期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Exact Solutions to the Generalized Dispersive Long Wave Equation with Variable Coefficients 被引量:1
1
作者 ZHANG Ling-yuan ZHANG Jin-liang WANG Ming-liang 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第4期522-528,共7页
By using the homogeneous balance principle(HBP), we derive a Backtund transformation(BT) to the generalized dispersive long wave equation with variable coefficients.Based on the BT, we give many kinds of the exact... By using the homogeneous balance principle(HBP), we derive a Backtund transformation(BT) to the generalized dispersive long wave equation with variable coefficients.Based on the BT, we give many kinds of the exact solutions of the equation, such as, singlesolitary solutions, multi-soliton solutions and generalized exact solutions. 展开更多
关键词 generalized dispersive long wave equation with variable coefficients homogeneous balance principle(HBP) Backlund transformation(BT) single solitary solutions multi-soliton-like solutions exact solutions
在线阅读 下载PDF
Interaction solutions and localized waves to the(2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient
2
作者 闫鑫颖 刘锦洲 辛祥鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期199-205,共7页
This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé... This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature. 展开更多
关键词 (2+1)-dimensional variable coefficient Hirota-Satsuma-Ito equation Hirota bilinear method long wave limit method N-soliton solutions
原文传递
Solitary Wave and Non-traveling Wave Solutions to Two Nonlinear Evolution Equations 被引量:6
3
作者 YAN Zhi-Lian LIU Xi-Qiang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第3X期479-482,共4页
By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.
关键词 approximate equations for long water waves variant Boussinesq equations non-traveling wave solution solitary wave solution
在线阅读 下载PDF
Free-surface long wave propagation over linear and parabolic transition shelves 被引量:2
4
作者 Ikha Magdalena Iryanto Dominic E.Reeve 《Water Science and Engineering》 EI CAS CSCD 2018年第4期318-327,共10页
Long-period waves pose a threat to coastal communities as they propagate from deep ocean to shallow coastal waters. At the coastline, such waves have a greater height and longer period in comparison with local storm w... Long-period waves pose a threat to coastal communities as they propagate from deep ocean to shallow coastal waters. At the coastline, such waves have a greater height and longer period in comparison with local storm waves, and can cause severe inundation and damage. In this study,we considered linear long waves in a two-dimensional(vertical-horizontal) domain propagating towards a shoreline over a shallowing shelf.New solutions to the linear shallow water equations were found, through the separation of variables, for two forms of transition shelf morphology: deep water and shallow coastal water horizontal shelves connected by linear and parabolic transition, respectively. Expressions for the transmission and reflection coefficients are presented for each case. The analytical solutions were used to test the results from a novel computational scheme, which was then applied to extending the existing results relating to the reflected and transmitted components of an incident wave. The solutions and computational package provide new tools for coastal managers to formulate improved defence and riskmitigation strategies. 展开更多
关键词 Shallow water equation long-period wave SHOALING Analytical solution Numerical solution Reflection coefficient Transmission coefficient
在线阅读 下载PDF
New analytic solutions of the space-time fractional Broer-Kaup and approximate long water wave equations 被引量:1
5
作者 H.Çerdik Yaslan 《Journal of Ocean Engineering and Science》 SCIE 2018年第4期295-302,共8页
In the present paper,the exp(−φ(ξ))expansion method is applied to the fractional Broer-Kaup and approximate long water wave equations.The explicit approximate traveling wave solutions are obtained by using this meth... In the present paper,the exp(−φ(ξ))expansion method is applied to the fractional Broer-Kaup and approximate long water wave equations.The explicit approximate traveling wave solutions are obtained by using this method.Here,fractional derivatives are defined in the conformable sense.The obtained traveling wave solutions are expressed by the hyperbolic,trigonometric,exponential and rational functions.Simulations of the obtained solutions are given at the end of the paper. 展开更多
关键词 The fractional Broer-Kaup equations The fractional approximate long water wave equations Conformable derivative exp(−φ(ξ))expansion method Traveling wave solutions.
