Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),dee...In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers.展开更多
Developing hydrogen energy is a key strategic pillar for global climate change mitigation and accelerating the energy transition.Currently,major economies globally are elevating hydrogen industry planning to national ...Developing hydrogen energy is a key strategic pillar for global climate change mitigation and accelerating the energy transition.Currently,major economies globally are elevating hydrogen industry planning to national energy strategy status,and international energy companies have begun to focus on developing hydrogen businesses.This study systematically reviews the development prospects,application fields,and strategic significance of hydrogen,summarizes the current status of the global hydrogen industry,analyzes the current development characteristics of the hydrogen industry,and reviews the hydrogen strategies of international energy companies.Finally,from a strategic,comprehensive,precise,and forward-looking perspective,it is suggested that China’s Energy enterprises promote the high-quality development of the hydrogen industry by overcoming bottlenecks across the entire hydrogen industry value chain,jointly driving industrial development from both the technology supply and demand sides,defining key development fields based on their respective strengths,and actively participating in international hydrogen energy trade.展开更多
High flux reactors(HFRs)are a special type of research reactor aimed at providing a high neutron flux.Compared with power reactors and other research reactors,HFRs have unique technical features in terms of reactor co...High flux reactors(HFRs)are a special type of research reactor aimed at providing a high neutron flux.Compared with power reactors and other research reactors,HFRs have unique technical features in terms of reactor core design,irradiation capability,and operating characteristics.They can be applied to the irradiation tests of nuclear fuels and materials,radioisotope production,neutron science,and experiments.This paper reviews HFRs,including their development history,technical features,and application areas,as well as trends in the development of new and advanced HFRs.展开更多
In order to highlight the achievements of China's rare earth industry over the past year with the support of national policy,and show that technological innovation has promoted the development of new high-quality ...In order to highlight the achievements of China's rare earth industry over the past year with the support of national policy,and show that technological innovation has promoted the development of new high-quality productive forces,expanded the application fields of rare earth elements and accelerated the progress of green and low-carbon transformation.展开更多
Considering the characteristics of deep thick top coal roadway,in which the high ground stress,coal seam with low strength,and a large range of surrounding rock fragmentation,the pressure relief anchor box beam suppor...Considering the characteristics of deep thick top coal roadway,in which the high ground stress,coal seam with low strength,and a large range of surrounding rock fragmentation,the pressure relief anchor box beam support system with high strength is developed.The high-strength bearing characteristics and coupling yielding support mechanism of this support system are studied by the mechanical tests of composite members and the combined support system.The test results show that under the coupling effect of support members,the peak stress of the box-shaped support beam in the anchor box beam is reduced by 21.9%,and the average deformation is increased by 135.0%.The ultimate bending bearing capacity of the box-shaped support beam is 3.5 times that of traditional channel beam.The effective compressive stress zone applied by the high prestressed cable is expanded by 26.4%.On this basis,the field support comparison test by the anchor channel beam,the anchor I-shaped beam and the anchor box beam are carried out.Compared with those of the previous two,the surrounding rock convergence of the latter is decreased by 41.2%and 22.2%,respectively.The field test verifies the effectiveness of the anchor box beam support system.展开更多
Fracability evaluation is critical for efficiently extracting deep shale gas using hydraulic fracturing to avoid blind drilling and fracking.However,existing fracability indices often fail to systematically consider t...Fracability evaluation is critical for efficiently extracting deep shale gas using hydraulic fracturing to avoid blind drilling and fracking.However,existing fracability indices often fail to systematically consider the mechanical behavior of rocks at high temperatures and high pressures(HTHP),coupled with geostress distributions and heterogeneous reservoir characteristics.This critical omission limits their effectiveness in accurately identifying the optimal fracability sweet spots within deep reservoirs.In this work,a fracability evaluation model was proposed based