Electroplating sludge(ES),a byproduct of the electroplating industry,is a significant environmental concern due to its high content of soluble heavy metals(HMs).The significance of spinel formation from ES lies in its...Electroplating sludge(ES),a byproduct of the electroplating industry,is a significant environmental concern due to its high content of soluble heavy metals(HMs).The significance of spinel formation from ES lies in its potential for HMs enrichment and environmental remediation,offering a sustainable solution for hazardous waste management.The article delves into themultifaceted recycling of HMs-rich spinel fromES,encompassing its synthesis,metal enrichment,and thermodynamic stability.The pyro-metallurgical and hydrometallurgical processes for spinel synthesis were discussed,with a focus on the critical role of thermodynamic data in predicting the stability and formation of spinel structures.The crystallographic and magnetic properties of spinels,with their applications in environmental remediation and energy storage are highlighted.The article provides a comprehensive reviewon the recycling of HMs-rich spinel fromES,offering a means to recycle HMs,mitigate ecological harm,and contribute to a circular economy through the recovery and application of valuable materials.The selective leaching of metals from ES also faces challenges,which was limited by the separation,purification steps and high energy consumption.This high energy consumption is a significant operational cost and also contributes to environmental concerns related to carbon emissions.It is essential to address the challenges through continued research and development,improved technologies,and supportive regulatory frameworks.展开更多
This review provides an insightful and comprehensive exploration of the emerging 2D material borophene,both pristine and modified,emphasizing its unique attributes and potential for sustainable applications.Borophene...This review provides an insightful and comprehensive exploration of the emerging 2D material borophene,both pristine and modified,emphasizing its unique attributes and potential for sustainable applications.Borophene’s distinctive properties include its anisotropic crystal structures that contribute to its exceptional mechanical and electronic properties.The material exhibits superior electrical and thermal conductivity,surpassing many other 2D materials.Borophene’s unique atomic spin arrangements further diversify its potential application for magnetism.Surface and interface engineering,through doping,functionalization,and synthesis of hybridized and nanocomposite borophene-based systems,is crucial for tailoring borophene’s properties to specific applications.This review aims to address this knowledge gap through a comprehensive and critical analysis of different synthetic and functionalisation methods,to enhance surface reactivity by increasing active sites through doping and surface modifications.These approaches optimize diffusion pathways improving accessibility for catalytic reactions,and tailor the electronic density to tune the optical and electronic behavior.Key applications explored include energy systems(batteries,supercapacitors,and hydrogen storage),catalysis for hydrogen and oxygen evolution reactions,sensors,and optoelectronics for advanced photonic devices.The key to all these applications relies on strategies to introduce heteroatoms for tuning electronic and catalytic properties,employ chemical modifications to enhance stability and leverage borophene’s conductivity and reactivity for advanced photonics.Finally,the review addresses challenges and proposes solutions such as encapsulation,functionalization,and integration with composites to mitigate oxidation sensitivity and overcome scalability barriers,enabling sustainable,commercial-scale applications.展开更多
Microbial fabrication of metal nanoparticles(MNPs)has received significant attention due to the advantages of low toxicity,energy efficiency and ecological safety.Diverse groups of MNPs can be synthesized intracellula...Microbial fabrication of metal nanoparticles(MNPs)has received significant attention due to the advantages of low toxicity,energy efficiency and ecological safety.Diverse groups of MNPs can be synthesized intracellularly or extracellularly by various wild-type microorganisms,including bacteria,fungi,algae and viruses.Synthetic biology approaches,represented by genetic engineering,have been applied to overcome the shortcomings in productivity,stability,and controllability of biosynthetic MNPs.Scanning electron microscope(SEM),transmission electron microscope(TEM)and other characterization techniques assist in deciphering their unique properties.In addition,biosynthetic MNPs have been widely explored for the utilization in environmental remediation and contaminant detection.And machine learning contains a great potential for designing targeted MNPs and predicting their toxicity.This review provides a comprehensive overview of the research progress in the microbial synthesis of MNPs.An outlook on the current challenges and future prospects in the biologically controllable synthesis and engineering environmental applications of MNPs is also provided in this review.展开更多
Flexible underwater vehicles with high maneuverability,high efficiency,high speed,and low disturbance have shown great application potential and research significance in underwater engineering,ocean exploration,scient...Flexible underwater vehicles with high maneuverability,high efficiency,high speed,and low disturbance have shown great application potential and research significance in underwater engineering,ocean exploration,scientific investigation and other fields.The research and development of flexible stimulus-responsive actuators is key to the development of high-performance underwater vehicles.At present,the main drive methods for underwater devices include electric drive,magnetic drive,light drive,thermal drive,and chemical drive.In this work,the research progress of stimuli-responsive actuators in water environment is reviewed from the stimuli-responsive patterns,functional design,fabrication methods,and applications in water environment.Firstly,the actuation principles and characteristics of electro-responsive,magnetic-responsive,photo-responsive,thermo-responsive actuators,and chemically responsive actuators are reviewed.Subsequently,several design requirements for the desired flexible actuators are introduced.After that,the common fabrication methods are summarized.The typical application of the stimuli-responsive actuator in the water environment is further discussed in combination with the multi-stimuli-responsive characteristics.Finally,the challenges faced by the application of stimuli-responsive actuators in the water environment are analyzed,and the corresponding viewpoints are presented.This review offers guidance for designing and preparing stimulus-responsive actuators and outlines directions for further development in fields such as ocean energy exploration and surface reconnaissance.展开更多
