With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid elec...With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid electric vehicles(HEVs).Moreover,the terrain along the driving route is a non-ignorable factor for energy efficiency of HEV running on the hilly streets.This paper proposes a look-ahead horizon-based optimal energy management strategy to jointly improve the efficiencies of powertrain and vehicle for connected and automated HEVs on the road with slope.Firstly,a rule-based framework is developed to guarantee the success of automated driving in the traffic scenario.Then a constrained optimal control problem is formulated to minimize the fuel consumption and the electricity consumption under the satisfaction of inter-vehicular distance constraint between ego vehicle and preceding vehicle.Both speed planning and torque split of hybrid powertrain are provided by the proposed approach.Moreover,the preceding vehicle speed in the look-ahead horizon is predicted by extreme learning machine with real-time data obtained from communication of vehicle-to-everything.The optimal solution is derived through the Pontryagin’s maximum principle.Finally,to verify the effectiveness of the proposed algorithm,a traffic-in-the-loop powertrain platform with data from real world traffic environment is built.It is found that the fuel economy for the proposed energy management strategy improves in average 17.0%in scenarios of different traffic densities,compared to the energy management strategy without prediction of preceding vehicle speed.展开更多
Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of ...Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of data redundancy,the Metaheuristic Algorithm(MA)is introduced to select features beforemachine learning to reduce the dimensionality of data.Since a Tyrannosaurus Optimization Algorithm(TROA)has the advantages of few parameters,simple implementation,and fast convergence,and it shows better results in feature selection,TROA can be applied to abnormal traffic detection for SDN.However,TROA suffers frominsufficient global search capability,is easily trapped in local optimums,and has poor search accuracy.Then,this paper tries to improve TROA,namely the Improved Tyrannosaurus Optimization Algorithm(ITROA).It proposes a metaheuristic-driven abnormal traffic detection model for SDN based on ITROA.Finally,the validity of the ITROA is verified by the benchmark function and the UCI dataset,and the feature selection optimization operation is performed on the InSDN dataset by ITROA and other MAs to obtain the optimized feature subset for SDN abnormal traffic detection.The experiment shows that the performance of the proposed ITROA outperforms compared MAs in terms of the metaheuristic-driven model for SDN,achieving an accuracy of 99.37%on binary classification and 96.73%on multiclassification.展开更多
As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphas...As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphasized the need for adaptive clustering strategies to improve performance in Intelligent Transportation Systems(ITS).This paper presents the Grasshopper Optimization Algorithm for Vehicular Network Clustering(GOAVNET)algorithm,an innovative approach to optimal vehicular clustering in Vehicular Ad-Hoc Networks(VANETs),leveraging the Grasshopper Optimization Algorithm(GOA)to address the critical challenges of traffic congestion and communication inefficiencies in Intelligent Transportation Systems(ITS).The proposed GOA-VNET employs an iterative and interactive optimization mechanism to dynamically adjust node positions and cluster configurations,ensuring robust adaptability to varying vehicular densities and transmission ranges.Key features of GOA-VNET include the utilization of attraction zone,repulsion zone,and comfort zone parameters,which collectively enhance clustering efficiency and minimize congestion within Regions of Interest(ROI).By managing cluster configurations and node densities effectively,GOA-VNET ensures balanced load distribution and seamless data transmission,even in scenarios with high vehicular densities and varying transmission ranges.Comparative evaluations against the Whale Optimization Algorithm(WOA)and Grey Wolf Optimization(GWO)demonstrate that GOA-VNET consistently outperforms these methods by achieving superior clustering efficiency,reducing the number of clusters by up to 10%in high-density scenarios,and improving data transmission reliability.Simulation results reveal that under a 100-600 m transmission range,GOA-VNET achieves an average reduction of 8%-15%in the number of clusters and maintains a 5%-10%improvement in packet delivery ratio(PDR)compared to baseline algorithms.Additionally,the algorithm incorporates a heat transfer-inspired load-balancing mechanism,ensuring equitable distribution of nodes among cluster leaders(CLs)and maintaining a stable network environment.These results validate GOA-VNET as a reliable and scalable solution for VANETs,with significant potential to support next-generation ITS.Future research could further enhance the algorithm by integrating multi-objective optimization techniques and exploring broader applications in complex traffic scenarios.展开更多
With the emergence of new attack techniques,traffic classifiers usually fail to maintain the expected performance in real-world network environments.In order to have sufficient generalizability to deal with unknown ma...With the emergence of new attack techniques,traffic classifiers usually fail to maintain the expected performance in real-world network environments.In order to have sufficient generalizability to deal with unknown malicious samples,they require a large number of new samples for retraining.Considering the cost of data collection and labeling,data augmentation is an ideal solution.We propose an optimized noise-based traffic data augmentation system,ONTDAS.The system uses a gradient-based searching algorithm and an improved Bayesian optimizer to obtain optimized noise.The noise is injected into the original samples for data augmentation.Then,an improved bagging algorithm is used to integrate all the base traffic classifiers trained on noised datasets.The experiments verify ONTDAS on 6 types of base classifiers and 4 publicly available datasets respectively.The results show that ONTDAS can effectively enhance the traffic classifiers’performance and significantly improve their generalizability on unknown malicious samples.The system can also alleviate dataset imbalance.Moreover,the performance of ONTDAS is significantly superior to the existing data augmentation methods mentioned.展开更多
