期刊文献+
共找到220篇文章
< 1 2 11 >
每页显示 20 50 100
Using approximate dynamic programming for multi-ESM scheduling to track ground moving targets 被引量:6
1
作者 WAN Kaifang GAO Xiaoguang +1 位作者 LI Bo LI Fei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期74-85,共12页
This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain e... This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain environment. For adaptive selection of appropriate ESMs, we generalize an approximate dynamic programming(ADP) framework to the dynamic case. We define the environment model and agent model, respectively. To handle the partially observable challenge, we apply the unsented Kalman filter(UKF) algorithm for belief state estimation. To reduce the computational burden, a simulation-based approach rollout with a redesigned base policy is proposed to approximate the long-term cumulative reward. Meanwhile, Monte Carlo sampling is combined into the rollout to estimate the expectation of the rewards. The experiments indicate that our method outperforms other strategies due to its better performance in larger-scale problems. 展开更多
关键词 sensor scheduling target tracking approximate dynamic programming non-myopic rollout belief state
在线阅读 下载PDF
Approximate Dynamic Programming for Stochastic Resource Allocation Problems 被引量:4
2
作者 Ali Forootani Raffaele Iervolino +1 位作者 Massimo Tipaldi Joshua Neilson 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第4期975-990,共16页
A stochastic resource allocation model, based on the principles of Markov decision processes(MDPs), is proposed in this paper. In particular, a general-purpose framework is developed, which takes into account resource... A stochastic resource allocation model, based on the principles of Markov decision processes(MDPs), is proposed in this paper. In particular, a general-purpose framework is developed, which takes into account resource requests for both instant and future needs. The considered framework can handle two types of reservations(i.e., specified and unspecified time interval reservation requests), and implement an overbooking business strategy to further increase business revenues. The resulting dynamic pricing problems can be regarded as sequential decision-making problems under uncertainty, which is solved by means of stochastic dynamic programming(DP) based algorithms. In this regard, Bellman’s backward principle of optimality is exploited in order to provide all the implementation mechanisms for the proposed reservation pricing algorithm. The curse of dimensionality, as the inevitable issue of the DP both for instant resource requests and future resource reservations,occurs. In particular, an approximate dynamic programming(ADP) technique based on linear function approximations is applied to solve such scalability issues. Several examples are provided to show the effectiveness of the proposed approach. 展开更多
关键词 approximate dynamic programming(ADP) dynamic programming(DP) Markov decision processes(MDPs) resource allocation problem
在线阅读 下载PDF
Approximate Dynamic Programming for Self-Learning Control 被引量:14
3
作者 DerongLiu 《自动化学报》 EI CSCD 北大核心 2005年第1期13-18,共6页
This paper introduces a self-learning control approach based on approximate dynamic programming. Dynamic programming was introduced by Bellman in the 1950's for solving optimal control problems of nonlinear dynami... This paper introduces a self-learning control approach based on approximate dynamic programming. Dynamic programming was introduced by Bellman in the 1950's for solving optimal control problems of nonlinear dynamical systems. Due to its high computational complexity, the applications of dynamic programming have been limited to simple and small problems. The key step in finding approximate solutions to dynamic programming is to estimate the performance index in dynamic programming. The optimal control signal can then be determined by minimizing (or maximizing) the performance index. Artificial neural networks are very efficient tools in representing the performance index in dynamic programming. This paper assumes the use of neural networks for estimating the performance index in dynamic programming and for generating optimal control signals, thus to achieve optimal control through self-learning. 展开更多
关键词 近似动态程序 自学习控制 神经网络 人工智能
在线阅读 下载PDF
Two-stage robust optimization of power cost minimization problem in gunbarrel natural gas networks by approximate dynamic programming 被引量:1
4
作者 Yi-Ze Meng Ruo-Ran Chen Tian-Hu Deng 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2497-2517,共21页
In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas ... In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas networks.The demands between pipelines and compressor stations are uncertain with a budget parameter,since it is unlikely that all the uncertain demands reach the maximal deviation simultaneously.During solving the two-stage robust model we encounter a bilevel problem which is challenging to solve.We formulate it as a multi-dimensional dynamic programming problem and propose approximate dynamic programming methods to accelerate the calculation.Numerical results based on real network in China show that we obtain a speed gain of 7 times faster in average without compromising optimality compared with original dynamic programming algorithm.Numerical results also verify the advantage of robust model compared with deterministic model when facing uncertainties.These findings offer short-term operation methods for gunbarrel natural gas network management to handle with uncertainties. 展开更多
关键词 Natural gas Gunbarrel gas pipeline networks Robust optimization approximate dynamic programming
原文传递
Call for papers Journal of Control Theory and Applications Special issue on Approximate dynamic programming and reinforcement learning
5
《控制理论与应用(英文版)》 EI 2010年第2期257-257,共1页
Approximate dynamic programming (ADP) is a general and effective approach for solving optimal control and estimation problems by adapting to uncertain and nonconvex environments over time.
