In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and ...In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and the system of Hirota-Satsuma coupled KdV. In addition, the results obtained from Laplace decomposition method (LDM) and Pade approximant are compared with corresponding exact analytical solutions.展开更多
We study iterative processes of stochastic approximation for finding fixed points of weakly contractive and nonexpansive operators in Hilbert spaces under the condition that operators are given with random errors. We ...We study iterative processes of stochastic approximation for finding fixed points of weakly contractive and nonexpansive operators in Hilbert spaces under the condition that operators are given with random errors. We prove mean square convergence and convergence almost sure (a.s.) of iterative approximations and establish both asymptotic and nonasymptotic estimates of the convergence rate in degenerate and non-degenerate cases. Previously the stochastic approximation algorithms were studied mainly for optimization problems.展开更多
This paper proposes an extension of the algorithm in [1], as well as utilization of the wavelet transform in event detection, including High Impedance Fault (HIF). Techniques to analyze the abundant data of PMUs quick...This paper proposes an extension of the algorithm in [1], as well as utilization of the wavelet transform in event detection, including High Impedance Fault (HIF). Techniques to analyze the abundant data of PMUs quickly and effectively are paramount to increasing response time to events and unstable parameters. With the amount of data PMUs output, unstable parameters, tie line oscillations, and HIFs are often overlooked in the bulk of the data. This paper explores model-free techniques to attain stability information and determine events in real-time. When full system connectivity is unknown, many traditional methods requiring other bus measurements can be impossible or computationally extensive to apply. The traditional method of interest is analyzing the power flow Jacobian for singularities and system weak points, attained by applying singular value decomposition. This paper further develops upon the approach in [1] to expand the Discrete-Time Jacobian Eigenvalue Approximation (DDJEA), giving values to significant off-diagonal terms while establishing a generalized connectivity between correlated buses. Statistical linear models are applied over large data sets to prove significance to each term. Then the off diagonal terms are given time-varying weights to account for changes in topology or sensitivity to events using a reduced system model. The results of this novel method are compared to the present errors of the previous publication in order to quantify the degree of improvement that this novel method imposes. The effective bus eigenvalues are briefly compared to Prony analysis to check similarities. An additional application for biorthogonal wavelets is also introduced to detect event types, including the HIF, for PMU data.展开更多
Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degra...Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degradation information to improve the prediction accuracy of degradation value or health indicator for the next epoch.However,they ignore the cumulative prediction error caused by iterations before reaching the failure point.展开更多
We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of ...We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates and,unlike the state of the art,requires neither weakcoupling Lamb-Dicke approximation nor perturbation treatment.With the application of gradient-based optimal control,it enables finding amplitude-and phase-modulated laser control protocols that work without the Lamb-Dicke approximation,promising gate speeds on the order of microseconds comparable to the characteristic trap frequencies.Also,robustness requirements on the temperature of the ions and initial optical phase can be conveniently included to pursue high-quality fast gates against experimental imperfections.Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation,and thus can find applications in near-future experiments.展开更多
We use the Pair Approximation method to analyze the magnetic and magnetocaloric behaviors of diluted mixed spin SA=1 and spin SB=1/2 with the anisotropic Heisenberg model, on a cubic lattice with coordination number z...We use the Pair Approximation method to analyze the magnetic and magnetocaloric behaviors of diluted mixed spin SA=1 and spin SB=1/2 with the anisotropic Heisenberg model, on a cubic lattice with coordination number z=6. Our system is described in presence of an external magnetic field;the phase diagram and thermodynamic properties related to the concentration of magnetic atom(A or B) and the single ion anisotropy are constructed and discussed.Special attention is paid to magnetocaloric properties provided by isothermal entropy change as well as the cooling capacity. These cooling power keys are plotted and discussed as a function of interaction anisotropy and magnetic component concentration of two sublattices ions A and B. Numerical results show a double peak structure in the entropy change curve and the inverse magnetocaloric effect related to the presence of the negative single-ion anisotropy.展开更多