Wireless sensor networks(WSNs)are characterized by heterogeneous traffic types(audio,video,data)and diverse application traffic requirements.This paper introduces three traffic classes following the defined model of h...Wireless sensor networks(WSNs)are characterized by heterogeneous traffic types(audio,video,data)and diverse application traffic requirements.This paper introduces three traffic classes following the defined model of heterogeneous traffic differentiation in WSNs.The requirements for each class regarding sensitivity to QoS(Quality of Service)parameters,such as loss,delay,and jitter,are described.These classes encompass real-time and delay-tolerant traffic.Given that QoS evaluation is a multi-criteria decision-making problem,we employed the AHP(Analytical Hierarchy Process)method for multi-criteria optimization.As a result of this approach,we derived weight values for different traffic classes based on key QoS factors and requirements.These weights are assigned to individual traffic classes to determine transmission priority.This study provides a thorough comparative analysis of the proposed model against existing methods,demonstrating its superior performance across various traffic scenarios and its implications for future WSN applications.The results highlight the model’s adaptability and robustness in optimizing network resources under varying conditions,offering insights into practical deployments in real-world scenarios.Additionally,the paper includes an analysis of energy consumption,underscoring the trade-offs between QoS performance and energy efficiency.This study presents the development of a differentiated services model for heterogeneous traffic in wireless sensor networks,considering the appropriate QoS framework supported by experimental analyses.展开更多
This study aims to optimize the inbound traffic flow on on-ramps by considering low time costs,good speed stability,and high driving safety for mixed traffic flow.The optimal inlet gap is identified in advance,and tra...This study aims to optimize the inbound traffic flow on on-ramps by considering low time costs,good speed stability,and high driving safety for mixed traffic flow.The optimal inlet gap is identified in advance,and trajectory guidance for vehicles entering the gap is determined under safety constraints.Based on the initial state and sequence of vehicles entering the merging area,individual vehicle trajectories are optimized sequentially.An optimization model and method for ramp entry trajectories in mixed traffic flow are developed,incorporating on-ramp vehicle entry sequencing and ordinary vehicle trajectory prediction.Key performance indicators,including driving safety,total travel time,parking wait probability,and trajectory smoothness,are compared and analyzed to evaluate the proposed approach.展开更多
In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is prop...In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is proposed. The throughput maximum and average queue ratio minimum for the critical route of the intersection group are selected as the optimization objectives of the traffic signal control for the over-saturated condition. The consequences of the efficiency between traffic signal timing plans generated by the proposed algorithm and a commonly utilized signal timing optimization software Synchro are compared in a VISSIM signal control application programming interfaces (SCAPI) simulation environment by using real filed observed traffic data. The simulation results indicate that the signal timing plan generated by the proposed algorithm is more efficient in managing oversaturated flows at intersection groups, and, thus, it has the capability of optimizing signal timing under the over-saturated conditions.展开更多
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi...Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification.展开更多
This paper considers the optimal traffic signal setting for an urban arterial road. By introducing the concepts of synchronization rate and non-synchronization degree, a mathematical model is constructed and an optimi...This paper considers the optimal traffic signal setting for an urban arterial road. By introducing the concepts of synchronization rate and non-synchronization degree, a mathematical model is constructed and an optimization problem is posed. Then, a new iterative algorithm is developed to solve this optimal traffic control signal setting problem. Convergence properties for this iterative algorithm are established. Finally, a numerical example is solved to illustrate the effectiveness of the method.展开更多
The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information ...The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.展开更多
The post-earthquake emergency period,which is a sensitive time segment just after an event,mainly focuses on saving life and restoring social order.To improve the seismic resilience of city road networks,a resilience ...The post-earthquake emergency period,which is a sensitive time segment just after an event,mainly focuses on saving life and restoring social order.To improve the seismic resilience of city road networks,a resilience evaluation method used in the post-earthquake emergency period is proposed.The road seismic damage index of a city road network can consider the influence of roads,bridges and buildings along the roads,etc.on road capacity after an earthquake.A function index for a city road network is developed,which reflects the connectivity,redundancy,traffic demand and traffic function of the network.An optimization model for improving the road repair order in the post-earthquake emergency period is also developed according to the resilience evaluation,to enable decision support for city emergency management and achieve the best seismic resilience of the city road network.The optimization model is applied to a city road network and the results illustrate the feasibility of the resilience evaluation and optimization method for a city road network in the post-earthquake emergency period.展开更多