关键词 Call for papers Journal of Control Theory and Applications Special issue on approximate dynamic programming and reinforcement learning
在线阅读 下载PDF
Policy iteration optimal tracking control for chaotic systems by using an adaptive dynamic programming approach 被引量:2
6
作者 魏庆来 刘德荣 徐延才 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期87-94,共8页
A policy iteration algorithm of adaptive dynamic programming(ADP) is developed to solve the optimal tracking control for a class of discrete-time chaotic systems. By system transformations, the optimal tracking prob... A policy iteration algorithm of adaptive dynamic programming(ADP) is developed to solve the optimal tracking control for a class of discrete-time chaotic systems. By system transformations, the optimal tracking problem is transformed into an optimal regulation one. The policy iteration algorithm for discrete-time chaotic systems is first described. Then,the convergence and admissibility properties of the developed policy iteration algorithm are presented, which show that the transformed chaotic system can be stabilized under an arbitrary iterative control law and the iterative performance index function simultaneously converges to the optimum. By implementing the policy iteration algorithm via neural networks,the developed optimal tracking control scheme for chaotic systems is verified by a simulation. 展开更多
关键词 adaptive critic designs adaptive dynamic programming approximate dynamic programming neuro-dynamic programming
原文传递
Optimal Constrained Self-learning Battery Sequential Management in Microgrid Via Adaptive Dynamic Programming 被引量:18
7
作者 Qinglai Wei Derong Liu +1 位作者 Yu Liu Ruizhuo Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期168-176,共9页
This paper concerns a novel optimal self-learning battery sequential control scheme for smart home energy systems. The main idea is to use the adaptive dynamic programming U+0028 ADP U+0029 technique to obtain the opt... This paper concerns a novel optimal self-learning battery sequential control scheme for smart home energy systems. The main idea is to use the adaptive dynamic programming U+0028 ADP U+0029 technique to obtain the optimal battery sequential control iteratively. First, the battery energy management system model is established, where the power efficiency of the battery is considered. Next, considering the power constraints of the battery, a new non-quadratic form performance index function is established, which guarantees that the value of the iterative control law cannot exceed the maximum charging/discharging power of the battery to extend the service life of the battery. Then, the convergence properties of the iterative ADP algorithm are analyzed, which guarantees that the iterative value function and the iterative control law both reach the optimums. Finally, simulation and comparison results are given to illustrate the performance of the presented method. © 2017 Chinese Association of Automation. 展开更多