A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoot...A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoothing functional is studied. Finding the optimal solutions of this problem is reduced to solution of the Hammerstein type two-dimensional nonlinear integral equation. The numerical algorithms to find the branching lines and branching-off solutions of this equation are constructed and justified. Numerical examples are presented.展开更多
The approaches to discrete approximation of Pareto front using multi-objective evolutionary algorithms have the problems of heavy computation burden, long running time and missing Pareto optimal points. In order to ov...The approaches to discrete approximation of Pareto front using multi-objective evolutionary algorithms have the problems of heavy computation burden, long running time and missing Pareto optimal points. In order to overcome these problems, an approach to continuous approximation of Pareto front using geometric support vector regression is presented. The regression model of the small size approximate discrete Pareto front is constructed by geometric support vector regression modeling and is described as the approximate continuous Pareto front. In the process of geometric support vector regression modeling, considering the distribution characteristic of Pareto optimal points, the separable augmented training sample sets are constructed by shifting original training sample points along multiple coordinated axes. Besides, an interactive decision-making(DM)procedure, in which the continuous approximation of Pareto front and decision-making is performed interactively, is designed for improving the accuracy of the preferred Pareto optimal point. The correctness of the continuous approximation of Pareto front is demonstrated with a typical multi-objective optimization problem. In addition,combined with the interactive decision-making procedure, the continuous approximation of Pareto front is applied in the multi-objective optimization for an industrial fed-batch yeast fermentation process. The experimental results show that the generated approximate continuous Pareto front has good accuracy and completeness. Compared with the multi-objective evolutionary algorithm with large size population, a more accurate preferred Pareto optimal point can be obtained from the approximate continuous Pareto front with less computation and shorter running time. The operation strategy corresponding to the final preferred Pareto optimal point generated by the interactive DM procedure can improve the production indexes of the fermentation process effectively.展开更多
In the present paper, an attempt is made to obtain the degree of approximation of conjugate of functions (signals) belonging to the generalized weighted W(LP, ξ(t)), (p ≥ 1)-class, by using lower triangular matrix o...In the present paper, an attempt is made to obtain the degree of approximation of conjugate of functions (signals) belonging to the generalized weighted W(LP, ξ(t)), (p ≥ 1)-class, by using lower triangular matrix operator of conjugate series of its Fourier series.展开更多
In this paper, we establish a new type of alternation theory for more general restricted ranges Chebyshev approximation with equalities. The uniqueness and strong uniqueness theorems are given. Applying the results, w...In this paper, we establish a new type of alternation theory for more general restricted ranges Chebyshev approximation with equalities. The uniqueness and strong uniqueness theorems are given. Applying the results, we obtain the alternation theorem and uniqueness theorem for best coposilive approximation.展开更多
An approximation method for curved surface mannequin and hidden surface eliminationin 3-D computer aided garment design system is described. The mannequin is the basis of the3-D modeling for clothes. In terms of the r...An approximation method for curved surface mannequin and hidden surface eliminationin 3-D computer aided garment design system is described. The mannequin is the basis of the3-D modeling for clothes. In terms of the requirements of computer aided garment design,the authors put forward a method for curved surface approximation in the meaning of leastsquares. Using. this method the computation of geometric modeling is simple andefficient. It is also convenient for curved surface modification and shading.展开更多
There exist many iterative methods for computing the maximum likelihood estimator but most of them suffer from one or several drawbacks such as the need to inverse a Hessian matrix and the need to find good initial ap...There exist many iterative methods for computing the maximum likelihood estimator but most of them suffer from one or several drawbacks such as the need to inverse a Hessian matrix and the need to find good initial approximations of the parameters that are unknown in practice. In this paper, we present an estimation method without matrix inversion based on a linear approximation of the likelihood equations in a neighborhood of the constrained maximum likelihood estimator. We obtain closed-form approximations of solutions and standard errors. Then, we propose an iterative algorithm which cycles through the components of the vector parameter and updates one component at a time. The initial solution, which is necessary to start the iterative procedure, is automated. The proposed algorithm is compared to some of the best iterative optimization algorithms available on R and MATLAB software through a simulation study and applied to the statistical analysis of a road safety measure.展开更多