When controling the signal of highway-rail level crossings in the port area,the multi-objective signal optimization model is not applicable due to the cross effect of roads and railways and the priority of incoming ve...When controling the signal of highway-rail level crossings in the port area,the multi-objective signal optimization model is not applicable due to the cross effect of roads and railways and the priority of incoming vehicles.Therefore,in order to ensure that the inbound truck fleet enters the port directly without being affected by the train when passing through the highway-rail level crossing in the port area,the queuing of vehicles in front of the port needs to be reduced,and the priority should be given to the inbound trucks.Based on the idea of priority on key lanes,this study relies on speed guidance information to guide the fleet to shift reasonably,postpone or early arrive at the railway gate.At the same time,the optimization goal is to minimize the delays at intersections,the number of stops,and the vehicle exhaust emissions.The measured data of road-rail level crossings in Dayaowan Port area of Dalian were selected,and it was re-developed under the VISSIM environment by serial interface to realize signal optimization control under vehicle speed guidance.The original timing plan,multi-objective timing optimization plan and key lanes priority are given to the optimization scheme for simulation experiments.The results show that the multi-objective optimization scheme and the optimization scheme under the priority of key lanes can generally improve the traffic capacity of road-rail level crossings.Compared with the original plan,the optimization plan under the priority of key lanes reduces the delay by 33.3%,the number of stops is reduced by 25%,and the vehicle exhaust emissions are reduced by 31.3%.It proves the effectiveness of the optimization scheme for highway-rail level crossings in the port area under the priority of key lanes,and it is more suitable for highway-rail level crossings.展开更多
The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic ...The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data.展开更多
With the development of the economy and the acceleration of urbanization, the number of vehicles in cities is increasing rapidly, which greatly increases the pressure on urban traffic. Solving traffic accidents and pr...With the development of the economy and the acceleration of urbanization, the number of vehicles in cities is increasing rapidly, which greatly increases the pressure on urban traffic. Solving traffic accidents and problems to keep smooth travel and safe travel has become a top priority in road construction. In this paper, how to optimize the traffic at the intersection of the urban road was discussed with the aim of reducing traffic accidents and problems to keep peoples’ smooth travel and safe travel.展开更多
Traffic prediction of wireless networks attracted many researchersand practitioners during the past decades. However, wireless traffic frequentlyexhibits strong nonlinearities and complicated patterns, which makes it ...Traffic prediction of wireless networks attracted many researchersand practitioners during the past decades. However, wireless traffic frequentlyexhibits strong nonlinearities and complicated patterns, which makes it challengingto be predicted accurately. Many of the existing approaches forpredicting wireless network traffic are unable to produce accurate predictionsbecause they lack the ability to describe the dynamic spatial-temporalcorrelations of wireless network traffic data. In this paper, we proposed anovel meta-heuristic optimization approach based on fitness grey wolf anddipper throated optimization algorithms for boosting the prediction accuracyof traffic volume. The proposed algorithm is employed to optimize the hyperparametersof long short-term memory (LSTM) network as an efficient timeseries modeling approach which is widely used in sequence prediction tasks.To prove the superiority of the proposed algorithm, four other optimizationalgorithms were employed to optimize LSTM, and the results were compared.The evaluation results confirmed the effectiveness of the proposed approachin predicting the traffic of wireless networks accurately. On the other hand,a statistical analysis is performed to emphasize the stability of the proposedapproach.展开更多
The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for to...The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for today’s complex and changing networks.Recently,machine learning has beenwidely applied to network traffic recognition.Still,high-dimensional features and redundant data in network traffic can lead to slow convergence problems and low identification accuracy of network traffic recognition algorithms.Taking advantage of the faster optimizationseeking capability of the jumping spider optimization algorithm(JSOA),this paper proposes a jumping spider optimization algorithmthat incorporates the harris hawk optimization(HHO)and small hole imaging(HHJSOA).We use it in network traffic identification feature selection.First,the method incorporates the HHO escape energy factor and the hard siege strategy to forma newsearch strategy for HHJSOA.This location update strategy enhances the search range of the optimal solution of HHJSOA.We use small hole imaging to update the inferior individual.Next,the feature selection problem is coded to propose a jumping spiders individual coding scheme.Multiple iterations of the HHJSOA algorithmfind the optimal individual used as the selected feature for KNN classification.Finally,we validate the classification accuracy and performance of the HHJSOA algorithm using the UNSW-NB15 dataset and KDD99 dataset.Experimental results show that compared with other algorithms for the UNSW-NB15 dataset,the improvement is at least 0.0705,0.00147,and 1 on the accuracy,fitness value,and the number of features.In addition,compared with other feature selectionmethods for the same datasets,the proposed algorithmhas faster convergence,better merit-seeking,and robustness.Therefore,HHJSOAcan improve the classification accuracy and solve the problem that the network traffic recognition algorithm needs to be faster to converge and easily fall into local optimum due to high-dimensional features.展开更多