关键词 Adaptive control systems Automation Battery management systems Control theory Electric batteries Energy management Energy management systems Intelligent buildings Iterative methods Number theory Secondary batteries
在线阅读 下载PDF
An Optimal Control Scheme for a Class of Discrete-time Nonlinear Systems with Time Delays Using Adaptive Dynamic Programming 被引量:17
8
作者 WEI Qing-Lai ZHANG Hua-Guang +1 位作者 LIU De-Rong ZHAO Yan 《自动化学报》 EI CSCD 北大核心 2010年第1期121-129,共9页
关键词 非线性系统 最优控制 控制变量 动态规划
在线阅读 下载PDF
Performance Potential-based Neuro-dynamic Programming for SMDPs 被引量:10
9
作者 TANGHao YUANJi-Bin LUYang CHENGWen-Juan 《自动化学报》 EI CSCD 北大核心 2005年第4期642-645,共4页
An alpha-uniformized Markov chain is defined by the concept of equivalent infinitesimalgenerator for a semi-Markov decision process (SMDP) with both average- and discounted-criteria.According to the relations of their... An alpha-uniformized Markov chain is defined by the concept of equivalent infinitesimalgenerator for a semi-Markov decision process (SMDP) with both average- and discounted-criteria.According to the relations of their performance measures and performance potentials, the optimiza-tion of an SMDP can be realized by simulating the chain. For the critic model of neuro-dynamicprogramming (NDP), a neuro-policy iteration (NPI) algorithm is presented, and the performanceerror bound is shown as there are approximate error and improvement error in each iteration step.The obtained results may be extended to Markov systems, and have much applicability. Finally, anumerical example is provided. 展开更多
关键词 决议过程 SMDP 执行电位 神经动力学 MARKOV链 优化设计
在线阅读 下载PDF
Transfer-based Approximate Dynamic Programmingfor Rolling Security-constrained Unit Commitment with Uncertainties
10
作者 Jianquan Zhu Kai Zeng +3 位作者 Jiajun Chen Wenmeng Zhao Wenhao Liu Wenkai Zhu 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第5期42-53,共12页
This paper studies the rolling security-constrained unit commitment(RSCUC)problem with AC power flow and uncertainties.For this NP-hard problem,it is modeled as a Markov decision process,which is then solved by a tran... This paper studies the rolling security-constrained unit commitment(RSCUC)problem with AC power flow and uncertainties.For this NP-hard problem,it is modeled as a Markov decision process,which is then solved by a transfer-based approximate dynamic programming(TADP)algorithm proposed in this paper.Different from traditional approximate dynamic programming(ADP)algorithms,TADP can obtain the commitment states of most units in advance through a decision transfer technique,thus reducing the action space of TADP significantly.Moreover,compared with traditional ADP algorithms,which require to determine the commitment state of each unit,TADP only needs determine the unit with the smallest on-state probability among all on-state units,thus further reducing