原文传递
Numerical Solution of Nonlinear System of Partial Differential Equations by the Laplace Decomposition Method and the Pade Approximation
6
作者 Magdy Ahmed Mohamed Mohamed Shibl Torky 《American Journal of Computational Mathematics》 2013年第3期175-184,共10页
In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and ... In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and the system of Hirota-Satsuma coupled KdV. In addition, the results obtained from Laplace decomposition method (LDM) and Pade approximant are compared with corresponding exact analytical solutions. 展开更多
关键词 NONLINEAR SYSTEM of Partial Differential equations The LAPLACE Decomposition Method The Pade Approximation The COUPLED SYSTEM of the approximate equations for long water waves The Whitham Broer Kaup Shallow water Model The SYSTEM of Hirota-Satsuma COUPLED KdV
在线阅读 下载PDF
New exact solutions for the time fractional coupled Boussinesq-Burger equation and approximate long water wave equation in shallow water 被引量:5
7
作者 Mostafa M.A.Khater Dipankar Kumar 《Journal of Ocean Engineering and Science》 SCIE 2017年第3期223-228,共6页
The aim of the article is to construct exact solutions for the time fractional coupled Boussinesq-Burger and approximate long water wave equations by using the generalized Kudryashov method.The fractional differential... The aim of the article is to construct exact solutions for the time fractional coupled Boussinesq-Burger and approximate long water wave equations by using the generalized Kudryashov method.The fractional differential equation is converted into ordinary differential equations with the help of fractional complex transform and the modified Riemann-Liouville derivative sense.Applying the generalized Kudryashov method through with symbolic computer maple package,numerous new exact solutions are successfully obtained.All calculations in this study have been established and verified back with the aid of the Maple package program.The executed method is powerful,effective and straightforward for solving nonlinear partial differential equations to obtain more and new solutions with the integer and fractional order. 展开更多
关键词 The generalized Kudryashov method The time fractional coupled Boussinesq-Burger equation The time fractional approximate long water wave equation Exact solutions
原文传递
Investigation of adequate closed form travelling wave solution to the space-time fractional non-linear evolution equations 被引量:1
8
作者 Mohammad Asif Arefin M.Ayesha Khatun +1 位作者 M.Hafiz Uddin Mustafa Inc 《Journal of Ocean Engineering and Science》 SCIE 2022年第3期292-303,共12页
This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion m... This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion method and the modified Riemann-Liouville fractional derivative.The recommended equations play a significant role to describe the travel of the shallow water wave.The fractional complex transform is used to convert fractional differential equations into ordinary differential equations.Several wave solutions have been successfully achieved using the proposed approach and the symbolic computer Maple package.The Maple package program was used to set up and validate all of the computations in this investigation.By choosing particular values of the embedded parameters,we pro-duce multiple periodic solutions,periodic wave solutions,single soliton solutions,kink wave solutions,and more forms of soliton solutions.The achieved solutions might be useful to comprehend nonlinear phenomena.It is worth noting that the implemented method for solving nonlinear fractional partial dif-ferential equations(NLFPDEs)is efficient,and simple to find further and new-fangled solutions in the arena of mathematical physics and coastal engineering. 展开更多
关键词 Riemann-Liouville fractional derivative Space-time fractional(2+1)-dimensional dispersive long wave equation approximate long water wave equation wave transformation The two-variable(G′/G 1/G)-expansion method
原文传递
HIGH ACCURACY ARITHMETIC AVERAGE TYPE DISCRETIZATION FOR THE SOLUTION OF TWO-SPACE DIMENSIONAL NONLINEAR WAVE EQUATIONS
9
作者 R.K.MOHANTY VENU GOPAL 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2012年第2期1-18,共18页
In this paper,we propose a new high accuracy discretization based on the ideas given by Chawla and Shivakumar for the solution of two-space dimensional nonlinear hyper-bolic partial differential equation of the form u... In this paper,we propose a new high accuracy discretization based on the ideas given by Chawla and Shivakumar for the solution of two-space dimensional nonlinear hyper-bolic partial differential equation of the form utt=A(x,y,t)uxx+B(x,y,t)uyy+g(x,y,t,u,ux,uy,ut),0<x,y<1,t>0 subject to appropriate initial and Dirichlet boundary conditions.We use only five evaluations of the function g and do not require any fictitious points to discretize the differential equation.The proposed method is directly applicable to wave equation in polar coordinates and when applied to a linear telegraphic hyperbolic equation is shown to be unconditionally stable.Numerical results are provided to illustrate the usefulness of the proposed method. 展开更多
关键词 Nonlinear hyperbolic equation variable coefficients arithmetic average type approximation wave equation in polar coordinates van der Pol equation telegraphic equation maximum absolute errors.
