By using the homogeneous balance principle(HBP), we derive a Backtund transformation(BT) to the generalized dispersive long wave equation with variable coefficients.Based on the BT, we give many kinds of the exact...By using the homogeneous balance principle(HBP), we derive a Backtund transformation(BT) to the generalized dispersive long wave equation with variable coefficients.Based on the BT, we give many kinds of the exact solutions of the equation, such as, singlesolitary solutions, multi-soliton solutions and generalized exact solutions.展开更多
This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé...This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature.展开更多
By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.
Long-period waves pose a threat to coastal communities as they propagate from deep ocean to shallow coastal waters. At the coastline, such waves have a greater height and longer period in comparison with local storm w...Long-period waves pose a threat to coastal communities as they propagate from deep ocean to shallow coastal waters. At the coastline, such waves have a greater height and longer period in comparison with local storm waves, and can cause severe inundation and damage. In this study,we considered linear long waves in a two-dimensional(vertical-horizontal) domain propagating towards a shoreline over a shallowing shelf.New solutions to the linear shallow water equations were found, through the separation of variables, for two forms of transition shelf morphology: deep water and shallow coastal water horizontal shelves connected by linear and parabolic transition, respectively. Expressions for the transmission and reflection coefficients are presented for each case. The analytical solutions were used to test the results from a novel computational scheme, which was then applied to extending the existing results relating to the reflected and transmitted components of an incident wave. The solutions and computational package provide new tools for coastal managers to formulate improved defence and riskmitigation strategies.展开更多
In the present paper,the exp(−φ(ξ))expansion method is applied to the fractional Broer-Kaup and approximate long water wave equations.The explicit approximate traveling wave solutions are obtained by using this meth...In the present paper,the exp(−φ(ξ))expansion method is applied to the fractional Broer-Kaup and approximate long water wave equations.The explicit approximate traveling wave solutions are obtained by using this method.Here,fractional derivatives are defined in the conformable sense.The obtained traveling wave solutions are expressed by the hyperbolic,trigonometric,exponential and rational functions.Simulations of the obtained solutions are given at the end of the paper.展开更多
In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and ...In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and the system of Hirota-Satsuma coupled KdV. In addition, the results obtained from Laplace decomposition method (LDM) and Pade approximant are compared with corresponding exact analytical solutions.展开更多
The aim of the article is to construct exact solutions for the time fractional coupled Boussinesq-Burger and approximate long water wave equations by using the generalized Kudryashov method.The fractional differential...The aim of the article is to construct exact solutions for the time fractional coupled Boussinesq-Burger and approximate long water wave equations by using the generalized Kudryashov method.The fractional differential equation is converted into ordinary differential equations with the help of fractional complex transform and the modified Riemann-Liouville derivative sense.Applying the generalized Kudryashov method through with symbolic computer maple package,numerous new exact solutions are successfully obtained.All calculations in this study have been established and verified back with the aid of the Maple package program.The executed method is powerful,effective and straightforward for solving nonlinear partial differential equations to obtain more and new solutions with the integer and fractional order.展开更多
This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion m...This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion method and the modified Riemann-Liouville fractional derivative.The recommended equations play a significant role to describe the travel of the shallow water wave.The fractional complex transform is used to convert fractional differential equations into ordinary differential equations.Several wave solutions have been successfully achieved using the proposed approach and the symbolic computer Maple package.The Maple package program was used to set up and validate all of the computations in this investigation.By choosing particular values of the embedded parameters,we pro-duce multiple periodic solutions,periodic wave solutions,single soliton solutions,kink wave solutions,and more forms of soliton solutions.The achieved solutions might be useful to comprehend nonlinear phenomena.It is worth noting that the implemented method for solving nonlinear fractional partial dif-ferential equations(NLFPDEs)is efficient,and simple to find further and new-fangled solutions in the arena of mathematical physics and coastal engineering.展开更多
In this paper,we propose a new high accuracy discretization based on the ideas given by Chawla and Shivakumar for the solution of two-space dimensional nonlinear hyper-bolic partial differential equation of the form u...In this paper,we propose a new high accuracy discretization based on the ideas given by Chawla and Shivakumar for the solution of two-space dimensional nonlinear hyper-bolic partial differential equation of the form utt=A(x,y,t)uxx+B(x,y,t)uyy+g(x,y,t,u,ux,uy,ut),0<x,y<1,t>0 subject to appropriate initial and Dirichlet boundary conditions.We use only five evaluations of the function g and do not require any fictitious points to discretize the differential equation.The proposed method is directly applicable to wave equation in polar coordinates and when applied to a linear telegraphic hyperbolic equation is shown to be unconditionally stable.Numerical results are provided to illustrate the usefulness of the proposed method.展开更多
基金Supported by the Natural Science Foundation of Education Committee of Henan Province(2003110003)
文摘By using the homogeneous balance principle(HBP), we derive a Backtund transformation(BT) to the generalized dispersive long wave equation with variable coefficients.Based on the BT, we give many kinds of the exact solutions of the equation, such as, singlesolitary solutions, multi-soliton solutions and generalized exact solutions.