Three-dimensionally ordered macroporous(3DOM)perovskite materials have attracted the interest from researchers worldwide due to their unique macroporous structure,flexible composition,tailorable physicochemical proper...Three-dimensionally ordered macroporous(3DOM)perovskite materials have attracted the interest from researchers worldwide due to their unique macroporous structure,flexible composition,tailorable physicochemical property,high stability and biocompatibility.In particular,they were widely used in environmental field,such as photocatalysis,catalytic combustion,catalytic oxidation and sensors.In this review,the recent progresses in the synthesis of 3DOM perovskite materials and their environmental applications are summarized.The advantages and the promoting mechanisms of 3DOM perovskite materials for different applications are discussed in detail.Subsequently,the challenges and perspectives on the topic are proposed.展开更多
The increasing pollution and human demand for a cleaner environment have made achieving the environmental sustainability a current research focus.As a “green” technology,semiconductor photocatalysis is of great sign...The increasing pollution and human demand for a cleaner environment have made achieving the environmental sustainability a current research focus.As a “green” technology,semiconductor photocatalysis is of great significance to the environmental purification.Benefiting from the unique anisotropic crystal structure and electronic properties,layered photocatalytic nanomaterials show great potential for efficient photocatalytic environmental treatment.This review comprehensively summarizes the recent progress on layered photocatalytic nanomaterials for oxidation or reduction of pollutants in water and air along with the basic understanding of related mechanisms and developments in this field.First,the existing diversified layered photocatalysts are classified,and their different synthesis and modification strategies are discussed in detail to provide a comprehensive view of the material design that affects their photocatalytic performance.Subsequently,the extensive applications of the above-mentioned layered photocatalytic nanomaterials in environmental fields are systematically summarized,including photooxidation of water and air pollutants,and photoreduction of heavy metal pollutants,NO_(3)^(-),BrO_(3)^(-) and CO_(2).Finally,based on the current research achievements in layered photocatalysts for environmental remediation,the future development direction and challenges are proposed.展开更多
Paddy field is an important land use in subtropical China. Development of high soil fertility and productivity is the management goal of paddy field, Fertilization and management practices have not only influenced the...Paddy field is an important land use in subtropical China. Development of high soil fertility and productivity is the management goal of paddy field, Fertilization and management practices have not only influenced the status of organic matter and nutrients in the soil but also affected the environmental quality. This article investigates the contents of organic carbon and the nutrients, and the change over the last 20 years in highly productive paddy soils and their environmental application. Field soils were sampled and the analytical results were compared with the corresponding values in the Second Soil Survey in Yujiang County of Jiangxi Province, China. The results showed that surface soils at a depth of 0-10 cm in highly productive paddy fields in Yujiang County of Jiangxi Province had contents of organic carbon (20.2 ±3.88) g kg^-1, total nitrogen (2.09±0.55) g kg^-1, and available phosphorus (42.7 ±32.7) mg kg^-1, respectively, which were all at very rich levels. Over the last 20 years, the organic carbon pool of the highly productive paddy soils reached a steady state. Total N and available P significantly increased, whereas available K changed a little. The amount and percentage of P immobilization in the surface soil (0-10 cm) of highly productive paddy fields were (142.7 ~ 41.1) mg kg-~ and (36.2~ 10.4)% of added P, and CEC (7.93 ~ 1.32) cmol kg-~. These two parameters were not higher than the mean values of paddy soils and upland red soils in the areas. Results also showed that fertilizer P in highly productive paddy soils had a high mobility and was prone to move toward a water body, which is the main source of nutrients causing eutrophication. Because of a weak K-fixing capacity, the available K content was not high in highly productive paddy soils. This suggests that attention should be paid to the K balance and the increase of soil K pool.展开更多
Single atom catalysts(SACs)have become the frontier research fields in catalysis.The M_(1)-N_(x)-C_(y)based SACs,wherein single metal atoms(M1)are stabilized by N-doped carbonaceous materials,have provided new opportu...Single atom catalysts(SACs)have become the frontier research fields in catalysis.The M_(1)-N_(x)-C_(y)based SACs,wherein single metal atoms(M1)are stabilized by N-doped carbonaceous materials,have provided new opportunities for catalysis due to their high reactivity,maximized atomic utilization,and high selectivity.In this review,the fabrication methods of M_(1)-N_(x)-C_(y)based SACs via support anchoring strategy and coordination design strategy are summarized to help the readers understand the interaction mechanism of single atoms and support.Then,characterization technologies for identifying single metal atoms are presented.Besides,the environmental applications including management of harmful gases,water purification are discussed.Finally,future opportunities and challenges for preparation strategies,mechanisms and applications are concluded.We conclude this review by emphasizing the fact that M_(1)-N_(x)-C_(y)based SACs has the potential to become an important candidate for solving current and future environmental pollution problems.展开更多