原文传递
浅水长波近似方程组的非线性函数变换和孤立波解 被引量:14
10
作者 王明亮 周宇斌 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 1998年第2期21-25,共5页
利用齐次平衡方法导出了浅水长波近似方程组的一个非线性函数变换,借助这个变换,只需解一个线性常系数偏微分方程,就可得到方程组的精确解.特别的。
关键词 浅水长波 近似方程组 非线性函数变换 孤立波解
在线阅读 下载PDF
变系数长水波近似方程组的精确解 被引量:1
11
作者 石玉仁 吕克璞 段文山 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期109-111,共3页
用齐次平衡法给出了变系数浅水长波方程组的多孤立波解,结果表明方程的系数不改变波在传播时的振幅,却改变各波的传播速度.这种方法可以用来求解一类变系数非线性演化方程.
关键词 变系数长水波近似方程组 齐次平衡法 精确解 孤立波解
在线阅读 下载PDF
(2+1)维色散长波系统的局域分形结构 被引量:2
12
作者 黄磊 孙建安 豆福全 《西北师范大学学报(自然科学版)》 CAS 2006年第5期43-46,80,共5页
利用拓展的Riccati方程映射法,进一步研究了(2+1)维色散长波系统,得到了方程的1组新的含有2个任意函数的分离变量解.分别选取2个任意函数为Jacobi椭圆正弦函数和Jacobi椭圆余弦函数的适当组合,借助数学软件Mathematica,得到了系统的随... 利用拓展的Riccati方程映射法,进一步研究了(2+1)维色散长波系统,得到了方程的1组新的含有2个任意函数的分离变量解.分别选取2个任意函数为Jacobi椭圆正弦函数和Jacobi椭圆余弦函数的适当组合,借助数学软件Mathematica,得到了系统的随机分形结构和规则分形结构.结果表明,分形结构不仅出现在不可积系统中,也会出现在可积系统中. 展开更多
关键词 Riccati方程映射法 色散长波(DLW)方程 分离变量 局域分形结构
在线阅读 下载PDF
浅水长波近似方程组的拟小波解 被引量:2
13
作者 黄正洪 夏莉 何希平 《纯粹数学与应用数学》 CSCD 北大核心 2006年第3期414-419,423,共7页
以浅水长波近似方程组为例,提出了拟小波方法求解(1+1)维非线性偏微分方程组数值解,该方程用拟小波离散格式离散空间导数,得到关于时间的常微分方程组,用四阶Runge-K utta方法离散时间导数,并将其拟小波解与解析解进行比较和验证.
关键词 浅水长波近似方程组 拟小波方法 数值解
在线阅读 下载PDF
变系数(2+1)维非线性色散长波方程新的类孤子解和局域相干结构 被引量:2
14
作者 卢殿臣 杨广娟 《应用数学》 CSCD 北大核心 2007年第4期777-782,共6页
本文通过构造两个新的Riccati方程组,应用齐次平衡原则和分离变量法的思想,借助Mathematica软件,得到了变系数(2+1)维非线性色散长波方程的一系列新的精确解.包括各种类孤立波解、类周期解等,并构造了该方程的几种不同形式的局域相干结构.
关键词 变系数 色散长波方程 类孤子解 类周期解 RICCATI方程组
在线阅读 下载PDF
浅水长波近似方程的显式精确解 被引量:7
15
作者 闫振亚 《烟台大学学报(自然科学与工程版)》 CAS 2000年第1期8-12,17,共6页
借助于符号计算软件Mathematica 和吴消元法,本文给出了一种求非线性发展方程精确解的途径.将此方法应用于浅水长波近似方程,获得了该方程的若干精确解,其中包括孤波解和周期波解.