Approximation of finite population totals in the presence of auxiliary information is considered. A polynomial based on Lagrange polynomial is proposed. Like the local polynomial regression, Horvitz Thompson and ratio...Approximation of finite population totals in the presence of auxiliary information is considered. A polynomial based on Lagrange polynomial is proposed. Like the local polynomial regression, Horvitz Thompson and ratio estimators, this approximation technique is based on annual population total in order to fit in the best approximating polynomial within a given period of time (years) in this study. This proposed technique has shown to be unbiased under a linear polynomial. The use of real data indicated that the polynomial is efficient and can approximate properly even when the data is unevenly spaced.展开更多
This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation p...This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation property,a more general robust null space property,and establish the stable recovery of signals and matrices under the truncated sparse approximation property.We also explore the relationship between the restricted isometry property and truncated sparse approximation property.And we also prove that if a measurement matrix A or linear map A satisfies truncated sparse approximation property of order k,then the first inequality in restricted isometry property of order k and of order 2k can hold for certain different constantsδk andδ2k,respectively.Last,we show that ifδs(k+|T^c|)<√(s-1)/s for some s≥4/3,then measurement matrix A and linear map A satisfy truncated sparse approximation property of order k.It should be pointed out that when Tc=Ф,our conclusion implies that sparse approximation property of order k is weaker than restricted isometry property of order sk.展开更多
The task of determining the greatest common divisors (GCD) for several polynomials which arises in image compression, computer algebra and speech encoding can be formulated as a low rank approximation problem with Syl...The task of determining the greatest common divisors (GCD) for several polynomials which arises in image compression, computer algebra and speech encoding can be formulated as a low rank approximation problem with Sylvester matrix. This paper demonstrates a method based on structured total least norm (STLN) algorithm for matrices with Sylvester structure. We demonstrate the algorithm to compute an approximate GCD. Both the theoretical analysis and the computational results show that the method is feasible.展开更多
Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous ...Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous quantitative analyses often simplified the chorus dispersion relation by using the cold plasma assumption.However,the applicability of the cold plasma assumption is doubtful,especially during geomagnetic disturbances.We here present a systematic statistical analysis on the validity of the cold plasma dispersion relation of chorus waves based on observations from the Van Allen Probes over the period from 2012 to 2018.The statistical results show that the observed magnetic field intensities deviate substantially from those calculated from the cold plasma dispersion relation and that they become more pronounced with an increase in geomagnetic activity or a decrease in background plasma density.The region with large deviations is mainly concentrated in the nightside and expands in both the radial and azimuthal directions as the geomagnetic activity increases or the background plasma density decreases.In addition,the bounce-averaged electron scattering rates are computed by using the observed and cold plasma dispersion relation of chorus waves.Compared with usage of the cold plasma dispersion relation,usage of the observed dispersion relation considerably lowers the minimum resonant energy of electrons and lowers the scattering rates of electrons above tens of kiloelectronvolts but enhances those below.Furthermore,these differences are more pronounced with the enhancement of geomagnetic activity or the decrease in background plasma density.展开更多
Suppose thatλ_(1),λ_(2),λ_(3),λ_(4),λ_(5)are nonzero real numbers,not all of the same sign,andλ_(1)/λ_(2)is irrational and algebraic.Let V be a well-spaced sequence,δ>0.In this paper,it is proved that,for ...Suppose thatλ_(1),λ_(2),λ_(3),λ_(4),λ_(5)are nonzero real numbers,not all of the same sign,andλ_(1)/λ_(2)is irrational and algebraic.Let V be a well-spaced sequence,δ>0.In this paper,it is proved that,for anyε>0,the number of v∈V with v≤N such that the following inequality|λ_(1)p_(1)~2+λ_(2)p_(2)~2+λ_(3)p_(3)~4+λ_(4)p_(4)~4+λ_5p_5~4-v|<v^(-δ)has no solution in prime variables p_(1),p_(2),p_(3),p_(4),p_(5)does not exceed O(N^(29/32+2δ+ε)).展开更多