1. INTRODUCTION The proposed Three Gorges Project, one of the biggest hydroelectric projects in the world, will dam the middle reaches of the Changjiang (Yangtze) River, the third longest river in the world, and form ...1. INTRODUCTION The proposed Three Gorges Project, one of the biggest hydroelectric projects in the world, will dam the middle reaches of the Changjiang (Yangtze) River, the third longest river in the world, and form a large reservoir. Its impacts on environment have attracted wide attention. Entrusted by National Scientific-Technical Commission, the Chinese Academy of Sciences (CAS) was in charge of a research project on this issuse from 1984 to 1989. Tho use of remote sensing played an important role in the project considering the study area is mountainous and not convenientlv located, which makes it difficult to conduct the research onlv using conventional means.展开更多
The characteristics of low pressure plasma produced by a gas discharges lie in thatthe energy of the electrons are much higher than that of the heavy particles in the system. Inthis paperl the low-pressure plasma trea...The characteristics of low pressure plasma produced by a gas discharges lie in thatthe energy of the electrons are much higher than that of the heavy particles in the system. Inthis paperl the low-pressure plasma treatment technology for the environmental contaminantswas synthetically studied, and the reaction processing and mechanism between the low-pressureplasma and the environmental contaminants were theoretically analyzed. At last, the prospectsand existing problems on the application of low-pressure plasma in the field of environmentalprotection were discussed.展开更多
1. PREFACE Lingdingyang is a trumpet estuary. It accepts the runoff of the Dongjiang River, the Beijiang River, the Zhengjiang River and the Liusihe River. It also accepts a part of the runoff of the Xijiang River. It...1. PREFACE Lingdingyang is a trumpet estuary. It accepts the runoff of the Dongjiang River, the Beijiang River, the Zhengjiang River and the Liusihe River. It also accepts a part of the runoff of the Xijiang River. Its mean year runoff is 1.742×10" M^3. In resent ten years, industry and agriculture are developing rapidly in Guangzhou City, Dongguan City, Zhongshan City, Shunde County, Panyu County. Lingdingyang’s pollution is increesing. Water quality of lingdingyang is steadily deteriorated. In order to investigate the situation of water environment of Lingdingyang, we study its static environmental capacity of nitrogen and phosphorus. LANDSAT imageries are used in the study. The concentrations of nitrogen and phosphorous is detected by convention method.展开更多
The environmental conditions in China are still very serious. In the years to come, the mission for environmental treatment and protection, supervision,
Traditional fossil fuels significantly contribute to energy supply,economic development,and advancements in science and technology.However,prolonged and extensive use of fossil fuels has resulted in increasingly sever...Traditional fossil fuels significantly contribute to energy supply,economic development,and advancements in science and technology.However,prolonged and extensive use of fossil fuels has resulted in increasingly severe environmental pollution.Consequently,it is imperative to develop new,clean,and pollution-free energy sources with high energy density and versatility as substitutes for conventional fossil fuels,although this remains a considerable challenge.Simultaneously,addressing water pollution is a critical concern.The development,design,and optimization of functional nanomaterials are pivotal to advancing new energy solutions and pollutant remediation.Emerging porous framework materials such as metal-organic frameworks(MOFs)and covalent organic frameworks(COFs),recognized as exemplary crystalline porous materials,exhibit potential in energy and environmental applications due to their high specific surface area,adjustable pore sizes and structures,permanent porosity,and customizable functionalities.This work provides a comprehensive and systematic review of the applications of MOFs,COFs,and their derivatives in emerging energy technologies,including the oxygen reduction reaction,oxygen evolution reaction,hydrogen evolution reaction,lithium-ion batteries,and environmental pollution remediation such as the carbon dioxide reduction reaction and environmental pollution management.In addition,strategies for performance adjustment and the structure-effect relationships of MOFs,COFs,and their derivatives for these applications are explored.Interaction mechanisms are summarized based on experimental discussions,theoretical calculations,and advanced spectroscopy analyses.The challenges,future prospects,and opportunities for tailoring these materials for energy and environmental applications are presented.展开更多
In this research,the antibacterial properties of a composite material prepared from agave bagasse cellulose fibers doped with silver nanoparticles and chitosan were studied.The development of composite materials with ...In this research,the antibacterial properties of a composite material prepared from agave bagasse cellulose fibers doped with silver nanoparticles and chitosan were studied.The development of composite materials with antibacterial properties and environmentally friendly based on cellulose fibers from agave bagasse with silver nanoparticles prepared by green synthesis and chitosan from shrimp waste enhances the value of these agro-industrial wastes and offers the opportunity for them to have biomedical applications since these raw materials have been poorly reported for this application.The antibacterial properties of chitosan and silver nanoparticles are already known.However,the combination of silver nanoparticles with cellulose fibers and chitosan has been studied poorly.Green synthesis of silver nanoparticles was carried out,and spherical shape nanoparticles with a size between 20 and 50 nm were obtained by ultraviolet-visible(UV-Vis)spectroscopy and transmission electron microscopy(TEM)analysis.Additionally,in this research,the cellulose obtained from agave bagasse,the chitosan extracted from shrimp shells,and the composite material were characterized by infrared spectroscopy,mechanical analysis,and antibacterial tests.A decrease in the growth of Escherichia coli bacteria with 100%growth inhibition on cellulose,chitosan,and silver nanoparticles composite material and an increase in mechanical properties from 13.67 MPa of cellulose pure to 110 MPa of composite material was observed.These findings support the idea that the composite material has potential use in wound care dressings for antibacterial care.展开更多
