopathy 被引量:1
5
作者 Li Xiao Cheng-Wu Wang +4 位作者 Ying Deng Yi-Jing Yang Jing Lu Jun-Feng Yan Qing-Hua Peng 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第6期991-1000,共10页
AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intel... AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intelligent syndrome differentiation.METHODS:Collated data on real-world DR cases were collected.A variety of machine learning methods were used to construct TCM syndrome classification model,and the best performance was selected as the basic model.Genetic Algorithm(GA)was used for feature selection to obtain the optimal feature combination.Harris Hawk Optimization(HHO)was used for parameter optimization,and a classification model based on feature selection and parameter optimization was constructed.The performance of the model was compared with other optimization algorithms.The models were evaluated with accuracy,precision,recall,and F1 score as indicators.RESULTS:Data on 970 cases that met screening requirements were collected.Support Vector Machine(SVM)was the best basic classification model.The accuracy rate of the model was 82.05%,the precision rate was 82.34%,the recall rate was 81.81%,and the F1 value was 81.76%.After GA screening,the optimal feature combination contained 37 feature values,which was consistent with TCM clinical practice.The model based on optimal combination and SVM(GA_SVM)had an accuracy improvement of 1.92%compared to the basic classifier.SVM model based on HHO and GA optimization(HHO_GA_SVM)had the best performance and convergence speed compared with other optimization algorithms.Compared with the basic classification model,the accuracy was improved by 3.51%.CONCLUSION:HHO and GA optimization can improve the model performance of SVM in TCM syndrome differentiation of DR.It provides a new method and research idea for TCM intelligent assisted syndrome differentiation. 展开更多
关键词 traditional Chinese medicine diabetic retinopathy Harris Hawk optimization support vector machine syndrome differentiation
原文传递
Feature Extraction of Stored-grain Insects Based on Ant Colony Optimization and Support Vector Machine Algorithm 被引量:1
6
作者 胡玉霞 张红涛 +1 位作者 罗康 张恒源 《Agricultural Science & Technology》 CAS 2012年第2期457-459,共3页
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored... [Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible. 展开更多
关键词 Stored-grain insects Ant colony optimization algorithm support vector machine Feature extraction RECOGNITION
在线阅读 下载PDF
Cuckoo Optimized Convolution Support Vector Machine for Big Health Data Processing
7
作者 Eatedal Alabdulkreem Jaber S.Alzahrani +5 位作者 Majdy M.Eltahir Abdullah Mohamed Manar Ahmed Hamza Abdelwahed Motwakel Mohamed I.Eldesouki Mohammed Rizwanullah 《Computers, Materials & Continua》 SCIE EI 2022年第11期3039-3055,共17页
Big health data collection and storing for further analysis is a challenging task because this knowledge is big and has many features.Several cloud-based IoT health providers have been described in the literature prev... Big health data collection and storing for further analysis is a challenging task because this knowledge is big and has many features.Several cloud-based IoT health providers have been described in the literature previously.Furthermore,there are a number of issues related to time consumed and overall network performance when it comes to big data information.In the existing method,less performed optimization algorithms were used for optimizing the data.In the proposed method,the Chaotic Cuckoo Optimization algorithm was used for feature selection,and Convolutional Support Vector Machine(CSVM)was used.The research presents a method for analyzing healthcare information that uses in future prediction.The major goal is to take a variety of data while improving efficiency and minimizing process time.The suggested method employs a hybrid method that is divided into two stages.In the first stage,it reduces the features by using the Chaotic Cuckoo Optimization algorithm with Levy flight,opposition-based learning,and distributor operator.In the second stage,CSVM is used which combines the benefits of convolutional neural network(CNN)and SVM.The CSVM modifies CNN’s convolution product to learn hidden deep inside data sources.For improved economic flexibility,greater protection,greater analytics with confidentiality,and lower operating cost,the suggested approach is built on fog computing.Overall results of the experiments show that the suggested method can minimize the number of features in the datasets,enhances the accuracy by 82%,and decrease the time of the process. 展开更多
关键词 Healthcare convolutional support vector machine feature selection chaotic cuckoo optimization accuracy processing time convolutional neural network
在线阅读 下载PDF
A Hybrid Model Based on Back-Propagation Neural Network and Optimized Support Vector Machine with Particle Swarm Algorithm for Assessing Blade Icing on Wind Turbines
8
作者 Xiyang Li Bin Cheng +2 位作者 Hui Zhang Xianghan Zhang Zhi Yun 《Energy Engineering》 EI 2021年第6期1869-1886,共18页