This paper studies the Smoluchowski–Kramers approximation for a discrete-time dynamical system modeled as the motion of a particle in a force field.We show that the approximation holds for the drift-implicit Euler–M...This paper studies the Smoluchowski–Kramers approximation for a discrete-time dynamical system modeled as the motion of a particle in a force field.We show that the approximation holds for the drift-implicit Euler–Maruyama discretization and derive its convergence rate.In particular,the solution of the discretized system converges to the solution of the first-order limit equation in the mean-square sense,and this convergence is independent of the order in which the mass parameterμand the step size h tend to zero.展开更多
In numerical analysis, it is significant to approximate the linear functional Ef=sum from i=0 to m-1([integral from a to b(a<sub>1</sub>(x)f<sup>1</sup>(x)dx+ sum from f=0 to i<sub>1&...In numerical analysis, it is significant to approximate the linear functional Ef=sum from i=0 to m-1([integral from a to b(a<sub>1</sub>(x)f<sup>1</sup>(x)dx+ sum from f=0 to i<sub>1</sub>(b<sub>1</sub>f<sup>1</sup>(x<sub>1</sub>))]) by a simpler linear functional Lf=sum from i=1 to m(a<sub>1</sub>f(x<sub>1</sub>)) In this paper, making use of natural Tchebysheff spline function, we give existence theorem and uniqueness theorem of L that is exact for the degree m to F; we also give three sufficient and necessary conditions in which L is the Sard best approximation to F.展开更多
The pilotless frame synchronization approach and implementations of LDPC code are the crucial issue of LDPC decoder. The Maximum-A-Posteriori probability( MAP) decoder has a perfect frame synchronization error rate( F...The pilotless frame synchronization approach and implementations of LDPC code are the crucial issue of LDPC decoder. The Maximum-A-Posteriori probability( MAP) decoder has a perfect frame synchronization error rate( FSER) performance. In this paper,a theoretical derivation of the FSER performance of pilotless frame synchronization for LDPC code is presented. The FSER performance by theoretical analysis coincides well with that by simulation in additive white Gaussian channel and Rician fading channel. So it is estimated the FSER performance of an LDPC code by theoretical analysis can be used instead of the simulations which are much more time-consuming.展开更多
文摘In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and the system of Hirota-Satsuma coupled KdV. In addition, the results obtained from Laplace decomposition method (LDM) and Pade approximant are compared with corresponding exact analytical solutions.
文摘We study iterative processes of stochastic approximation for finding fixed points of weakly contractive and nonexpansive operators in Hilbert spaces under the condition that operators are given with random errors. We prove mean square convergence and convergence almost sure (a.s.) of iterative approximations and establish both asymptotic and nonasymptotic estimates of the convergence rate in degenerate and non-degenerate cases. Previously the stochastic approximation algorithms were studied mainly for optimization problems.
文摘This paper proposes an extension of the algorithm in [1], as well as utilization of the wavelet transform in event detection, including High Impedance Fault (HIF). Techniques to analyze the abundant data of PMUs quickly and effectively are paramount to increasing response time to events and unstable parameters. With the amount of data PMUs output, unstable parameters, tie line oscillations, and HIFs are often overlooked in the bulk of the data. This paper explores model-free techniques to attain stability information and determine events in real-time. When full system connectivity is unknown, many traditional methods requiring other bus measurements can be impossible or computationally extensive to apply. The traditional method of interest is analyzing the power flow Jacobian for singularities and system weak points, attained by applying singular value decomposition. This paper further develops upon the approach in [1] to expand the Discrete-Time Jacobian Eigenvalue Approximation (DDJEA), giving values to significant off-diagonal terms while establishing a generalized connectivity between correlated buses. Statistical linear models are applied over large data sets to prove significance to each term. Then the off diagonal terms are given time-varying weights to account for changes in topology or sensitivity to events using a reduced system model. The results of this novel method are compared to the present errors of the previous publication in order to quantify the degree of improvement that this novel method imposes. The effective bus eigenvalues are briefly compared to Prony analysis to check similarities. An additional application for biorthogonal wavelets is also introduced to detect event types, including the HIF, for PMU data.