To develop more efficient chemical methods for the demineralization of organic pollutants from water bodies, which one was also mimic to the nature, a degradation of methylene blue by Fe(Ⅲ) and H 2O 2 in the absenc...To develop more efficient chemical methods for the demineralization of organic pollutants from water bodies, which one was also mimic to the nature, a degradation of methylene blue by Fe(Ⅲ) and H 2O 2 in the absence of light instead of Fe(Ⅱ) and H 2O 2 was studied. Results showed that use of Fe (Ⅲ) is more promising than Fe(Ⅱ). The present study reflects that Fenton reaction is more efficient, in the presence of a small amount of salicylic acid is added which is a one of the priority pollutant.展开更多
TiO2 nanomaterial is promising with its high potential and outstanding performance in photocatalytic environmental applications, such as CO2 conversion, water treatment, and air quality control. For many of these appl...TiO2 nanomaterial is promising with its high potential and outstanding performance in photocatalytic environmental applications, such as CO2 conversion, water treatment, and air quality control. For many of these applications, the particle size, crystal structure and phase, porosity, and surface area influence the activity of TiO2 dramatically. TiO2 nanomaterials with special structures and morphologies, such as nanospheres, nanowires, nanotubes, nanorods, and nanoflowers are thus synthesized due to their desired characteristics. With an emphasis on the different morphologies of TiO2 and the influence factors in the synthesis, this review summarizes fourteen TiO2 preparation methods, such as the sol-gel method, solvothermal method, and reverse micelle method. The TiO2 formation mechanisms, the advantages and disadvantages of the preparation methods, and the photocatalytic environmental application examples are proposed as well.展开更多
The improvement of students’abilities is of great significance to discover the relevant scientific problems in daily life,to analyze and solve practical problems,to trigger scientific inspiration,and to encourage inn...The improvement of students’abilities is of great significance to discover the relevant scientific problems in daily life,to analyze and solve practical problems,to trigger scientific inspiration,and to encourage innovation and entrepreneurship.Taken the course entitled Built Environment(BE)as an example,this study introduces five lecture cases combining with engineering practices,and examines the evaluation of teaching and learning effect on student outcomes.The cases consider various problems to be solved urgently in an actual project,and evaluate the student outcomes by statistically analyzing the questionnaires.Most of the students actively participate in five cases and cheerfully share their achievements.More than 85%of students are satisfied with the engineering practice and the learning proposal,and convey a little or even significantly change in their understanding of the employment prospects.展开更多
[Objective]The research aimed to study preparation and application of the environment-friendly compound flocculant.[Method]Chitosan(natural biological product,CTS),ferric sulfate[Fe2(SO4) 3]and polymeric aluminum ...[Objective]The research aimed to study preparation and application of the environment-friendly compound flocculant.[Method]Chitosan(natural biological product,CTS),ferric sulfate[Fe2(SO4) 3]and polymeric aluminum chloride(PAC) as the main raw materials,four kinds of environment-friendly flocculants were made to conduct flocculation treatment on the domestic wastewater of Wuhan Bioengineering Institute.COD and turbidity of the wastewater as the main indicators,influences of the compound flocculant formulation,flocculant dosage and pH on flocculation effect were studied.[Result]CTS/PAC and CTS/Fe2(SO4) 3 compound flocculants had better removal rates for COD and turbidity when compared with single inorganic flocculant.The best volume ratio of CTS/PAC was 1.0:5.0.The smallest dosage of CTS/PAC in each 500 ml of water sample was 4.0 ml.When pH was 7.2,removal rates of the COD and turbidity were respectively 78.5% and 98.4%,which rose by 36.5% and 21.5% respectively than that singly using PAC.[Conclusion]CTS/PAC was a kind of ideal compound flocculant and had better application prospect.展开更多
Biochar,a carbon-rich material produced from biomass waste through thermal conversion,holds great environmental promise.This article offers a comprehensive overview of the various feedstocks used in biochar production...Biochar,a carbon-rich material produced from biomass waste through thermal conversion,holds great environmental promise.This article offers a comprehensive overview of the various feedstocks used in biochar production,the different types of thermal degradation processes,biochar characterization,properties,modifications to engineered materials,and their applications in the environment.The quality of biochar,including surface area,pore size and volume,and functional group formation,is significantly influenced by the specific conditions under which thermal conversion takes place.Each of the diverse processes employed to produce biochar yields a distinct set of properties in the final product.In recent years,biochar has gained widespread recognition and utilization in diverse fields such as wastewater treatment,carbon sequestration,reduction of greenhouse gas emissions,biogas production,catalysis in biofuel industries,construction,and soil enhancement.In summary,biochar is a promising environmental mitigation tool to achieve a sustainable environment.In addition to its benefits,the application of biochar presents several challenges,including the selection of feedstocks,methods of biochar production,modifications to biochar,the properties of biochar,and the specific applications of biochar.The current review summarizes factors that could lead to significant advancements in future applications.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52370158 and 22006053)Guangzhou Science and Technology Plan Project(No.2024A04J0821)Guangdong Provincial Education Science Planning Project(Higher Education Special Project)(No.2023GXJK108).