With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consi... With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consideration for research.Therefore,it is crucial to accurately analyze the thickness of icing on wind turbine blades,which can serve as a basis for formulating corresponding control measures and ensure a safe and stable operation of wind turbines in winter times and/or in high altitude areas.This paper fully utilized the advantages of the support vector machine(SVM)and back-propagation neural network(BPNN),with the incorporation of particle swarm optimization(PSO)algorithms to optimize the parameters of the SVM.The paper proposes a hybrid assessment model of PSO-SVM and BPNN based on dynamic weighting rules.Three sets of icing data under a rotating working state of the wind turbine were used as examples for model verification.Based on a comparative analysis with other models,the results showed that the proposed model has better accuracy and stability in analyzing the icing on wind turbine blades. 展开更多
关键词 support vector machine back propagation neural network particle swarm optimization blade icing assessment
在线阅读 下载PDF
Forecasting the Advertising investment Risk of Sporting Goods Based on Optimized Support Vector Machine
9
《International English Education Research》 2014年第10期11-13,共3页
Forecasting The Advertising investment risk of Sporting goods is very important which can provide the decision support for top manager. In this paper, we presented an optimized support vector machine (OSVM) to predi... Forecasting The Advertising investment risk of Sporting goods is very important which can provide the decision support for top manager. In this paper, we presented an optimized support vector machine (OSVM) to predict Advertising investment risk of Sporting goods. Experimental results show that the prediction accuracy improved by the proposed method. 展开更多
关键词 Advertising investment Risk Forecasting support vector machine Paritcle Swarm optimization Generalized Pattern Search.
在线阅读 下载PDF
Carbon dioxide storage and cumulative oil production predictions in unconventional reservoirs applying optimized machine-learning models
10
作者 Shadfar Davoodi Hung Vo Thanh +3 位作者 David A.Wood Mohammad Mehrad Sergey V.Muravyov Valeriy S.Rukavishnikov 《Petroleum Science》 2025年第1期296-323,共28页
To achieve carbon dioxide(CO_(2))storage through enhanced oil recovery,accurate forecasting of CO_(2) subsurface storage and cumulative oil production is essential.This study develops hybrid predictive models for the ... To achieve carbon dioxide(CO_(2))storage through enhanced oil recovery,accurate forecasting of CO_(2) subsurface storage and cumulative oil production is essential.This study develops hybrid predictive models for the determination of CO_(2) storage mass and cumulative oil production in unconventional reservoirs.It does so with two multi-layer perceptron neural networks(MLPNN)and a least-squares support vector machine(LSSVM),hybridized with grey wolf optimization(GWO)and/or particle swarm optimization(PSO).Large,simulated datasets were divided into training(70%)and testing(30%)groups,with normalization applied to both groups.Mahalanobis distance identifies/eliminates outliers in the training subset only.A non-dominated sorting genetic algorithm(NSGA-II)combined with LSSVM selected seven influential features from the nine available input parameters:reservoir depth,porosity,permeability,thickness,bottom-hole pressure,area,CO_(2) injection rate,residual oil saturation to gas flooding,and residual oil saturation to water flooding.Predictive models were developed and tested,with performance evaluated with an overfitting index(OFI),scoring analysis,and partial dependence plots(PDP),during training and independent testing to enhance model focus and effectiveness.The LSSVM-GWO model generated the lowest root mean square error(RMSE)values(0.4052 MMT for CO_(2) storage and 9.7392 MMbbl for cumulative oil production)in the training group.That trained model also exhibited excellent generalization and minimal overfitting when applied to the testing group(RMSE of 0.6224 MMT for CO_(2) storage and 12.5143 MMbbl for cumulative oil production).PDP analysis revealed that the input features“area”and“porosity”had the most influence on the LSSVM-GWO model's pre-diction performance.This paper presents a new hybrid modeling approach that achieves accurate forecasting of CO_(2) subsurface storage and cumulative oil production.It also establishes a new standard for such forecasting,which can lead to the development of more effective and sustainable solutions for oil recovery. 展开更多
关键词 Hybrid machine learning Least-squares support vector machine Grey wolf optimization Feature selection Carbon dioxide storage Enhanced oil recovery
原文传递
Parameter selection of support vector machine for function approximation based on chaos optimization 被引量:18
11
作者 Yuan Xiaofang Wang Yaonan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期191-197,共7页
The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results... The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation. 展开更多
关键词 learning systems support vector machines (SVM) approximation theory parameter selection optimization.