on the combined weighting method,integrating the improved brittleness index,rock strength,geostresses and natural weakness characteristics.A fracability grading evaluation was carried out to determine the potential fracture characteristics corresponding to shales with different fracability levels.Additionally,the fracability index was used for field validation and applications.Results show that rock brittleness and fracability are not equivalent for deep reservoirs.The fracability index is closely related to the pay zones and actual gas production,with a correlation as high as 84%,implying that the proposed method has practical significance in both experimental and field applications.The above findings can provide theoretical guidance for the selection of fracturing candidates and the optimal design of fracturing in deep resource development.展开更多
MXene presents excellent electrical conductivity,abundant surface functional groups and wonderful filmforming performance,but the lamellar layers are prone to self-stacking during film formation,which will reduce the ...MXene presents excellent electrical conductivity,abundant surface functional groups and wonderful filmforming performance,but the lamellar layers are prone to self-stacking during film formation,which will reduce the loss of electromagnetic waves,hinder ion transmission,and limit the effective load of other functional materials.The construction of the porous structure can effectively solve the self-stacking problem of MXene sheets.This article reviews the research progress of MXene porous films for electromagnetic interference(EMI)shielding,lithium/sodium ion batteries,pseudocapacitors,and biomedical science applications.It focuses on the preparation methods of MXene porous films,and discusses the pore-forming mechanism of the porous structure formed by different preparation methods and the internal relationship between the“microstructure-macroscopic performance”of the MXene porous films,points out the key scientific and technical bottlenecks that need to be solved urgently in the preparation and application of the MXene porous films.It is hoped to provide certain guidance for the design,preparation,optimization,industrial application,and development of MXene porous films.展开更多
Soil flame disinfestation(SFD) is a form of physical disinfestation that can be used both in greenhouses and on field crops. Its use for soil disinfestation in different crop growing conditions makes it increasingly a...Soil flame disinfestation(SFD) is a form of physical disinfestation that can be used both in greenhouses and on field crops. Its use for soil disinfestation in different crop growing conditions makes it increasingly attractive for controlling soilborne pathogens and weeds. But little is known about the effect on weeds and soilbrone diseases. This study reports on greenhouses and field crops in China that determined the efficacy of SFD to control weeds, nematodes and fungi. It also determined the impact of SFD on the soil physical and chemical properties(water content, bulk density, NO3^–-N content, NH4^+-N content, conductivity and organic matter) in three field trials. A second generation SFD machine was used in these trials. SFD treatment significantly reduced weeds(>87.8%) and root-knot nematodes(Meloidogyne incognita)(>98.1%). Plant height and crop yield was significantly increased with SFD treatment. NO3^–-N and NH4^+-N increased after the SFD treatment, and there was also an increase in soil conductivity. Water content, bulk density and organic matter decreased significantly in the soil after the SFD treatment compared to the control. Soil flame disinfestation is a potential technique for controlling weeds and diseases in greenhouses or in fields. SFD is a non-chemical, safe, environmentally-friendly soil disinfection method.展开更多
In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cab...In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
Antisense RNA molecule represents a unique type of DNA transcript that comprises 19-23 nucleotides and is complementary to mRNA. Antisense RNAs play the crucial role in regulating gene expression at multiple levels, s...Antisense RNA molecule represents a unique type of DNA transcript that comprises 19-23 nucleotides and is complementary to mRNA. Antisense RNAs play the crucial role in regulating gene expression at multiple levels, such as at replication, transcription, and translation. In addition, artificial antisense RNAs can effectively regulate the expression of related genes in host cells. With the development of antisense RNA, investigating the functions of antisense RNAs has emerged as a hot research field. This review summarizes our current understanding of antisense RNAs, particularly of the formation of antisense RNAs and their mechanism of regulating the expression of their target genes. In addition, we detail the effects and applications of antisense RNAs in antivirus and anticancer treatments and in regulating the expression of related genes in plants and microorganisms. This review is intended to highlight the key role of antisense RNA in genetic research and guide new investigators to the study of antisense RNAs.展开更多