文摘Electroplating sludge(ES),a byproduct of the electroplating industry,is a significant environmental concern due to its high content of soluble heavy metals(HMs).The significance of spinel formation from ES lies in its potential for HMs enrichment and environmental remediation,offering a sustainable solution for hazardous waste management.The article delves into themultifaceted recycling of HMs-rich spinel fromES,encompassing its synthesis,metal enrichment,and thermodynamic stability.The pyro-metallurgical and hydrometallurgical processes for spinel synthesis were discussed,with a focus on the critical role of thermodynamic data in predicting the stability and formation of spinel structures.The crystallographic and magnetic properties of spinels,with their applications in environmental remediation and energy storage are highlighted.The article provides a comprehensive reviewon the recycling of HMs-rich spinel fromES,offering a means to recycle HMs,mitigate ecological harm,and contribute to a circular economy through the recovery and application of valuable materials.The selective leaching of metals from ES also faces challenges,which was limited by the separation,purification steps and high energy consumption.This high energy consumption is a significant operational cost and also contributes to environmental concerns related to carbon emissions.It is essential to address the challenges through continued research and development,improved technologies,and supportive regulatory frameworks.
基金the Engineering and Physical Sciences Research Council(EPSRC)for funding the researchUK India Education Research Initiative(UKIERI)for funding support.
文摘This review provides an insightful and comprehensive exploration of the emerging 2D material borophene,both pristine and modified,emphasizing its unique attributes and potential for sustainable applications.Borophene’s distinctive properties include its anisotropic crystal structures that contribute to its exceptional mechanical and electronic properties.The material exhibits superior electrical and thermal conductivity,surpassing many other 2D materials.Borophene’s unique atomic spin arrangements further diversify its potential application for magnetism.Surface and interface engineering,through doping,functionalization,and synthesis of hybridized and nanocomposite borophene-based systems,is crucial for tailoring borophene’s properties to specific applications.This review aims to address this knowledge gap through a comprehensive and critical analysis of different synthetic and functionalisation methods,to enhance surface reactivity by increasing active sites through doping and surface modifications.These approaches optimize diffusion pathways improving accessibility for catalytic reactions,and tailor the electronic density to tune the optical and electronic behavior.Key applications explored include energy systems(batteries,supercapacitors,and hydrogen storage),catalysis for hydrogen and oxygen evolution reactions,sensors,and optoelectronics for advanced photonic devices.The key to all these applications relies on strategies to introduce heteroatoms for tuning electronic and catalytic properties,employ chemical modifications to enhance stability and leverage borophene’s conductivity and reactivity for advanced photonics.Finally,the review addresses challenges and proposes solutions such as encapsulation,functionalization,and integration with composites to mitigate oxidation sensitivity and overcome scalability barriers,enabling sustainable,commercial-scale applications.
基金supported by National Key Research and Development Program of China(No.2020YFC1808204-01)Nanchang“Double Hundred Plan”Project(Innovative Talents-Talent Introduction)+1 种基金the State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2021TS11)Heilongjiang Provincial Key Laboratory of Environmental Biotechnology and Heilongjiang Touyan Innovation Team Program。
文摘Microbial fabrication of metal nanoparticles(MNPs)has received significant attention due to the advantages of low toxicity,energy efficiency and ecological safety.Diverse groups of MNPs can be synthesized intracellularly or extracellularly by various wild-type microorganisms,including bacteria,fungi,algae and viruses.Synthetic biology approaches,represented by genetic engineering,have been applied to overcome the shortcomings in productivity,stability,and controllability of biosynthetic MNPs.Scanning electron microscope(SEM),transmission electron microscope(TEM)and other characterization techniques assist in deciphering their unique properties.In addition,biosynthetic MNPs have been widely explored for the utilization in environmental remediation and contaminant detection.And machine learning contains a great potential for designing targeted MNPs and predicting their toxicity.This review provides a comprehensive overview of the research progress in the microbial synthesis of MNPs.An outlook on the current challenges and future prospects in the biologically controllable synthesis and engineering environmental applications of MNPs is also provided in this review.