With the rapid development of urban road traffic and the increasing number of vehicles,how to alleviate traffic congestion is one of the hot issues that need to be urgently addressed in building smart cities.Therefore...With the rapid development of urban road traffic and the increasing number of vehicles,how to alleviate traffic congestion is one of the hot issues that need to be urgently addressed in building smart cities.Therefore,in this paper,a nonlinear multi-objective optimization model of urban intersection signal timing based on a Genetic Algorithm was constructed.Specifically,a typical urban intersection was selected as the research object,and drivers’acceleration habits were taken into account.What’s more,the shortest average delay time,the least average number of stops,and the maximum capacity of the intersection were regarded as the optimization objectives.The optimization results show that compared with the Webster method when the vehicle speed is 60 km/h and the acceleration is 2.5 m/s^(2),the signal intersection timing scheme based on the proposed Genetic Algorithm multi-objective optimization reduces the intersection signal cycle time by 14.6%,the average vehicle delay time by 12.9%,the capacity by 16.2%,and the average number of vehicles stop by 0.4%.To verify the simulation results,the authors imported the optimized timing scheme into the constructed Simulation of the Urban Mobility model.The experimental results show that the authors optimized timing scheme is superior to Webster’s in terms of vehicle average loss time reduction,carbon monoxide emission,particulate matter emission,and vehicle fuel consumption.The research in this paper provides a basis for Genetic algorithms in traffic signal control.展开更多
Peer-to-Peer (P2P) service may damage the interests of Internet Service Provider (ISP) because P2P traffic usually takes a lot of network link bandwidth and even overwhelms some network links. Aimed at the problem, ma...Peer-to-Peer (P2P) service may damage the interests of Internet Service Provider (ISP) because P2P traffic usually takes a lot of network link bandwidth and even overwhelms some network links. Aimed at the problem, mainstream solutions are usually optimizing P2P traffic through the interaction between applications and underlying network. However, current solutions still have two aspects of defects: one is that the interacted underlying network status information is immutable and can’t reflect the real-time dynamic changes because it is usually configured by ISP. The other is that some solutions may cause excessive traffic localization, which may greatly influence other services in the local network. In order to improve the above two defects and provide P2P users with better service experience, we propose an enhanced application layer traffic optimization scheme, in which more valuable network status information of underlying network is dynamically calculated and provided to P2P application. Extensive simulations demonstrate that our P2P traffic optimization scheme is superior to other solutions in terms of available bandwidth, resource transmission delay and user service experience.展开更多
Intelligent Transportation System(ITS)is one of the revolutionary technologies in smart cities that helps in reducing traffic congestion and enhancing traffic quality.With the help of big data and communication techno...Intelligent Transportation System(ITS)is one of the revolutionary technologies in smart cities that helps in reducing traffic congestion and enhancing traffic quality.With the help of big data and communication technologies,ITS offers real-time investigation and highly-effective traffic management.Traffic Flow Prediction(TFP)is a vital element in smart city management and is used to forecast the upcoming traffic conditions on transportation network based on past data.Neural Network(NN)and Machine Learning(ML)models are widely utilized in resolving real-time issues since these methods are capable of dealing with adaptive data over a period of time.Deep Learning(DL)is a kind of ML technique which yields effective performance on data classification and prediction tasks.With this motivation,the current study introduces a novel Slime Mould Optimization(SMO)model with Bidirectional Gated Recurrent Unit(BiGRU)model for Traffic Prediction(SMOBGRU-TP)in smart cities.Initially,data preprocessing is performed to normalize the input data in the range of[0,1]using minmax normalization approach.Besides,BiGRUmodel is employed for effective forecasting of traffic in smart cities.Moreover,the novelty of the work lies in using SMO algorithm to effectively adjust the hyperparameters of BiGRU method.The proposed SMOBGRU-TP model was experimentally validated and the simulation results established the model’s superior performance in terms of prediction compared to existing techniques.展开更多