This paper focuscs on the recent progress in the adoption of active disturbance rejection control(ADRC)in thermal pro-cesses as a viable alternative to proportional-_integral-derivative(PID),especially in coa-fired po...This paper focuscs on the recent progress in the adoption of active disturbance rejection control(ADRC)in thermal pro-cesses as a viable alternative to proportional-_integral-derivative(PID),especially in coa-fired power plants.The profound interpretation of this paradigm shift,with backward compatibility,is discussed in detail.A few fundamental issues associated with ADRC's applications in thermal processes are discussed,such as implementation,tuning,and the structural changes.Examples and case studies are presented,encompassing coal-fired power plants,gas turbines and nuclear power plants,as well as highlighting results of field applications.Also discussed are future research opportunities brought by ADRC's entry as the baseline control technology in thermal processes.展开更多
Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical...Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.展开更多
Colonoscopy is usually perceived as an invasive and potentially painful procedure, being also affected by a small, but definite, risk of major complications (cardiopulmonary complications, perforation, hemorrhage) and...Colonoscopy is usually perceived as an invasive and potentially painful procedure, being also affected by a small, but definite, risk of major complications (cardiopulmonary complications, perforation, hemorrhage) and even mortality. To improve both acceptability and safety, PillCam Colon Capsule Endoscopy (CCE) (Given Imaging Ltd, Yoqneam, Israel) has been developed. CCE represents a non-invasive technique that is able to explore the colon without sedation and air insufflation. The Second Generation of Colon Capsule Endoscopy (PillCam Colon 2) (CCE-2) was proven to be an accurate tool to detect colonic neoplastic lesions when used in average risk individuals. To date, the evidence supports the use of CCE-2 in case of colonoscopy failure, in patients unwilling to perform colonoscopy and when colonoscopy is contraindicated. Other potential applications, such as colorectal cancer screening or diagnostic surveillance of inflammatory bowel disease need to be clarified. In this paper, the current “state of the art”, potential application of CCE and future needs are evaluated.展开更多
Seismic forward-prospecting in tunnels is an important step to ensure excavation safety. Nowadays, most advanced imaging techniques in seismic exploration involve calculating the solution of elastic wave equation in a...Seismic forward-prospecting in tunnels is an important step to ensure excavation safety. Nowadays, most advanced imaging techniques in seismic exploration involve calculating the solution of elastic wave equation in a certain coordinate system. However, considering the cylindrical geometry of common tunnel body, Cartesian coordinate system seemingly has limited applicability in tunnel seismic forwardprospecting. To accurately simulate the seismic signal received in tunnels, previous imaging method using decoupled non-conversion elastic wave equation is extended from Cartesian coordinates to cylindrical coordinates. The proposed method preserves the general finite-difference time-domain(FDTD)scheme in Cartesian coordinates, except for a novel wavefield calculation strategy addressing the singularity issue inherited at the cylindrical axis. Moreover, the procedure of cylindrical elastic reverse time migration(CERTM) in tunnels is introduced based on the decoupled non-conversion elastic wavefield. Its imaging effect is further validated via numerical experiments on typical tunnel models. As indicated in the synthetic examples, both the PP-and SS-images could clearly show the geological structure in front of the tunnel face without obvious crosstalk artifacts. Migration imaging using PP-waves can present satisfactory results with higher resolution information supplemented by the SS-images. The potential of applying the proposed method in real-world cases is demonstrated in a water diversion tunnel. In the end, we share our insights regarding the singularity treatment and further improvement of the proposed method.展开更多
The geodesy discipline has been evolving and constantly intersecting and merging with other disciplines in the last 50 years,due to the continuous progress of geodetic observation techniques and expansion of applicati...The geodesy discipline has been evolving and constantly intersecting and merging with other disciplines in the last 50 years,due to the continuous progress of geodetic observation techniques and expansion of application fields.This paper first introduces the development and roles of geodesy and its formation.Secondly,the development status of geodesy discipline is analyzed from the progress of observation techniques and cross-discipline formation is analyzed from the expansion of application fields.Furthermore,the development trend of geodesy is stated from the perspective of national requirements and scientific developments.Finally,the sub-disciplines for geodesy are suggested at the present stage,based on the requirements of the National Natural Science Foundation of China and development status of geodesy itself,which can provide references for topic selection and fund application of geodetic scientific research.展开更多