关键词 精确解 浅水长波方程 非线性发展方程 吴消元法
在线阅读 下载PDF
基于拟Shannon小波浅水长波近似方程组的数值解(英文) 被引量:2
16
作者 夏莉 《数学杂志》 CSCD 北大核心 2007年第3期255-260,共6页
本文研究了浅水长波近似方程组初边值问题的数值解.利用小波多尺度分析和区间拟Shannon小波,对浅水长波近似方程组空间导数实施空间离散,用时间步长自适应精细积分法对其变换所的非线性常微分方程组进行求解,得到了浅水长波近似方程组... 本文研究了浅水长波近似方程组初边值问题的数值解.利用小波多尺度分析和区间拟Shannon小波,对浅水长波近似方程组空间导数实施空间离散,用时间步长自适应精细积分法对其变换所的非线性常微分方程组进行求解,得到了浅水长波近似方程组的数值解,并将此方法计算的结果与其解析解进行比较和验证. 展开更多
关键词 浅水长波近似方程组 区间小波 精细积分法
在线阅读 下载PDF
变系数G展开法与广义浅水波方程的精确解 被引量:1
17
作者 王鑫 岳晓蕊 《福州大学学报(自然科学版)》 CAS 北大核心 2019年第1期1-6,共6页
以(G'/G)的基本思想为依据,构造了一种变系数G展开法,即(G-G'/G+G')展开法,其中的函数G满足一类二阶变系数非线性常微分方程.通过此展开法,并借助Mathematica计算软件,对广义浅水波方程进行了求解,获得了该方程显式行波解.... 以(G'/G)的基本思想为依据,构造了一种变系数G展开法,即(G-G'/G+G')展开法,其中的函数G满足一类二阶变系数非线性常微分方程.通过此展开法,并借助Mathematica计算软件,对广义浅水波方程进行了求解,获得了该方程显式行波解.事实证明,变系数G展开法对于求解非线性偏微分方程的精确解是有效可行的. 展开更多
关键词 广义浅水波方程 G 展开法 精确解 变系数
在线阅读 下载PDF
改进的分数阶辅助方程方法及其在非线性空间-时间分数阶微分方程中的应用 被引量:1
18
作者 赵梅妹 《西南师范大学学报(自然科学版)》 CAS 北大核心 2018年第11期24-29,共6页
利用改进的分数阶辅助方程方法求解具有修正的Riemann-Liouville分数阶导数的非线性发展方程组.将该方法应用到空间-时间分数阶Broer-Kaup方程组和空间-时间分数阶长水波近似方程组,并通过符号计算得到这两类方程组的精确行波解.结果表... 利用改进的分数阶辅助方程方法求解具有修正的Riemann-Liouville分数阶导数的非线性发展方程组.将该方法应用到空间-时间分数阶Broer-Kaup方程组和空间-时间分数阶长水波近似方程组,并通过符号计算得到这两类方程组的精确行波解.结果表明,该方法能十分有效和便捷地得到时间-空间分数阶非线性微分方程组的解. 展开更多
关键词 改进的分数阶辅助方程方法 修正的Riemann-Liouville分数阶导数 分数阶微分方程 Broer-Kaup方程组 长水波近似方程组
在线阅读 下载PDF
利用改进的扩展tanh函数方法求解非线性发展方程(组)的行波解(英文) 被引量:1
19
作者 额尔敦布和 特木尔朝鲁 白玉梅 《内蒙古民族大学学报(自然科学版)》 2011年第2期125-133,共9页
基于一变系数Riccati方程及其解,在内行波变换和指数变换的辅助下,提出改进的扩展tanh函数方法及其算法.该方法对构造非线性发展方程(组)的精确行波解方面比tanh函数方法和各类扩展tanh函数方法更强劲.以Broer-Kaup方程组和近似长水波... 基于一变系数Riccati方程及其解,在内行波变换和指数变换的辅助下,提出改进的扩展tanh函数方法及其算法.该方法对构造非线性发展方程(组)的精确行波解方面比tanh函数方法和各类扩展tanh函数方法更强劲.以Broer-Kaup方程组和近似长水波方程组为举例,得到包括三角周期波解、孤立波解、复杂波解和有理函数解等丰富有趣的行波解.该方法简洁有效,可适合应用于其它非线性发展方程(组). 展开更多
关键词 改进的扩展tanh函数方法 行波解 非线性发展方程(组) Broer-Kaup方程组 近似长水波方程组
在线阅读 下载PDF
浅水长波近似方程组的多孤波解、有理分式解
20
作者 聂小兵 贺秀霞 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第2期15-21,共7页
使用王明亮引进的齐次平衡法 ,求出了浅水长波近似方程组的Backlund变换以及它与热传导方程和二阶线性方程之间的Darboux变换 ,并借助于这些变换 ,获得了浅水长波近似方程组的多孤波解、有理分式解。
关键词 齐次平衡法 浅水长波近似方程组 BACKLUND变换 DARBOUX变换 多孤波解 有理分式解
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部