Traffic prediction is a necessary function in intelligent transporta-tion systems to alleviate traffic congestion.Graph learning methods mainly focus on the spatiotemporal dimension,but ignore the nonlinear movement o...Traffic prediction is a necessary function in intelligent transporta-tion systems to alleviate traffic congestion.Graph learning methods mainly focus on the spatiotemporal dimension,but ignore the nonlinear movement of traffic prediction and the high-order relationships among various kinds of road segments.There exist two issues:1)deep integration of the spatiotempo-ral information and 2)global spatial dependencies for structural properties.To address these issues,we propose a nonlinear spatiotemporal optimization method,which introduces hypergraph convolution networks(HGCN).The method utilizes the higher-order spatial features of the road network captured by HGCN,and dynamically integrates them with the historical data to weigh the influence of spatiotemporal dependencies.On this basis,an extended Kalman filter is used to improve the accuracy of traffic prediction.In this study,a set of experiments were conducted on the real-world dataset in Chengdu,China.The result showed that the proposed method is feasible and accurate by two different time steps.Especially at the 15-minute time step,compared with the second-best method,the proposed method achieved 3.0%,11.7%,and 9.0%improvements in RMSE,MAE,and MAPE,respectively.展开更多
文摘With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid electric vehicles(HEVs).Moreover,the terrain along the driving route is a non-ignorable factor for energy efficiency of HEV running on the hilly streets.This paper proposes a look-ahead horizon-based optimal energy management strategy to jointly improve the efficiencies of powertrain and vehicle for connected and automated HEVs on the road with slope.Firstly,a rule-based framework is developed to guarantee the success of automated driving in the traffic scenario.Then a constrained optimal control problem is formulated to minimize the fuel consumption and the electricity consumption under the satisfaction of inter-vehicular distance constraint between ego vehicle and preceding vehicle.Both speed planning and torque split of hybrid powertrain are provided by the proposed approach.Moreover,the preceding vehicle speed in the look-ahead horizon is predicted by extreme learning machine with real-time data obtained from communication of vehicle-to-everything.The optimal solution is derived through the Pontryagin’s maximum principle.Finally,to verify the effectiveness of the proposed algorithm,a traffic-in-the-loop powertrain platform with data from real world traffic environment is built.It is found that the fuel economy for the proposed energy management strategy improves in average 17.0%in scenarios of different traffic densities,compared to the energy management strategy without prediction of preceding vehicle speed.
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of data redundancy,the Metaheuristic Algorithm(MA)is introduced to select features beforemachine learning to reduce the dimensionality of data.Since a Tyrannosaurus Optimization Algorithm(TROA)has the advantages of few parameters,simple implementation,and fast convergence,and it shows better results in feature selection,TROA can be applied to abnormal traffic detection for SDN.However,TROA suffers frominsufficient global search capability,is easily trapped in local optimums,and has poor search accuracy.Then,this paper tries to improve TROA,namely the Improved Tyrannosaurus Optimization Algorithm(ITROA).It proposes a metaheuristic-driven abnormal traffic detection model for SDN based on ITROA.Finally,the validity of the ITROA is verified by the benchmark function and the UCI dataset,and the feature selection optimization operation is performed on the InSDN dataset by ITROA and other MAs to obtain the optimized feature subset for SDN abnormal traffic detection.The experiment shows that the performance of the proposed ITROA outperforms compared MAs in terms of the metaheuristic-driven model for SDN,achieving an accuracy of 99.37%on binary classification and 96.73%on multiclassification.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS-2024-00337489Development of Data Drift Management Technology to Overcome Performance Degradation of AI Analysis Models).
文摘As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphasized the need for adaptive clustering strategies to improve performance in Intelligent Transportation Systems(ITS).This paper presents the Grasshopper Optimization Algorithm for Vehicular Network Clustering(GOAVNET)algorithm,an innovative approach to optimal vehicular clustering in Vehicular Ad-Hoc Networks(VANETs),leveraging the Grasshopper Optimization Algorithm(GOA)to address the critical challenges of traffic congestion and communication inefficiencies in Intelligent Transportation Systems(ITS).The proposed GOA-VNET employs an iterative and interactive optimization mechanism to dynamically adjust node positions and cluster configurations,ensuring robust adaptability to varying vehicular densities and transmission ranges.Key features of GOA-VNET include the utilization of attraction zone,repulsion zone,and comfort zone parameters,which collectively enhance clustering efficiency and minimize congestion within Regions of Interest(ROI).By managing cluster configurations and node densities effectively,GOA-VNET ensures balanced load distribution and seamless data transmission,even in scenarios with high vehicular densities and varying transmission ranges.Comparative evaluations against the Whale Optimization Algorithm(WOA)and Grey Wolf Optimization(GWO)demonstrate that GOA-VNET consistently outperforms these methods by achieving superior clustering efficiency,reducing the number of clusters by up to 10%in high-density scenarios,and improving data transmission reliability.Simulation results reveal that under a 100-600 m transmission range,GOA-VNET achieves an average reduction of 8%-15%in the number of clusters and maintains a 5%-10%improvement in packet delivery ratio(PDR)compared to baseline algorithms.Additionally,the algorithm incorporates a heat transfer-inspired load-balancing mechanism,ensuring equitable distribution of nodes among cluster leaders(CLs)and maintaining a stable network environment.These results validate GOA-VNET as a reliable and scalable solution for VANETs,with significant potential to support next-generation ITS.Future research could further enhance the algorithm by integrating multi-objective optimization techniques and exploring broader applications in complex traffic scenarios.