基金supported in part by the National Natural Science Foundation of China(U2034209)the Postdoctoral Science Foundation of Chongqing(cstc2021jcyj-bsh X0047)+1 种基金the Fundamental Research Funds for the Central Universities(2022CDJJMRH-008)the National Natural Science Foundation of China(62203075)
文摘Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degradation information to improve the prediction accuracy of degradation value or health indicator for the next epoch.However,they ignore the cumulative prediction error caused by iterations before reaching the failure point.
基金supported by the National Natural Science Foundation of China(Grant Nos.12441502,12122506,12204230,and 12404554)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2024ZD0300404)+6 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2021B1515020070)Shenzhen Science and Technology Program(Grant No.RCYX20200714114522109)China Postdoctoral Science Foundation(CPSF)(2024M762114)Postdoctoral Fellowship Program of CPSF(GZC20231727)supported by the National Natural Science Foundation of China(Grant Nos.92165206 and 11974330)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301603)the Fundamental Research Funds for the Central Universities。
文摘We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates and,unlike the state of the art,requires neither weakcoupling Lamb-Dicke approximation nor perturbation treatment.With the application of gradient-based optimal control,it enables finding amplitude-and phase-modulated laser control protocols that work without the Lamb-Dicke approximation,promising gate speeds on the order of microseconds comparable to the characteristic trap frequencies.Also,robustness requirements on the temperature of the ions and initial optical phase can be conveniently included to pursue high-quality fast gates against experimental imperfections.Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation,and thus can find applications in near-future experiments.
文摘We use the Pair Approximation method to analyze the magnetic and magnetocaloric behaviors of diluted mixed spin SA=1 and spin SB=1/2 with the anisotropic Heisenberg model, on a cubic lattice with coordination number z=6. Our system is described in presence of an external magnetic field;the phase diagram and thermodynamic properties related to the concentration of magnetic atom(A or B) and the single ion anisotropy are constructed and discussed.Special attention is paid to magnetocaloric properties provided by isothermal entropy change as well as the cooling capacity. These cooling power keys are plotted and discussed as a function of interaction anisotropy and magnetic component concentration of two sublattices ions A and B. Numerical results show a double peak structure in the entropy change curve and the inverse magnetocaloric effect related to the presence of the negative single-ion anisotropy.
文摘A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoothing functional is studied. Finding the optimal solutions of this problem is reduced to solution of the Hammerstein type two-dimensional nonlinear integral equation. The numerical algorithms to find the branching lines and branching-off solutions of this equation are constructed and justified. Numerical examples are presented.
基金Supported by the National Natural Science Foundation of China(20676013,61240047)
文摘The approaches to discrete approximation of Pareto front using multi-objective evolutionary algorithms have the problems of heavy computation burden, long running time and missing Pareto optimal points. In order to overcome these problems, an approach to continuous approximation of Pareto front using geometric support vector regression is presented. The regression model of the small size approximate discrete Pareto front is constructed by geometric support vector regression modeling and is described as the approximate continuous Pareto front. In the process of geometric support vector regression modeling, considering the distribution characteristic of Pareto optimal points, the separable augmented training sample sets are constructed by shifting original training sample points along multiple coordinated axes. Besides, an interactive decision-making(DM)procedure, in which the continuous approximation of Pareto front and decision-making is performed interactively, is designed for improving the accuracy of the preferred Pareto optimal point. The correctness of the continuous approximation of Pareto front is demonstrated with a typical multi-objective optimization problem. In addition,combined with the interactive decision-making procedure, the continuous approximation of Pareto front is applied in the multi-objective optimization for an industrial fed-batch yeast fermentation process. The experimental results show that the generated approximate continuous Pareto front has good accuracy and completeness. Compared with the multi-objective evolutionary algorithm with large size population, a more accurate preferred Pareto optimal point can be obtained from the approximate continuous Pareto front with less computation and shorter running time. The operation strategy corresponding to the final preferred Pareto optimal point generated by the interactive DM procedure can improve the production indexes of the fermentation process effectively.