the action space.The proposed algorithm can also prevent the iter-ative update of value functions and the reliance on rolling forecast information,which makes more sense in the rolling decision-making process of RSCUC.Finally,nu-merical simulations are carried out on a modified IEEE 39-bus system and a real 2778-bus system to demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 Rolling security-constrained unit com-mitment approximate dynamic programming decision transfer probability-based decision priority criterion uncertainty
在线阅读 下载PDF
Chaotic system optimal tracking using data-based synchronous method with unknown dynamics and disturbances
11
作者 宋睿卓 魏庆来 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期268-275,共8页
We develop an optimal tracking control method for chaotic system with unknown dynamics and disturbances. The method allows the optimal cost function and the corresponding tracking control to update synchronously. Acco... We develop an optimal tracking control method for chaotic system with unknown dynamics and disturbances. The method allows the optimal cost function and the corresponding tracking control to update synchronously. According to the tracking error and the reference dynamics, the augmented system is constructed. Then the optimal tracking control problem is defined. The policy iteration (PI) is introduced to solve the rain-max optimization problem. The off-policy adaptive dynamic programming (ADP) algorithm is then proposed to find the solution of the tracking Hamilton-Jacobi- Isaacs (HJI) equation online only using measured data and without any knowledge about the system dynamics. Critic neural network (CNN), action neural network (ANN), and disturbance neural network (DNN) are used to approximate the cost function, control, and disturbance. The weights of these networks compose the augmented weight matrix, and the uniformly ultimately bounded (UUB) of which is proven. The convergence of the tracking error system is also proven. Two examples are given to show the effectiveness of the proposed synchronous solution method for the chaotic system tracking problem. 展开更多
关键词 adaptive dynamic programming approximate dynamic programming chaotic system ZERO-SUM
原文传递
Real-time Risk-averse Dispatch of an Integrated Electricity and Natural Gas System via Condi-tional Value-at-risk-based Lookup-table Ap-proximate Dynamic Programming 被引量:1
12
作者 Jianquan Zhu Guanhai Li +4 位作者 Ye Guo Jiajun Chen Haixin Liu Yuhao Luo Wenhao Liu 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第2期47-60,共14页