基金supported in part by the National Key Research and Development Program of China(No.2022YFB4500800)the National Science Foundation of China(No.42071431).
文摘With the emergence of new attack techniques,traffic classifiers usually fail to maintain the expected performance in real-world network environments.In order to have sufficient generalizability to deal with unknown malicious samples,they require a large number of new samples for retraining.Considering the cost of data collection and labeling,data augmentation is an ideal solution.We propose an optimized noise-based traffic data augmentation system,ONTDAS.The system uses a gradient-based searching algorithm and an improved Bayesian optimizer to obtain optimized noise.The noise is injected into the original samples for data augmentation.Then,an improved bagging algorithm is used to integrate all the base traffic classifiers trained on noised datasets.The experiments verify ONTDAS on 6 types of base classifiers and 4 publicly available datasets respectively.The results show that ONTDAS can effectively enhance the traffic classifiers’performance and significantly improve their generalizability on unknown malicious samples.The system can also alleviate dataset imbalance.Moreover,the performance of ONTDAS is significantly superior to the existing data augmentation methods mentioned.
文摘Wireless sensor networks(WSNs)are characterized by heterogeneous traffic types(audio,video,data)and diverse application traffic requirements.This paper introduces three traffic classes following the defined model of heterogeneous traffic differentiation in WSNs.The requirements for each class regarding sensitivity to QoS(Quality of Service)parameters,such as loss,delay,and jitter,are described.These classes encompass real-time and delay-tolerant traffic.Given that QoS evaluation is a multi-criteria decision-making problem,we employed the AHP(Analytical Hierarchy Process)method for multi-criteria optimization.As a result of this approach,we derived weight values for different traffic classes based on key QoS factors and requirements.These weights are assigned to individual traffic classes to determine transmission priority.This study provides a thorough comparative analysis of the proposed model against existing methods,demonstrating its superior performance across various traffic scenarios and its implications for future WSN applications.The results highlight the model’s adaptability and robustness in optimizing network resources under varying conditions,offering insights into practical deployments in real-world scenarios.Additionally,the paper includes an analysis of energy consumption,underscoring the trade-offs between QoS performance and energy efficiency.This study presents the development of a differentiated services model for heterogeneous traffic in wireless sensor networks,considering the appropriate QoS framework supported by experimental analyses.
文摘This study aims to optimize the inbound traffic flow on on-ramps by considering low time costs,good speed stability,and high driving safety for mixed traffic flow.The optimal inlet gap is identified in advance,and trajectory guidance for vehicles entering the gap is determined under safety constraints.Based on the initial state and sequence of vehicles entering the merging area,individual vehicle trajectories are optimized sequentially.An optimization model and method for ramp entry trajectories in mixed traffic flow are developed,incorporating on-ramp vehicle entry sequencing and ordinary vehicle trajectory prediction.Key performance indicators,including driving safety,total travel time,parking wait probability,and trajectory smoothness,are compared and analyzed to evaluate the proposed approach.
基金The National Natural Science Foundation of China(No.51208054)
文摘In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is proposed. The throughput maximum and average queue ratio minimum for the critical route of the intersection group are selected as the optimization objectives of the traffic signal control for the over-saturated condition. The consequences of the efficiency between traffic signal timing plans generated by the proposed algorithm and a commonly utilized signal timing optimization software Synchro are compared in a VISSIM signal control application programming interfaces (SCAPI) simulation environment by using real filed observed traffic data. The simulation results indicate that the signal timing plan generated by the proposed algorithm is more efficient in managing oversaturated flows at intersection groups, and, thus, it has the capability of optimizing signal timing under the over-saturated conditions.
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification.
基金Supported by the National Natural Science Foundation of China (10671045)
文摘This paper considers the optimal traffic signal setting for an urban arterial road. By introducing the concepts of synchronization rate and non-synchronization degree, a mathematical model is constructed and an optimization problem is posed. Then, a new iterative algorithm is developed to solve this optimal traffic control signal setting problem. Convergence properties for this iterative algorithm are established. Finally, a numerical example is solved to illustrate the effectiveness of the method.
文摘The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.
基金National Natural Science Foundation of China under Grant Nos.U1939210 and 51825801。
文摘The post-earthquake emergency period,which is a sensitive time segment just after an event,mainly focuses on saving life and restoring social order.To improve the seismic resilience of city road networks,a resilience evaluation method used in the post-earthquake emergency period is proposed.The road seismic damage index of a city road network can consider the influence of roads,bridges and buildings along the roads,etc.on road capacity after an earthquake.A function index for a city road network is developed,which reflects the connectivity,redundancy,traffic demand and traffic function of the network.An optimization model for improving the road repair order in the post-earthquake emergency period is also developed according to the resilience evaluation,to enable decision support for city emergency management and achieve the best seismic resilience of the city road network.The optimization model is applied to a city road network and the results illustrate the feasibility of the resilience evaluation and optimization method for a city road network in the post-earthquake emergency period.