基金supported by the National Key Research and Development Program of China(2022YFB4703401)the Ministry of Education Joint Fund(8091B032250)the Fundamental Research Funds for the Central Universities(B240205045)。
文摘Flexible underwater vehicles with high maneuverability,high efficiency,high speed,and low disturbance have shown great application potential and research significance in underwater engineering,ocean exploration,scientific investigation and other fields.The research and development of flexible stimulus-responsive actuators is key to the development of high-performance underwater vehicles.At present,the main drive methods for underwater devices include electric drive,magnetic drive,light drive,thermal drive,and chemical drive.In this work,the research progress of stimuli-responsive actuators in water environment is reviewed from the stimuli-responsive patterns,functional design,fabrication methods,and applications in water environment.Firstly,the actuation principles and characteristics of electro-responsive,magnetic-responsive,photo-responsive,thermo-responsive actuators,and chemically responsive actuators are reviewed.Subsequently,several design requirements for the desired flexible actuators are introduced.After that,the common fabrication methods are summarized.The typical application of the stimuli-responsive actuator in the water environment is further discussed in combination with the multi-stimuli-responsive characteristics.Finally,the challenges faced by the application of stimuli-responsive actuators in the water environment are analyzed,and the corresponding viewpoints are presented.This review offers guidance for designing and preparing stimulus-responsive actuators and outlines directions for further development in fields such as ocean energy exploration and surface reconnaissance.
基金supported by the Tianjin Municipal Natural Science Foundation(17JCYBJC22600)the Fundamental Research Funds for the Central Universities~~
文摘Three-dimensionally ordered macroporous(3DOM)perovskite materials have attracted the interest from researchers worldwide due to their unique macroporous structure,flexible composition,tailorable physicochemical property,high stability and biocompatibility.In particular,they were widely used in environmental field,such as photocatalysis,catalytic combustion,catalytic oxidation and sensors.In this review,the recent progresses in the synthesis of 3DOM perovskite materials and their environmental applications are summarized.The advantages and the promoting mechanisms of 3DOM perovskite materials for different applications are discussed in detail.Subsequently,the challenges and perspectives on the topic are proposed.
基金jointly supported by the National Natural Science Foundation of China(Nos.51972288 and 51672258)the Fundamental Research Funds for the Central Universities(No.2652018287)。
文摘The increasing pollution and human demand for a cleaner environment have made achieving the environmental sustainability a current research focus.As a “green” technology,semiconductor photocatalysis is of great significance to the environmental purification.Benefiting from the unique anisotropic crystal structure and electronic properties,layered photocatalytic nanomaterials show great potential for efficient photocatalytic environmental treatment.This review comprehensively summarizes the recent progress on layered photocatalytic nanomaterials for oxidation or reduction of pollutants in water and air along with the basic understanding of related mechanisms and developments in this field.First,the existing diversified layered photocatalysts are classified,and their different synthesis and modification strategies are discussed in detail to provide a comprehensive view of the material design that affects their photocatalytic performance.Subsequently,the extensive applications of the above-mentioned layered photocatalytic nanomaterials in environmental fields are systematically summarized,including photooxidation of water and air pollutants,and photoreduction of heavy metal pollutants,NO_(3)^(-),BrO_(3)^(-) and CO_(2).Finally,based on the current research achievements in layered photocatalysts for environmental remediation,the future development direction and challenges are proposed.
基金supported by the National Natural Science Foundation of China(40471066)the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX1-SW-01-05).
文摘Paddy field is an important land use in subtropical China. Development of high soil fertility and productivity is the management goal of paddy field, Fertilization and management practices have not only influenced the status of organic matter and nutrients in the soil but also affected the environmental quality. This article investigates the contents of organic carbon and the nutrients, and the change over the last 20 years in highly productive paddy soils and their environmental application. Field soils were sampled and the analytical results were compared with the corresponding values in the Second Soil Survey in Yujiang County of Jiangxi Province, China. The results showed that surface soils at a depth of 0-10 cm in highly productive paddy fields in Yujiang County of Jiangxi Province had contents of organic carbon (20.2 ±3.88) g kg^-1, total nitrogen (2.09±0.55) g kg^-1, and available phosphorus (42.7 ±32.7) mg kg^-1, respectively, which were all at very rich levels. Over the last 20 years, the organic carbon pool of the highly productive paddy soils reached a steady state. Total N and available P significantly increased, whereas available K changed a little. The amount and percentage of P immobilization in the surface soil (0-10 cm) of highly productive paddy fields were (142.7 ~ 41.1) mg kg-~ and (36.2~ 10.4)% of added P, and CEC (7.93 ~ 1.32) cmol kg-~. These two parameters were not higher than the mean values of paddy soils and upland red soils in the areas. Results also showed that fertilizer P in highly productive paddy soils had a high mobility and was prone to move toward a water body, which is the main source of nutrients causing eutrophication. Because of a weak K-fixing capacity, the available K content was not high in highly productive paddy soils. This suggests that attention should be paid to the K balance and the increase of soil K pool.
基金This work was partially supported by the National Natural Science Foundation of China(No.51979294)the U.S.Department of Agriculture(No.2018-68011-28371)+1 种基金the National Science Foundation(No.1833988)the Training Program for Excellent Young Innovators of Changsha(No.kq1905064).