基金This work was supported by the National Natural Science Foundation of China(Grant No.11505090)Research Award Foundation for Outstanding Young Scientists of Shandong Province(Grant No.BS2015SF009)+2 种基金the Doctoral Foundation of Liaocheng University(Grant No.318051413)Liaocheng University Level Science and Technology Research Fund(Grant No.318012018)Discipline with Strong Characteristics of Liaocheng University–Intelligent Science and Technology(Grant No.319462208).
文摘This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature.
文摘By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.
基金supported by a Researcher Links Grant from the British Council,the Royal Academy of Engineering(Grant No.IAAP1/100086)the EFRaCC Project funded through the British Council's Global Innovation Initiative Program
文摘Long-period waves pose a threat to coastal communities as they propagate from deep ocean to shallow coastal waters. At the coastline, such waves have a greater height and longer period in comparison with local storm waves, and can cause severe inundation and damage. In this study,we considered linear long waves in a two-dimensional(vertical-horizontal) domain propagating towards a shoreline over a shallowing shelf.New solutions to the linear shallow water equations were found, through the separation of variables, for two forms of transition shelf morphology: deep water and shallow coastal water horizontal shelves connected by linear and parabolic transition, respectively. Expressions for the transmission and reflection coefficients are presented for each case. The analytical solutions were used to test the results from a novel computational scheme, which was then applied to extending the existing results relating to the reflected and transmitted components of an incident wave. The solutions and computational package provide new tools for coastal managers to formulate improved defence and riskmitigation strategies.
文摘In the present paper,the exp(−φ(ξ))expansion method is applied to the fractional Broer-Kaup and approximate long water wave equations.The explicit approximate traveling wave solutions are obtained by using this method.Here,fractional derivatives are defined in the conformable sense.The obtained traveling wave solutions are expressed by the hyperbolic,trigonometric,exponential and rational functions.Simulations of the obtained solutions are given at the end of the paper.
文摘In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and the system of Hirota-Satsuma coupled KdV. In addition, the results obtained from Laplace decomposition method (LDM) and Pade approximant are compared with corresponding exact analytical solutions.
文摘The aim of the article is to construct exact solutions for the time fractional coupled Boussinesq-Burger and approximate long water wave equations by using the generalized Kudryashov method.The fractional differential equation is converted into ordinary differential equations with the help of fractional complex transform and the modified Riemann-Liouville derivative sense.Applying the generalized Kudryashov method through with symbolic computer maple package,numerous new exact solutions are successfully obtained.All calculations in this study have been established and verified back with the aid of the Maple package program.The executed method is powerful,effective and straightforward for solving nonlinear partial differential equations to obtain more and new solutions with the integer and fractional order.
文摘This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion method and the modified Riemann-Liouville fractional derivative.The recommended equations play a significant role to describe the travel of the shallow water wave.The fractional complex transform is used to convert fractional differential equations into ordinary differential equations.Several wave solutions have been successfully achieved using the proposed approach and the symbolic computer Maple package.The Maple package program was used to set up and validate all of the computations in this investigation.By choosing particular values of the embedded parameters,we pro-duce multiple periodic solutions,periodic wave solutions,single soliton solutions,kink wave solutions,and more forms of soliton solutions.The achieved solutions might be useful to comprehend nonlinear phenomena.It is worth noting that the implemented method for solving nonlinear fractional partial dif-ferential equations(NLFPDEs)is efficient,and simple to find further and new-fangled solutions in the arena of mathematical physics and coastal engineering.
基金“The University of Delhi”under research grant No.Dean(R)/R&D/2010/1311.
文摘In this paper,we propose a new high accuracy discretization based on the ideas given by Chawla and Shivakumar for the solution of two-space dimensional nonlinear hyper-bolic partial differential equation of the form utt=A(x,y,t)uxx+B(x,y,t)uyy+g(x,y,t,u,ux,uy,ut),0<x,y<1,t>0 subject to appropriate initial and Dirichlet boundary conditions.We use only five evaluations of the function g and do not require any fictitious points to discretize the differential equation.The proposed method is directly applicable to wave equation in polar coordinates and when applied to a linear telegraphic hyperbolic equation is shown to be unconditionally stable.Numerical results are provided to illustrate the usefulness of the proposed method.
基金supported by National Natural Science Fundation of china(11071159)Scientific Research Innovation Project of Shanghai Education Committee(09YZ239)the College Science Research Project of Inner Mongolia(N Jzy08180)