基金the Research on Key Technologies and Equipment for Transportation Infrastructure Construction Safety(No.2017YFC0805309)。
文摘When controling the signal of highway-rail level crossings in the port area,the multi-objective signal optimization model is not applicable due to the cross effect of roads and railways and the priority of incoming vehicles.Therefore,in order to ensure that the inbound truck fleet enters the port directly without being affected by the train when passing through the highway-rail level crossing in the port area,the queuing of vehicles in front of the port needs to be reduced,and the priority should be given to the inbound trucks.Based on the idea of priority on key lanes,this study relies on speed guidance information to guide the fleet to shift reasonably,postpone or early arrive at the railway gate.At the same time,the optimization goal is to minimize the delays at intersections,the number of stops,and the vehicle exhaust emissions.The measured data of road-rail level crossings in Dayaowan Port area of Dalian were selected,and it was re-developed under the VISSIM environment by serial interface to realize signal optimization control under vehicle speed guidance.The original timing plan,multi-objective timing optimization plan and key lanes priority are given to the optimization scheme for simulation experiments.The results show that the multi-objective optimization scheme and the optimization scheme under the priority of key lanes can generally improve the traffic capacity of road-rail level crossings.Compared with the original plan,the optimization plan under the priority of key lanes reduces the delay by 33.3%,the number of stops is reduced by 25%,and the vehicle exhaust emissions are reduced by 31.3%.It proves the effectiveness of the optimization scheme for highway-rail level crossings in the port area under the priority of key lanes,and it is more suitable for highway-rail level crossings.
基金the Research of New Intelligent Integrated Transport Information System,Technical Plan Project of Binhai New District,Tianjin(No.2015XJR21017)
文摘The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data.
文摘With the development of the economy and the acceleration of urbanization, the number of vehicles in cities is increasing rapidly, which greatly increases the pressure on urban traffic. Solving traffic accidents and problems to keep smooth travel and safe travel has become a top priority in road construction. In this paper, how to optimize the traffic at the intersection of the urban road was discussed with the aim of reducing traffic accidents and problems to keep peoples’ smooth travel and safe travel.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R323)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Traffic prediction of wireless networks attracted many researchersand practitioners during the past decades. However, wireless traffic frequentlyexhibits strong nonlinearities and complicated patterns, which makes it challengingto be predicted accurately. Many of the existing approaches forpredicting wireless network traffic are unable to produce accurate predictionsbecause they lack the ability to describe the dynamic spatial-temporalcorrelations of wireless network traffic data. In this paper, we proposed anovel meta-heuristic optimization approach based on fitness grey wolf anddipper throated optimization algorithms for boosting the prediction accuracyof traffic volume. The proposed algorithm is employed to optimize the hyperparametersof long short-term memory (LSTM) network as an efficient timeseries modeling approach which is widely used in sequence prediction tasks.To prove the superiority of the proposed algorithm, four other optimizationalgorithms were employed to optimize LSTM, and the results were compared.The evaluation results confirmed the effectiveness of the proposed approachin predicting the traffic of wireless networks accurately. On the other hand,a statistical analysis is performed to emphasize the stability of the proposedapproach.
基金funded by the National Natural Science Foundation of China under Grant No.61602162.
文摘The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for today’s complex and changing networks.Recently,machine learning has beenwidely applied to network traffic recognition.Still,high-dimensional features and redundant data in network traffic can lead to slow convergence problems and low identification accuracy of network traffic recognition algorithms.Taking advantage of the faster optimizationseeking capability of the jumping spider optimization algorithm(JSOA),this paper proposes a jumping spider optimization algorithmthat incorporates the harris hawk optimization(HHO)and small hole imaging(HHJSOA).We use it in network traffic identification feature selection.First,the method incorporates the HHO escape energy factor and the hard siege strategy to forma newsearch strategy for HHJSOA.This location update strategy enhances the search range of the optimal solution of HHJSOA.We use small hole imaging to update the inferior individual.Next,the feature selection problem is coded to propose a jumping spiders individual coding scheme.Multiple iterations of the HHJSOA algorithmfind the optimal individual used as the selected feature for KNN classification.Finally,we validate the classification accuracy and performance of the HHJSOA algorithm using the UNSW-NB15 dataset and KDD99 dataset.Experimental results show that compared with other algorithms for the UNSW-NB15 dataset,the improvement is at least 0.0705,0.00147,and 1 on the accuracy,fitness value,and the number of features.In addition,compared with other feature selectionmethods for the same datasets,the proposed algorithmhas faster convergence,better merit-seeking,and robustness.Therefore,HHJSOAcan improve the classification accuracy and solve the problem that the network traffic recognition algorithm needs to be faster to converge and easily fall into local optimum due to high-dimensional features.