在线阅读 下载PDF
Identifcation of large-scale goaf instability in underground mine using particle swarm optimization and support vector machine 被引量:14
12
作者 Zhou Jian Li Xibing +2 位作者 Hani S.Mitri Wang Shiming Wei Wei 《International Journal of Mining Science and Technology》 SCIE EI 2013年第5期701-707,共7页
An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and followi... An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and following parameters were selected as evaluation indexes in the LSGI:uniaxial compressive strength(UCS)of rock,elastic modulus(E)of rock,rock quality designation(RQD),area ration of pillar(Sp),the ratio of width to height of the pillar(w/h),depth of ore body(H),volume of goaf(V),dip of ore body(a)and area of goaf(Sg).Then LSGI forecasting model by PSO-SVM was established according to the influencing factors.The performance of hybrid model(PSO+SVM=PSO–SVM)has been compared with the grid search method of support vector machine(GSM–SVM)model.The actual data of 40 goafs are applied to research the forecasting ability of the proposed method,and two cases of underground mine are also validated by the proposed model.The results indicated that the heuristic algorithm of PSO can speed up the SVM parameter optimization search,and the predictive ability of the PSO–SVM model with the RBF kernel function is acceptable and robust,which might hold a high potential to become a useful tool in goaf risky prediction research. 展开更多
关键词 GOAF Risk identifcation Underground mine Prediction Particle swarm optimization support vector machine
在线阅读 下载PDF
Support vector machine forecasting method improved by chaotic particle swarm optimization and its application 被引量:11
13
作者 李彦斌 张宁 李存斌 《Journal of Central South University》 SCIE EI CAS 2009年第3期478-481,共4页
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for... By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects. 展开更多
关键词 chaotic searching particle swarm optimization (PSO) support vector machine (SVM) short term load forecast
在线阅读 下载PDF
Support vector machine based nonlinear model multi-step-ahead optimizing predictive control 被引量:9
14
作者 钟伟民 皮道映 孙优贤 《Journal of Central South University of Technology》 EI 2005年第5期591-595,共5页
A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established... A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection. 展开更多
关键词 nonlinear model predictive control support vector machine nonlinear system identification kernel function nonlinear optimization
在线阅读 下载PDF
Inflatable Wing Design Parameter Optimization Using Orthogonal Testing and Support Vector Machines 被引量:12
15
作者 WANG Zhifei WANG Hua 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第6期887-895,共9页
The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing paramet... The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing parameter design method, this paper proposes an optimization design scheme based on orthogonal testing and support vector machines (SVMs). Orthogonal testing design is used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iterations and improve the identification accuracy and efficiency. Orthogonal tests consisting of three factors and three levels are designed to analyze the parameters of pressure, uniform applied load and the number of chambers that affect the bending response of inflatable wings. An SVM intelligent model is established and limited orthogonal test swatches are studied. Thus, the precise relationships between each parameter and product quality features, as well the signal-to-noise ratio (SNR), can be obtained. This can guide general technological design optimization. 展开更多
关键词 inflatable wing orthogonal test design parameter support vector machines optimization
原文传递
Intelligent Optimization Methods for High-Dimensional Data Classification for Support Vector Machines 被引量:2
16
作者 Sheng Ding Li Chen 《Intelligent Information Management》 2010年第6期354-364,共11页
Support vector machine (SVM) is a popular pattern classification method with many application areas. SVM shows its outstanding performance in high-dimensional data classification. In the process of classification, SVM... Support vector machine (SVM) is a popular pattern classification method with many application areas. SVM shows its outstanding performance in high-dimensional data classification. In the process of classification, SVM kernel parameter setting during the SVM training procedure, along with the feature selection significantly influences the classification accuracy. This paper proposes two novel intelligent optimization methods, which simultaneously determines the parameter values while discovering a subset of features to increase SVM classification accuracy. The study focuses on two evolutionary computing approaches to optimize the parameters of SVM: particle swarm optimization (PSO) and genetic algorithm (GA). And we combine above the two intelligent optimization methods with SVM to choose appropriate subset features and SVM parameters, which are termed GA-FSSVM (Genetic Algorithm-Feature Selection Support Vector Machines) and PSO-FSSVM(Particle Swarm Optimization-Feature Selection Support Vector Machines) models. Experimental results demonstrate that the classification accuracy by our proposed methods outperforms traditional grid search approach and many other approaches. Moreover, the result indicates that PSO-FSSVM can obtain higher classification accuracy than GA-FSSVM classification for hyperspectral data. 展开更多