文摘In the present paper, an attempt is made to obtain the degree of approximation of conjugate of functions (signals) belonging to the generalized weighted W(LP, ξ(t)), (p ≥ 1)-class, by using lower triangular matrix operator of conjugate series of its Fourier series.
文摘In this paper, we establish a new type of alternation theory for more general restricted ranges Chebyshev approximation with equalities. The uniqueness and strong uniqueness theorems are given. Applying the results, we obtain the alternation theorem and uniqueness theorem for best coposilive approximation.
文摘An approximation method for curved surface mannequin and hidden surface eliminationin 3-D computer aided garment design system is described. The mannequin is the basis of the3-D modeling for clothes. In terms of the requirements of computer aided garment design,the authors put forward a method for curved surface approximation in the meaning of leastsquares. Using. this method the computation of geometric modeling is simple andefficient. It is also convenient for curved surface modification and shading.
文摘There exist many iterative methods for computing the maximum likelihood estimator but most of them suffer from one or several drawbacks such as the need to inverse a Hessian matrix and the need to find good initial approximations of the parameters that are unknown in practice. In this paper, we present an estimation method without matrix inversion based on a linear approximation of the likelihood equations in a neighborhood of the constrained maximum likelihood estimator. We obtain closed-form approximations of solutions and standard errors. Then, we propose an iterative algorithm which cycles through the components of the vector parameter and updates one component at a time. The initial solution, which is necessary to start the iterative procedure, is automated. The proposed algorithm is compared to some of the best iterative optimization algorithms available on R and MATLAB software through a simulation study and applied to the statistical analysis of a road safety measure.
文摘Approximation of finite population totals in the presence of auxiliary information is considered. A polynomial based on Lagrange polynomial is proposed. Like the local polynomial regression, Horvitz Thompson and ratio estimators, this approximation technique is based on annual population total in order to fit in the best approximating polynomial within a given period of time (years) in this study. This proposed technique has shown to be unbiased under a linear polynomial. The use of real data indicated that the polynomial is efficient and can approximate properly even when the data is unevenly spaced.
基金supported by the National Natural Science Foundation of China(11871109)NSAF(U1830107)the Science Challenge Project(TZ2018001)
文摘This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation property,a more general robust null space property,and establish the stable recovery of signals and matrices under the truncated sparse approximation property.We also explore the relationship between the restricted isometry property and truncated sparse approximation property.And we also prove that if a measurement matrix A or linear map A satisfies truncated sparse approximation property of order k,then the first inequality in restricted isometry property of order k and of order 2k can hold for certain different constantsδk andδ2k,respectively.Last,we show that ifδs(k+|T^c|)<√(s-1)/s for some s≥4/3,then measurement matrix A and linear map A satisfy truncated sparse approximation property of order k.It should be pointed out that when Tc=Ф,our conclusion implies that sparse approximation property of order k is weaker than restricted isometry property of order sk.
文摘The task of determining the greatest common divisors (GCD) for several polynomials which arises in image compression, computer algebra and speech encoding can be formulated as a low rank approximation problem with Sylvester matrix. This paper demonstrates a method based on structured total least norm (STLN) algorithm for matrices with Sylvester structure. We demonstrate the algorithm to compute an approximate GCD. Both the theoretical analysis and the computational results show that the method is feasible.
