During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive...During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.展开更多
Two efficient recursive algorithms epsilon_algorithm and eta_algorithm are introduced to compute the generalized inverse function_valued Padé approximants. The approximants were used to accelerate the convergenc...Two efficient recursive algorithms epsilon_algorithm and eta_algorithm are introduced to compute the generalized inverse function_valued Padé approximants. The approximants were used to accelerate the convergence of the power series with function_valued coefficients and to estimate characteristic value of the integral equations. Famous Wynn identities of the Pad approximants is also established by means of the connection of two algorithms.展开更多
In this paper, the extended Pade approximant is used to construct the homoclinic and the heteroclinic trajectories in nonlinear dynamical systems that are asymmetric at origin. Meanwhile, the conservative system, the ...In this paper, the extended Pade approximant is used to construct the homoclinic and the heteroclinic trajectories in nonlinear dynamical systems that are asymmetric at origin. Meanwhile, the conservative system, the autonomous system, and the nonautonomous system equations with quadratic and cubic nonlinearities are considered. The disturbance parameter ~ is not limited to being small. The ranges of the values of the linear and the nonlinear term parameters, which are variables, can be determined when the boundary values are satisfied. New conditions for the potentiality and the convergence are posed to make it possible to solve the boundary-value problems formulated for the orbitals and to evaluate the initial amplitude values.展开更多
The Adomian decomposition method (ADM) and Pade approximants are combined to solve the well-known Blaszak-Marciniak lattice, which has rich mathematical structures and many important applications in physics and math...The Adomian decomposition method (ADM) and Pade approximants are combined to solve the well-known Blaszak-Marciniak lattice, which has rich mathematical structures and many important applications in physics and mathematics. In some cases, the truncated series solution of ADM is adequate only in a small region when the exact solution is not reached. To overcome the drawback, the Pade approximants, which have the advantage in turning the polynomials approximation into a rational function, are applied to the series solution to improve the accuracy and enlarge the convergence domain. By using the ADM-Pade technique, the soliton solutions of the Blaszak-Marciniak lattice are constructed with better accuracy and better convergence than by using the ADM alone. Numerical and figurative illustrations show that it is a promising tool for solving nonlinear problems.展开更多
Combining Adomian decomposition method (ADM) with Pade approximants, we solve two differentiaidifference equations (DDEs): the relativistic Toda lattice equation and the modified Volterra lattice equation. With t...Combining Adomian decomposition method (ADM) with Pade approximants, we solve two differentiaidifference equations (DDEs): the relativistic Toda lattice equation and the modified Volterra lattice equation. With the help of symbolic computation Maple, the results obtained by ADM-Pade technique are compared with those obtained by using ADM alone. The numerical results demonstrate that ADM-Pade technique give the approximate solution with faster convergence rate and higher accuracy and relative in larger domain of convergence than using ADM.展开更多
基金supported by the National Natural Sci‐ence Foundation of China(Grant No.62306325)。
文摘During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.
文摘Two efficient recursive algorithms epsilon_algorithm and eta_algorithm are introduced to compute the generalized inverse function_valued Padé approximants. The approximants were used to accelerate the convergence of the power series with function_valued coefficients and to estimate characteristic value of the integral equations. Famous Wynn identities of the Pad approximants is also established by means of the connection of two algorithms.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11072168 and 10872141)
文摘In this paper, the extended Pade approximant is used to construct the homoclinic and the heteroclinic trajectories in nonlinear dynamical systems that are asymmetric at origin. Meanwhile, the conservative system, the autonomous system, and the nonautonomous system equations with quadratic and cubic nonlinearities are considered. The disturbance parameter ~ is not limited to being small. The ranges of the values of the linear and the nonlinear term parameters, which are variables, can be determined when the boundary values are satisfied. New conditions for the potentiality and the convergence are posed to make it possible to solve the boundary-value problems formulated for the orbitals and to evaluate the initial amplitude values.
基金Project supported by the National Key Basic Research Project of China (Grant No 2004CB318000)the National Natural Science Foundation of China (Grant Nos 10771072 and 10735030)Shanghai Leading Academic Discipline Project of China (Grant No B412)
文摘The Adomian decomposition method (ADM) and Pade approximants are combined to solve the well-known Blaszak-Marciniak lattice, which has rich mathematical structures and many important applications in physics and mathematics. In some cases, the truncated series solution of ADM is adequate only in a small region when the exact solution is not reached. To overcome the drawback, the Pade approximants, which have the advantage in turning the polynomials approximation into a rational function, are applied to the series solution to improve the accuracy and enlarge the convergence domain. By using the ADM-Pade technique, the soliton solutions of the Blaszak-Marciniak lattice are constructed with better accuracy and better convergence than by using the ADM alone. Numerical and figurative illustrations show that it is a promising tool for solving nonlinear problems.
基金supported by the National Natural Science Foundation of China under Grant No. 10735030Shanghai Leading Academic Discipline Project under Grant No. B412Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT0734
文摘Combining Adomian decomposition method (ADM) with Pade approximants, we solve two differentiaidifference equations (DDEs): the relativistic Toda lattice equation and the modified Volterra lattice equation. With the help of symbolic computation Maple, the results obtained by ADM-Pade technique are compared with those obtained by using ADM alone. The numerical results demonstrate that ADM-Pade technique give the approximate solution with faster convergence rate and higher accuracy and relative in larger domain of convergence than using ADM.