The magnetohydrodynamics laws govern the motion of a conducting fluid, such as blood, in an externally applied static magnetic field B0. When an artery is exposed to a magnetic field, the blood charged particles are d...The magnetohydrodynamics laws govern the motion of a conducting fluid, such as blood, in an externally applied static magnetic field B0. When an artery is exposed to a magnetic field, the blood charged particles are deviated by the Lorentz force thus inducing electrical currents and voltages along the vessel walls and in the neighboring tissues. Such a situation may occur in several biomedical applications: magnetic resonance imaging (MRI), magnetic drug transport and targeting, tissue engineering… In this paper, we consider the steady unidirectional blood flow in a straight circular rigid vessel with non-conducting walls, in the presence of an exterior static magnetic field. The exact solution of Gold (1962) (with the induced fields not neglected) is revisited. It is shown that the integration over a cross section of the vessel of the longitudinal projection of the Lorentz force is zero, and that this result is related to the existence of current return paths, whose contributions compensate each other over the section. It is also demonstrated that the classical definition of the shear stresses cannot apply in this situation of magnetohydrodynamic flow, because, due to the existence of the Lorentz force, the axisymmetry is broken.展开更多
A simple three-dimensional tidal model is used to examine the M2 tidal current distribution in a northeastern part of the East China Sea, especially the vertical variation of the current in the region. Computed M2 cur...A simple three-dimensional tidal model is used to examine the M2 tidal current distribution in a northeastern part of the East China Sea, especially the vertical variation of the current in the region. Computed M2 current is compared with observations available and found to be in good agreement.Main features of the calculating method in this study are: (1) Vertical variation of the tidal current is taken as a funetion of the depth-mean velocity: (2) the method is applicable to a variety of the vertical eddy viscosities; (3) it has a fine vertical resolution, especially near the sea bootom. So, this method not only enables us to get a steady state solution easily but also depicts effects of the friction on the vertical variation of the current much better.展开更多
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.
文摘In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers.
文摘Developing hydrogen energy is a key strategic pillar for global climate change mitigation and accelerating the energy transition.Currently,major economies globally are elevating hydrogen industry planning to national energy strategy status,and international energy companies have begun to focus on developing hydrogen businesses.This study systematically reviews the development prospects,application fields,and strategic significance of hydrogen,summarizes the current status of the global hydrogen industry,analyzes the current development characteristics of the hydrogen industry,and reviews the hydrogen strategies of international energy companies.Finally,from a strategic,comprehensive,precise,and forward-looking perspective,it is suggested that China’s Energy enterprises promote the high-quality development of the hydrogen industry by overcoming bottlenecks across the entire hydrogen industry value chain,jointly driving industrial development from both the technology supply and demand sides,defining key development fields based on their respective strengths,and actively participating in international hydrogen energy trade.
文摘High flux reactors(HFRs)are a special type of research reactor aimed at providing a high neutron flux.Compared with power reactors and other research reactors,HFRs have unique technical features in terms of reactor core design,irradiation capability,and operating characteristics.They can be applied to the irradiation tests of nuclear fuels and materials,radioisotope production,neutron science,and experiments.This paper reviews HFRs,including their development history,technical features,and application areas,as well as trends in the development of new and advanced HFRs.
文摘In order to highlight the achievements of China's rare earth industry over the past year with the support of national policy,and show that technological innovation has promoted the development of new high-quality productive forces,expanded the application fields of rare earth elements and accelerated the progress of green and low-carbon transformation.