文摘Single atom catalysts(SACs)have become the frontier research fields in catalysis.The M_(1)-N_(x)-C_(y)based SACs,wherein single metal atoms(M1)are stabilized by N-doped carbonaceous materials,have provided new opportunities for catalysis due to their high reactivity,maximized atomic utilization,and high selectivity.In this review,the fabrication methods of M_(1)-N_(x)-C_(y)based SACs via support anchoring strategy and coordination design strategy are summarized to help the readers understand the interaction mechanism of single atoms and support.Then,characterization technologies for identifying single metal atoms are presented.Besides,the environmental applications including management of harmful gases,water purification are discussed.Finally,future opportunities and challenges for preparation strategies,mechanisms and applications are concluded.We conclude this review by emphasizing the fact that M_(1)-N_(x)-C_(y)based SACs has the potential to become an important candidate for solving current and future environmental pollution problems.
文摘1. INTRODUCTION The proposed Three Gorges Project, one of the biggest hydroelectric projects in the world, will dam the middle reaches of the Changjiang (Yangtze) River, the third longest river in the world, and form a large reservoir. Its impacts on environment have attracted wide attention. Entrusted by National Scientific-Technical Commission, the Chinese Academy of Sciences (CAS) was in charge of a research project on this issuse from 1984 to 1989. Tho use of remote sensing played an important role in the project considering the study area is mountainous and not convenientlv located, which makes it difficult to conduct the research onlv using conventional means.
文摘The characteristics of low pressure plasma produced by a gas discharges lie in thatthe energy of the electrons are much higher than that of the heavy particles in the system. Inthis paperl the low-pressure plasma treatment technology for the environmental contaminantswas synthetically studied, and the reaction processing and mechanism between the low-pressureplasma and the environmental contaminants were theoretically analyzed. At last, the prospectsand existing problems on the application of low-pressure plasma in the field of environmentalprotection were discussed.
文摘1. PREFACE Lingdingyang is a trumpet estuary. It accepts the runoff of the Dongjiang River, the Beijiang River, the Zhengjiang River and the Liusihe River. It also accepts a part of the runoff of the Xijiang River. Its mean year runoff is 1.742×10" M^3. In resent ten years, industry and agriculture are developing rapidly in Guangzhou City, Dongguan City, Zhongshan City, Shunde County, Panyu County. Lingdingyang’s pollution is increesing. Water quality of lingdingyang is steadily deteriorated. In order to investigate the situation of water environment of Lingdingyang, we study its static environmental capacity of nitrogen and phosphorus. LANDSAT imageries are used in the study. The concentrations of nitrogen and phosphorous is detected by convention method.
文摘The environmental conditions in China are still very serious. In the years to come, the mission for environmental treatment and protection, supervision,
基金supported by the National Natural Science Foundation of China(22327807,U2067215,U2341289,22341602,22006036,U2167218,22276054).
文摘Traditional fossil fuels significantly contribute to energy supply,economic development,and advancements in science and technology.However,prolonged and extensive use of fossil fuels has resulted in increasingly severe environmental pollution.Consequently,it is imperative to develop new,clean,and pollution-free energy sources with high energy density and versatility as substitutes for conventional fossil fuels,although this remains a considerable challenge.Simultaneously,addressing water pollution is a critical concern.The development,design,and optimization of functional nanomaterials are pivotal to advancing new energy solutions and pollutant remediation.Emerging porous framework materials such as metal-organic frameworks(MOFs)and covalent organic frameworks(COFs),recognized as exemplary crystalline porous materials,exhibit potential in energy and environmental applications due to their high specific surface area,adjustable pore sizes and structures,permanent porosity,and customizable functionalities.This work provides a comprehensive and systematic review of the applications of MOFs,COFs,and their derivatives in emerging energy technologies,including the oxygen reduction reaction,oxygen evolution reaction,hydrogen evolution reaction,lithium-ion batteries,and environmental pollution remediation such as the carbon dioxide reduction reaction and environmental pollution management.In addition,strategies for performance adjustment and the structure-effect relationships of MOFs,COFs,and their derivatives for these applications are explored.Interaction mechanisms are summarized based on experimental discussions,theoretical calculations,and advanced spectroscopy analyses.The challenges,future prospects,and opportunities for tailoring these materials for energy and environmental applications are presented.
文摘In this research,the antibacterial properties of a composite material prepared from agave bagasse cellulose fibers doped with silver nanoparticles and chitosan were studied.The development of composite materials with antibacterial properties and environmentally friendly based on cellulose fibers from agave bagasse with silver nanoparticles prepared by green synthesis and chitosan from shrimp waste enhances the value of these agro-industrial wastes and offers the opportunity for them to have biomedical applications since these raw materials have been poorly reported for this application.The antibacterial properties of chitosan and silver nanoparticles are already known.However,the combination of silver nanoparticles with cellulose fibers and chitosan has been studied poorly.Green synthesis of silver nanoparticles was carried out,and spherical shape nanoparticles with a size between 20 and 50 nm were obtained by ultraviolet-visible(UV-Vis)spectroscopy and transmission electron microscopy(TEM)analysis.Additionally,in this research,the cellulose obtained from agave bagasse,the chitosan extracted from shrimp shells,and the composite material were characterized by infrared spectroscopy,mechanical analysis,and antibacterial tests.A decrease in the growth of Escherichia coli bacteria with 100%growth inhibition on cellulose,chitosan,and silver nanoparticles composite material and an increase in mechanical properties from 13.67 MPa of cellulose pure to 110 MPa of composite material was observed.These findings support the idea that the composite material has potential use in wound care dressings for antibacterial care.