The real-time risk-averse dispatch problem of an integrated electricity and natural gas system(IEGS)is studied in this paper.It is formulated as a real-time conditional value-at-risk(CVaR)-based risk-averse dis-patch ... The real-time risk-averse dispatch problem of an integrated electricity and natural gas system(IEGS)is studied in this paper.It is formulated as a real-time conditional value-at-risk(CVaR)-based risk-averse dis-patch model in the Markov decision process framework.Because of its stochasticity,nonconvexity and nonlinearity,the model is difficult to analyze by traditional algorithms in an acceptable time.To address this non-deterministic polynomial-hard problem,a CVaR-based lookup-table approximate dynamic programming(CVaR-ADP)algo-rithm is proposed,and the risk-averse dispatch problem is decoupled into a series of tractable subproblems.The line pack is used as the state variable to describe the impact of one period’s decision on the future.This facilitates the reduction of load shedding and wind power curtailment.Through the proposed method,real-time decisions can be made according to the current information,while the value functions can be used to overview the whole opti-mization horizon to balance the current cost and future risk loss.Numerical simulations indicate that the pro-posed method can effectively measure and control the risk costs in extreme scenarios.Moreover,the decisions can be made within 10 s,which meets the requirement of the real-time dispatch of an IEGS.Index Terms—Integrated electricity and natural gas system,approximate dynamic programming,real-time dispatch,risk-averse,conditional value-at-risk. 展开更多
关键词 Integrated electricity and natural gas system approximate dynamic programming real-time dispatch RISK-AVERSE conditional value-at-risk
在线阅读 下载PDF
基于随机规划的新型电力系统优化调度方法 被引量:2
13
作者 周耀辉 司渭滨 +2 位作者 代立君 田铠 何宇昕 《自动化技术与应用》 2025年第5期43-47,共5页
随着电网建设的优化,源网荷储一体化策略逐渐取代了传统的分层建设策略。为此,提出一种多阶段随机规划方法,分别搭建了电源、电网、负荷以及储能模型,并结合长期和短期不稳定因素,进一步实现各需求响应。引入马尔科夫决策过程对初始模... 随着电网建设的优化,源网荷储一体化策略逐渐取代了传统的分层建设策略。为此,提出一种多阶段随机规划方法,分别搭建了电源、电网、负荷以及储能模型,并结合长期和短期不稳定因素,进一步实现各需求响应。引入马尔科夫决策过程对初始模型进行转化,并使用近似动态规划算法求解模型。实验结果表明,不同迭代步长下,3个规划阶段的最大相对误差分别为0.26%、0.35%以及0.24%,在实际仿真中,模型能够较好地实现多阶段规划,且建设总成本平均低于其余方法11.53%。所提出的基于多阶段随机规划模型能够实现高效低成本的电网调度。 展开更多
关键词 随机规划 多阶段 近似动态 电力调度
在线阅读 下载PDF
基于近似动态规划的配电网实时协同调压策略 被引量:3
14
作者 李瑞杰 崔世常 +5 位作者 张艺涵 薛熙臻 高立乾 艾小猛 方家琨 文劲宇 《电网技术》 北大核心 2025年第2期676-685,I0084-I0087,共14页
大规模具有出力不确定性的分布式电源接入配电网易导致电压越限和线路过载等问题,同时电动汽车的快速扩张也使得配电网用电负荷激增,多重因素导致配电网的电压稳定性问题日益突出。因此,在不确定性运行环境下如何保障配电网电压的实时... 大规模具有出力不确定性的分布式电源接入配电网易导致电压越限和线路过载等问题,同时电动汽车的快速扩张也使得配电网用电负荷激增,多重因素导致配电网的电压稳定性问题日益突出。因此,在不确定性运行环境下如何保障配电网电压的实时稳定性是一个亟待解决的问题。该文从减小电压偏移的角度,考虑采用配电网中的有载调压器和电动汽车进行协同调压。首先分析了电动汽车集群调度的特点,并以系统电压偏移量最小作为配电网电压优化目标,建立了考虑电动汽车充电位置、功率等因素的调控模型和多档位有载调压器调控模型。随后为实现随机环境下的配电网电压实时优化调控,提出了基于近似动态规划的有载调压器与电动汽车实时协同调压策略,采用分段线性函数对贝尔曼方程中的值函数进行近似,避免了“维数爆炸”问题。分段线性函数的斜率可通过预测数据抽样产生的一组离线训练场景训练后获得,并用于后续实时在线优化。算例分析表明所提实时协同调压策略在减小配电网电压偏移的同时保证了随机环境下的优化准确性,进一步验证了电动汽车与有载调压器参与配电网协同调压技术的可行性。 展开更多
关键词 配电网 电压优化 电动汽车 有载调压器 近似动态规划
原文传递
多轴轮式铰接特种车辆双策略轨迹跟踪控制
15
作者 张发旺 陈良发 +3 位作者 段京良 刘辉 聂士达 张晨 《兵工学报》 北大核心 2025年第8期116-127,共12页