基金supported by the National Natural Science Foundation of China (NSFC) through Grant Number 42074193
文摘Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous quantitative analyses often simplified the chorus dispersion relation by using the cold plasma assumption.However,the applicability of the cold plasma assumption is doubtful,especially during geomagnetic disturbances.We here present a systematic statistical analysis on the validity of the cold plasma dispersion relation of chorus waves based on observations from the Van Allen Probes over the period from 2012 to 2018.The statistical results show that the observed magnetic field intensities deviate substantially from those calculated from the cold plasma dispersion relation and that they become more pronounced with an increase in geomagnetic activity or a decrease in background plasma density.The region with large deviations is mainly concentrated in the nightside and expands in both the radial and azimuthal directions as the geomagnetic activity increases or the background plasma density decreases.In addition,the bounce-averaged electron scattering rates are computed by using the observed and cold plasma dispersion relation of chorus waves.Compared with usage of the cold plasma dispersion relation,usage of the observed dispersion relation considerably lowers the minimum resonant energy of electrons and lowers the scattering rates of electrons above tens of kiloelectronvolts but enhances those below.Furthermore,these differences are more pronounced with the enhancement of geomagnetic activity or the decrease in background plasma density.
基金Supported by NSFC(Nos.12301006,12471009,12071238,11901566,12001047,11971476)Beijing Natural Science Foundation(No.1242003)。
文摘Suppose thatλ_(1),λ_(2),λ_(3),λ_(4),λ_(5)are nonzero real numbers,not all of the same sign,andλ_(1)/λ_(2)is irrational and algebraic.Let V be a well-spaced sequence,δ>0.In this paper,it is proved that,for anyε>0,the number of v∈V with v≤N such that the following inequality|λ_(1)p_(1)~2+λ_(2)p_(2)~2+λ_(3)p_(3)~4+λ_(4)p_(4)~4+λ_5p_5~4-v|<v^(-δ)has no solution in prime variables p_(1),p_(2),p_(3),p_(4),p_(5)does not exceed O(N^(29/32+2δ+ε)).
基金supported by the PhD Research Startup Foundation of Hubei University of Economics(Grand No.XJ23BS42).
文摘This paper studies the Smoluchowski–Kramers approximation for a discrete-time dynamical system modeled as the motion of a particle in a force field.We show that the approximation holds for the drift-implicit Euler–Maruyama discretization and derive its convergence rate.In particular,the solution of the discretized system converges to the solution of the first-order limit equation in the mean-square sense,and this convergence is independent of the order in which the mass parameterμand the step size h tend to zero.
文摘In numerical analysis, it is significant to approximate the linear functional Ef=sum from i=0 to m-1([integral from a to b(a<sub>1</sub>(x)f<sup>1</sup>(x)dx+ sum from f=0 to i<sub>1</sub>(b<sub>1</sub>f<sup>1</sup>(x<sub>1</sub>))]) by a simpler linear functional Lf=sum from i=1 to m(a<sub>1</sub>f(x<sub>1</sub>)) In this paper, making use of natural Tchebysheff spline function, we give existence theorem and uniqueness theorem of L that is exact for the degree m to F; we also give three sufficient and necessary conditions in which L is the Sard best approximation to F.
基金Supported by the National Natural Science Foundation of China(No.61271230,61472190)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2013D02)the Open Research Fund of National Key Laboratory of Electromagnetic Environment,China Research Institute of Radiowave Propagation(No.201500013)
文摘The pilotless frame synchronization approach and implementations of LDPC code are the crucial issue of LDPC decoder. The Maximum-A-Posteriori probability( MAP) decoder has a perfect frame synchronization error rate( FSER) performance. In this paper,a theoretical derivation of the FSER performance of pilotless frame synchronization for LDPC code is presented. The FSER performance by theoretical analysis coincides well with that by simulation in additive white Gaussian channel and Rician fading channel. So it is estimated the FSER performance of an LDPC code by theoretical analysis can be used instead of the simulations which are much more time-consuming.