基金supported by the joint NNSF&FDCT Project Number (0066/2019/AFJ)joint MOST&FDCT Project Number (0058/2019/AMJ),City University of Macao,Macao,China.
文摘With the rapid development of urban road traffic and the increasing number of vehicles,how to alleviate traffic congestion is one of the hot issues that need to be urgently addressed in building smart cities.Therefore,in this paper,a nonlinear multi-objective optimization model of urban intersection signal timing based on a Genetic Algorithm was constructed.Specifically,a typical urban intersection was selected as the research object,and drivers’acceleration habits were taken into account.What’s more,the shortest average delay time,the least average number of stops,and the maximum capacity of the intersection were regarded as the optimization objectives.The optimization results show that compared with the Webster method when the vehicle speed is 60 km/h and the acceleration is 2.5 m/s^(2),the signal intersection timing scheme based on the proposed Genetic Algorithm multi-objective optimization reduces the intersection signal cycle time by 14.6%,the average vehicle delay time by 12.9%,the capacity by 16.2%,and the average number of vehicles stop by 0.4%.To verify the simulation results,the authors imported the optimized timing scheme into the constructed Simulation of the Urban Mobility model.The experimental results show that the authors optimized timing scheme is superior to Webster’s in terms of vehicle average loss time reduction,carbon monoxide emission,particulate matter emission,and vehicle fuel consumption.The research in this paper provides a basis for Genetic algorithms in traffic signal control.
文摘Peer-to-Peer (P2P) service may damage the interests of Internet Service Provider (ISP) because P2P traffic usually takes a lot of network link bandwidth and even overwhelms some network links. Aimed at the problem, mainstream solutions are usually optimizing P2P traffic through the interaction between applications and underlying network. However, current solutions still have two aspects of defects: one is that the interacted underlying network status information is immutable and can’t reflect the real-time dynamic changes because it is usually configured by ISP. The other is that some solutions may cause excessive traffic localization, which may greatly influence other services in the local network. In order to improve the above two defects and provide P2P users with better service experience, we propose an enhanced application layer traffic optimization scheme, in which more valuable network status information of underlying network is dynamically calculated and provided to P2P application. Extensive simulations demonstrate that our P2P traffic optimization scheme is superior to other solutions in terms of available bandwidth, resource transmission delay and user service experience.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(180/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R303)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR21.
文摘Intelligent Transportation System(ITS)is one of the revolutionary technologies in smart cities that helps in reducing traffic congestion and enhancing traffic quality.With the help of big data and communication technologies,ITS offers real-time investigation and highly-effective traffic management.Traffic Flow Prediction(TFP)is a vital element in smart city management and is used to forecast the upcoming traffic conditions on transportation network based on past data.Neural Network(NN)and Machine Learning(ML)models are widely utilized in resolving real-time issues since these methods are capable of dealing with adaptive data over a period of time.Deep Learning(DL)is a kind of ML technique which yields effective performance on data classification and prediction tasks.With this motivation,the current study introduces a novel Slime Mould Optimization(SMO)model with Bidirectional Gated Recurrent Unit(BiGRU)model for Traffic Prediction(SMOBGRU-TP)in smart cities.Initially,data preprocessing is performed to normalize the input data in the range of[0,1]using minmax normalization approach.Besides,BiGRUmodel is employed for effective forecasting of traffic in smart cities.Moreover,the novelty of the work lies in using SMO algorithm to effectively adjust the hyperparameters of BiGRU method.The proposed SMOBGRU-TP model was experimentally validated and the simulation results established the model’s superior performance in terms of prediction compared to existing techniques.
文摘Traffic prediction is a necessary function in intelligent transporta-tion systems to alleviate traffic congestion.Graph learning methods mainly focus on the spatiotemporal dimension,but ignore the nonlinear movement of traffic prediction and the high-order relationships among various kinds of road segments.There exist two issues:1)deep integration of the spatiotempo-ral information and 2)global spatial dependencies for structural properties.To address these issues,we propose a nonlinear spatiotemporal optimization method,which introduces hypergraph convolution networks(HGCN).The method utilizes the higher-order spatial features of the road network captured by HGCN,and dynamically integrates them with the historical data to weigh the influence of spatiotemporal dependencies.On this basis,an extended Kalman filter is used to improve the accuracy of traffic prediction.In this study,a set of experiments were conducted on the real-world dataset in Chengdu,China.The result showed that the proposed method is feasible and accurate by two different time steps.Especially at the 15-minute time step,compared with the second-best method,the proposed method achieved 3.0%,11.7%,and 9.0%improvements in RMSE,MAE,and MAPE,respectively.