多轴轮式铰接特种车辆在轨迹跟踪时易产生尾部放大效应和侧倾等不稳定性问题,研究多轴轮式铰接车辆的稳定性轨迹跟踪具有重要意义。以只有拖车具备转向能力的多轴轮式铰接车辆为研究对象,建立7自由度车辆动力学模型,提出双策略轨迹跟踪... 多轴轮式铰接特种车辆在轨迹跟踪时易产生尾部放大效应和侧倾等不稳定性问题,研究多轴轮式铰接车辆的稳定性轨迹跟踪具有重要意义。以只有拖车具备转向能力的多轴轮式铰接车辆为研究对象,建立7自由度车辆动力学模型,提出双策略轨迹跟踪控制方法,上层策略求解拖车轨迹跟踪问题,下层策略优化挂车轨迹跟踪问题,兼顾了拖车和挂车的轨迹跟踪精度。为保证控制策略的计算实时性,利用有限时域近似动态规划近似求解上层轨迹跟踪策略,将在线优化问题转化为神经网络参数的离线预求解,降低在线求解耗时。与高保真度仿真软件的联合仿真实验表明:新方法使多轴铰接车辆轨迹跟踪精度提升了12.82%,策略单步求解耗时低于10 ms,计算效率相比模型预测控制算法提升了约3个数量级。 展开更多
关键词 自动驾驶 轨迹跟踪控制 近似动态规划 双层优化
在线阅读 下载PDF
基于PAC学习的组合式概率障碍证书生成
16
作者 杨紫萱 曾霞 +3 位作者 任勐鑫 王建林 曾振柄 杨争峰 《软件学报》 北大核心 2025年第5期1907-1923,共17页
连续动力系统安全验证是一个重要的研究问题,多年来各类验证方法所能处理的问题规模非常受限.对此,对于给定的连续动力系统,提出通过反例制导方法生成一组组合式概率近似正确(PAC)障碍证书的算法,最终给出无限时间范畴安全验证问题在概... 连续动力系统安全验证是一个重要的研究问题,多年来各类验证方法所能处理的问题规模非常受限.对此,对于给定的连续动力系统,提出通过反例制导方法生成一组组合式概率近似正确(PAC)障碍证书的算法,最终给出无限时间范畴安全验证问题在概率统计意义下的形式化描述.通过建立和求解基于大M法的混合整数规划方法,将障碍证书的求解转化为约束优化问题.通过微分中值定理将非线性不等式进行区间线性化.最后,实现组合式PAC障碍证书生成工具CPBC,并在11个基准系统上评估其性能.实验结果表明,CPBC均能成功验证每个动力系统在指定不同的安全需求阈值下的安全性.与现有方法相比,所提方法可以更高效地为复杂系统或高维系统生成可靠的概率障碍证书,验证的样例规模已高达百维. 展开更多
关键词 连续动力系统 障碍证书 PAC 区间线性化 混合整数规划
在线阅读 下载PDF
基于深度优化算法的风光储多能互补电力系统优化调度策略 被引量:1
17
作者 杨银国 谢平平 +3 位作者 刘洋 陆秋瑜 徐展鹏 黄泽杰 《电网与清洁能源》 北大核心 2025年第7期122-131,共10页
风光新能源固有的间歇性和波动性给大规模电力系统发电资源的调度带来了难题,风光储多能互补是应对风光新能源大规模并网的可行途径之一。为制定考虑风光储多能互补的电力系统的优化调度方案,首先,考虑总运行成本最小、新能源弃电量最... 风光新能源固有的间歇性和波动性给大规模电力系统发电资源的调度带来了难题,风光储多能互补是应对风光新能源大规模并网的可行途径之一。为制定考虑风光储多能互补的电力系统的优化调度方案,首先,考虑总运行成本最小、新能源弃电量最小的目标,构建了风光储多能互补优化调度模型。然后,面对庞大的新能源规模和逐步完善的电力系统网架结构所带来的优化调度模型求解困难的问题,基于马尔科夫决策过程和近似动态规划理论,将涉及多时段联合求解的优化模型解耦为所有时段单独求解的子问题。在此基础上,采用深度神经网络对解耦后的子问题进行逐时段的求解,提出了一种基于近似动态规划和深度神经网络的深度优化算法。最后,通过在仿真软件和实际大规模电力系统上进行算例测试,验证了所提方法可行性与有效性。 展开更多
关键词 多能互补 风光新能源 输电网 近似动态规划 深度神经网络
在线阅读 下载PDF
基于改进近似动态规划的微电网能量管理策略
18
作者 吴锐冰 朱建全 《电气自动化》 2025年第5期65-67,72,共4页
微电网的能量管理问题是一个多阶段随机非凸非线性规划问题,难以用传统优化算法直接求解。为此,提出了一种基于改进近似动态规划的求解算法。与传统的近似动态规划算法不同,所提算法通过全纯嵌入方法直接获得值函数的高阶表达式,而无需... 微电网的能量管理问题是一个多阶段随机非凸非线性规划问题,难以用传统优化算法直接求解。为此,提出了一种基于改进近似动态规划的求解算法。与传统的近似动态规划算法不同,所提算法通过全纯嵌入方法直接获得值函数的高阶表达式,而无需迭代过程,显著提高了计算效率。在IEEE 33节点系统上进行了算例分析,验证了所提算法的有效性。结果表明,所提算法能准确、高效地获得微电网的能量管理策略,支撑其经济、可靠运行。 展开更多
关键词 能量管理 微电网 随机非凸非线性规划 近似动态规划 全纯嵌入
在线阅读 下载PDF
基于近似动态规划的共享制造平台订单动态定价优化
19
作者 何雯晴 唐亮 《计算机集成制造系统》 北大核心 2025年第6期2237-2244,共8页
针对平台下的运营管理问题,结合共享制造环境下客户需求的动态性和随机性特征,研究有限期内共享制造平台生产订单的动态定价优化问题。基于有限的制造设备产能资源,以共享制造平台利润最大化为目标,建立随机动态规划模型。采用近似动态... 针对平台下的运营管理问题,结合共享制造环境下客户需求的动态性和随机性特征,研究有限期内共享制造平台生产订单的动态定价优化问题。基于有限的制造设备产能资源,以共享制造平台利润最大化为目标,建立随机动态规划模型。采用近似动态规划方法将原始动态规划问题转换为等价的线性规划,针对线性规划中状态和决策维数过高的问题,以制造设备可用时间点为基函数,构建仿射近似函数近似状态价值,并以贪婪策略作为约束采样方法采样状态和决策集合,有效地减少了约束数量,得到了订单动态定价策略。通过不同参数设置下的仿真实验,验证了订单动态定价策略的稳定性和有效性。 展开更多
关键词 共享制造 动态定价 近似动态规划
在线阅读 下载PDF
充电用能约束下工业园区负荷管控的随机优化策略
20
作者 茹传红 卢姬 +3 位作者 秦建 张军达 常俊晓 蒋贝妮 《中国电力》 北大核心 2025年第8期130-138,共9页
为解决工业园区微电网在能源短缺情况下的负荷管理问题,提出一种管理用户特定负荷的新方法。首先,将用户特定负荷管理定义为一个随机预测模型控制问题,对光伏和用户电力需求进行预测建模。然后,结合两阶段随机规划和近似动态规划对其进... 为解决工业园区微电网在能源短缺情况下的负荷管理问题,提出一种管理用户特定负荷的新方法。首先,将用户特定负荷管理定义为一个随机预测模型控制问题,对光伏和用户电力需求进行预测建模。然后,结合两阶段随机规划和近似动态规划对其进行求解。最后,在模拟用户对负荷管理响应的环境中,通过2种控制器测试了替代解决方案的有效性。结果表明,即使没有完整的用户响应模型,控制器使用预测模型进行负荷管理也可以显著提高电力可用性和用户的消费效益。 展开更多
关键词 工业园区 负荷管理 随机预测模型 两阶段随机规划 近似动态规划
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部