文摘To develop more efficient chemical methods for the demineralization of organic pollutants from water bodies, which one was also mimic to the nature, a degradation of methylene blue by Fe(Ⅲ) and H 2O 2 in the absence of light instead of Fe(Ⅱ) and H 2O 2 was studied. Results showed that use of Fe (Ⅲ) is more promising than Fe(Ⅱ). The present study reflects that Fenton reaction is more efficient, in the presence of a small amount of salicylic acid is added which is a one of the priority pollutant.
基金the supports from the Clean Coal ProgramSchool of Energy Resources in Wyoming
文摘TiO2 nanomaterial is promising with its high potential and outstanding performance in photocatalytic environmental applications, such as CO2 conversion, water treatment, and air quality control. For many of these applications, the particle size, crystal structure and phase, porosity, and surface area influence the activity of TiO2 dramatically. TiO2 nanomaterials with special structures and morphologies, such as nanospheres, nanowires, nanotubes, nanorods, and nanoflowers are thus synthesized due to their desired characteristics. With an emphasis on the different morphologies of TiO2 and the influence factors in the synthesis, this review summarizes fourteen TiO2 preparation methods, such as the sol-gel method, solvothermal method, and reverse micelle method. The TiO2 formation mechanisms, the advantages and disadvantages of the preparation methods, and the photocatalytic environmental application examples are proposed as well.
基金2020 Donghua University’s educational reform project of integration of specialty and innovation,China(No.ZCRH2020002)Excellent reform pilot course of Donghua University Built Environment,China.
文摘The improvement of students’abilities is of great significance to discover the relevant scientific problems in daily life,to analyze and solve practical problems,to trigger scientific inspiration,and to encourage innovation and entrepreneurship.Taken the course entitled Built Environment(BE)as an example,this study introduces five lecture cases combining with engineering practices,and examines the evaluation of teaching and learning effect on student outcomes.The cases consider various problems to be solved urgently in an actual project,and evaluate the student outcomes by statistically analyzing the questionnaires.Most of the students actively participate in five cases and cheerfully share their achievements.More than 85%of students are satisfied with the engineering practice and the learning proposal,and convey a little or even significantly change in their understanding of the employment prospects.
基金Supported by Science Plan Item of Hubei Education Department(B20084001)
文摘[Objective]The research aimed to study preparation and application of the environment-friendly compound flocculant.[Method]Chitosan(natural biological product,CTS),ferric sulfate[Fe2(SO4) 3]and polymeric aluminum chloride(PAC) as the main raw materials,four kinds of environment-friendly flocculants were made to conduct flocculation treatment on the domestic wastewater of Wuhan Bioengineering Institute.COD and turbidity of the wastewater as the main indicators,influences of the compound flocculant formulation,flocculant dosage and pH on flocculation effect were studied.[Result]CTS/PAC and CTS/Fe2(SO4) 3 compound flocculants had better removal rates for COD and turbidity when compared with single inorganic flocculant.The best volume ratio of CTS/PAC was 1.0:5.0.The smallest dosage of CTS/PAC in each 500 ml of water sample was 4.0 ml.When pH was 7.2,removal rates of the COD and turbidity were respectively 78.5% and 98.4%,which rose by 36.5% and 21.5% respectively than that singly using PAC.[Conclusion]CTS/PAC was a kind of ideal compound flocculant and had better application prospect.
基金supported by Tenaga Nasional Berhad(TNB)and Universiti Tenaga Nasional(UNITEN)through the BOLD Refresh Postdoctoral Fellowships under the project code of J510050002-IC-6 BOLDREFRESH2025-Centre of ExcellenceThe authors would like to acknowledge the financial support from Dato’Low Tuck Kwong(DLTK)International Grant 2023 with project code 20238005DLTK.
文摘Biochar,a carbon-rich material produced from biomass waste through thermal conversion,holds great environmental promise.This article offers a comprehensive overview of the various feedstocks used in biochar production,the different types of thermal degradation processes,biochar characterization,properties,modifications to engineered materials,and their applications in the environment.The quality of biochar,including surface area,pore size and volume,and functional group formation,is significantly influenced by the specific conditions under which thermal conversion takes place.Each of the diverse processes employed to produce biochar yields a distinct set of properties in the final product.In recent years,biochar has gained widespread recognition and utilization in diverse fields such as wastewater treatment,carbon sequestration,reduction of greenhouse gas emissions,biogas production,catalysis in biofuel industries,construction,and soil enhancement.In summary,biochar is a promising environmental mitigation tool to achieve a sustainable environment.In addition to its benefits,the application of biochar presents several challenges,including the selection of feedstocks,methods of biochar production,modifications to biochar,the properties of biochar,and the specific applications of biochar.The current review summarizes factors that could lead to significant advancements in future applications.