基金Project(2023YFC2907600)supported by the National Key Research and Development Program of ChinaProjects(42277174,42477166)supported by the National Natural Science Foundation of China+1 种基金Project(2024JCCXSB01)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(KFJJ24-01M)supported by the State Key Laboratory of Explosion Science and Safety Protection,Beijing Institute of Technology,China。
文摘Considering the characteristics of deep thick top coal roadway,in which the high ground stress,coal seam with low strength,and a large range of surrounding rock fragmentation,the pressure relief anchor box beam support system with high strength is developed.The high-strength bearing characteristics and coupling yielding support mechanism of this support system are studied by the mechanical tests of composite members and the combined support system.The test results show that under the coupling effect of support members,the peak stress of the box-shaped support beam in the anchor box beam is reduced by 21.9%,and the average deformation is increased by 135.0%.The ultimate bending bearing capacity of the box-shaped support beam is 3.5 times that of traditional channel beam.The effective compressive stress zone applied by the high prestressed cable is expanded by 26.4%.On this basis,the field support comparison test by the anchor channel beam,the anchor I-shaped beam and the anchor box beam are carried out.Compared with those of the previous two,the surrounding rock convergence of the latter is decreased by 41.2%and 22.2%,respectively.The field test verifies the effectiveness of the anchor box beam support system.
基金supported by the National Natural Science Foun-dation of China(Nos.U24B2035 and U22A20166)the Postdoctoral Fellowship Program and China Postdoctoral Science Foundation(Nos.BX20250034 and 2024M763503)the Natural Science Foundation of Hubei Province of China(No.2024AFD374).
文摘Fracability evaluation is critical for efficiently extracting deep shale gas using hydraulic fracturing to avoid blind drilling and fracking.However,existing fracability indices often fail to systematically consider the mechanical behavior of rocks at high temperatures and high pressures(HTHP),coupled with geostress distributions and heterogeneous reservoir characteristics.This critical omission limits their effectiveness in accurately identifying the optimal fracability sweet spots within deep reservoirs.In this work,a fracability evaluation model was proposed based on the combined weighting method,integrating the improved brittleness index,rock strength,geostresses and natural weakness characteristics.A fracability grading evaluation was carried out to determine the potential fracture characteristics corresponding to shales with different fracability levels.Additionally,the fracability index was used for field validation and applications.Results show that rock brittleness and fracability are not equivalent for deep reservoirs.The fracability index is closely related to the pay zones and actual gas production,with a correlation as high as 84%,implying that the proposed method has practical significance in both experimental and field applications.The above findings can provide theoretical guidance for the selection of fracturing candidates and the optimal design of fracturing in deep resource development.
基金support and funding from the Foundation of National Natural Science Foundation of China(51903145 and 51973173)Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)+2 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2020JQ-164)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2021107)financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars。
文摘MXene presents excellent electrical conductivity,abundant surface functional groups and wonderful filmforming performance,but the lamellar layers are prone to self-stacking during film formation,which will reduce the loss of electromagnetic waves,hinder ion transmission,and limit the effective load of other functional materials.The construction of the porous structure can effectively solve the self-stacking problem of MXene sheets.This article reviews the research progress of MXene porous films for electromagnetic interference(EMI)shielding,lithium/sodium ion batteries,pseudocapacitors,and biomedical science applications.It focuses on the preparation methods of MXene porous films,and discusses the pore-forming mechanism of the porous structure formed by different preparation methods and the internal relationship between the“microstructure-macroscopic performance”of the MXene porous films,points out the key scientific and technical bottlenecks that need to be solved urgently in the preparation and application of the MXene porous films.It is hoped to provide certain guidance for the design,preparation,optimization,industrial application,and development of MXene porous films.