关键词 support vector machine (SVM) GENETIC Algorithm (GA) Particle SWARM optimIZATION (PSO) Feature Selection optimIZATION
在线阅读 下载PDF
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques 被引量:1
17
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde Feature selection support vector machine Particle swarm optimization Principal component analysis Debris flow susceptibility
原文传递
Iterative optimal control based on support vector machine modeling within the Bayesian evidence framework 被引量:1
18
作者 李赣平 阎威武 邵惠鹤 《Journal of Shanghai University(English Edition)》 CAS 2007年第6期591-596,共6页
In the paper, an iterative method is presented to the optimal control of batch processes. Generally it is very difficult to acquire an accurate mechanistic model for a batch process. Because support vector machine is ... In the paper, an iterative method is presented to the optimal control of batch processes. Generally it is very difficult to acquire an accurate mechanistic model for a batch process. Because support vector machine is powerful for the problems characterized by small samples, nonlinearity, high dimension and local minima, support vector regression models are developed for the optimal control of batch processes where end-point properties are required. The model parameters are selected within the Bayesian evidence framework. Based on the model, an iterative method is used to exploit the repetitive nature of batch processes to determine the optimal operating policy. Numerical simulation shows that the iterative optimal control can improve the process performance through iterations. 展开更多
关键词 iterative optimal control support vector machine (SVM) Bayesian evidence framework.
在线阅读 下载PDF
Support vector machine based on chaos particle swarm optimization for fault diagnosis of rotating machine 被引量:1
19
作者 TANG Xian-lun ZHUANG Ling QIU Guo-qing CAI Jun 《重庆邮电大学学报(自然科学版)》 北大核心 2009年第2期127-133,共7页
The performance of the support vector machine models depends on a proper setting of its parameters to a great extent.A novel method of searching the optimal parameters of support vector machine based on chaos particle... The performance of the support vector machine models depends on a proper setting of its parameters to a great extent.A novel method of searching the optimal parameters of support vector machine based on chaos particle swarm optimization is proposed.A multi-fault classification model based on SVM optimized by chaos particle swarm optimization is established and applied to the fault diagnosis of rotating machines.The results show that the proposed fault classification model outperforms the neural network trained by chaos particle swarm optimization and least squares support vector machine,and the precision and reliability of the fault classification results can meet the requirement of practical application.It indicates that chaos particle swarm optimization is a suitable method for searching the optimal parameters of support vector machine. 展开更多
关键词 最小二乘支持向量机 粒子群优化算法 故障诊断 旋转机械 混沌 多故障分类 神经网络训练 最佳参数
在线阅读 下载PDF
Design of Ballistic Consistency Based on Least Squares Support Vector Machine and Particle Swarm Optimization
20
作者 张宇宸 杜忠华 戴炜 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第5期549-554,共6页
In order to improve the firing efficiency of projectiles,it is required to use the universal firing table for gun weapon system equipped with a variety of projectiles.Moreover,the foundation of sharing the universal f... In order to improve the firing efficiency of projectiles,it is required to use the universal firing table for gun weapon system equipped with a variety of projectiles.Moreover,the foundation of sharing the universal firing table is the ballistic matching for two types of projectiles.Therefore,a method is proposed in the process of designing new type of projectile.The least squares support vector machine is utilized to build the ballistic trajectory model of the original projectile,thus it is viable to compare the two trajectories.Then the particle swarm optimization is applied to find the combination of trajectory parameters which meet the criterion of ballistic matching best.Finally,examples show the proposed method is valid and feasible. 展开更多
关键词 ballistic matching least squares support vector machine particle swarm optimization curve fitting
在线阅读 下载PDF
上一页 1 2 179 下一页 到第
使用帮助 返回顶部