基金supported by the National Key Research and Development Program of China (2017YFD0201600)the Beijing Innovation Consortium of Agriculture Research System, China (BAIC01-2017)
文摘Soil flame disinfestation(SFD) is a form of physical disinfestation that can be used both in greenhouses and on field crops. Its use for soil disinfestation in different crop growing conditions makes it increasingly attractive for controlling soilborne pathogens and weeds. But little is known about the effect on weeds and soilbrone diseases. This study reports on greenhouses and field crops in China that determined the efficacy of SFD to control weeds, nematodes and fungi. It also determined the impact of SFD on the soil physical and chemical properties(water content, bulk density, NO3^–-N content, NH4^+-N content, conductivity and organic matter) in three field trials. A second generation SFD machine was used in these trials. SFD treatment significantly reduced weeds(>87.8%) and root-knot nematodes(Meloidogyne incognita)(>98.1%). Plant height and crop yield was significantly increased with SFD treatment. NO3^–-N and NH4^+-N increased after the SFD treatment, and there was also an increase in soil conductivity. Water content, bulk density and organic matter decreased significantly in the soil after the SFD treatment compared to the control. Soil flame disinfestation is a potential technique for controlling weeds and diseases in greenhouses or in fields. SFD is a non-chemical, safe, environmentally-friendly soil disinfection method.
基金This work was supported by the National Natural Science Foundation of China(Nos.41941018,52074164,and 42077267);the Natural Science Foundation of Shandong Province,China(Nos.2019SDZY04 and ZR2020JQ23)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program,China(No.2019KJG013).
文摘In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
基金Project supported by the Natural Science Foundation of Jiangsu Province(No.BK20150149)the China Postdoctoral Science Foundation Grant(No.2016M590410)the Fundamental Research Funds for the Central Universities(No.JUSRP115A19),China
文摘Antisense RNA molecule represents a unique type of DNA transcript that comprises 19-23 nucleotides and is complementary to mRNA. Antisense RNAs play the crucial role in regulating gene expression at multiple levels, such as at replication, transcription, and translation. In addition, artificial antisense RNAs can effectively regulate the expression of related genes in host cells. With the development of antisense RNA, investigating the functions of antisense RNAs has emerged as a hot research field. This review summarizes our current understanding of antisense RNAs, particularly of the formation of antisense RNAs and their mechanism of regulating the expression of their target genes. In addition, we detail the effects and applications of antisense RNAs in antivirus and anticancer treatments and in regulating the expression of related genes in plants and microorganisms. This review is intended to highlight the key role of antisense RNA in genetic research and guide new investigators to the study of antisense RNAs.
基金This work was supported by the Science&Technology Research Project in Henan Province of China(No.212102311052)the National Key Research and Development Program of China(No.2016YFB0901405)the National Natural Science Foundation of China(No.61473265).
文摘This paper focuscs on the recent progress in the adoption of active disturbance rejection control(ADRC)in thermal pro-cesses as a viable alternative to proportional-_integral-derivative(PID),especially in coa-fired power plants.The profound interpretation of this paradigm shift,with backward compatibility,is discussed in detail.A few fundamental issues associated with ADRC's applications in thermal processes are discussed,such as implementation,tuning,and the structural changes.Examples and case studies are presented,encompassing coal-fired power plants,gas turbines and nuclear power plants,as well as highlighting results of field applications.Also discussed are future research opportunities brought by ADRC's entry as the baseline control technology in thermal processes.
基金Projects(51674154,51704125,51874188) supported by the National Natural Science Foundation of ChinaProjects(2017T100116,2017T100491,2016M590150,2016M602144) supported by the China Postdoctoral Science Foundation+2 种基金Projects(2017GGX30101,2018GGX109001,ZR2017QEE013) supported by the Natural Science Foundation of Shandong Province,ChinaProject(SKLCRSM18KF012) supported by the State Key Laboratory of Coal Resources and Safe Mining,ChinaProject(2018WLJH76) supported by the Young Scholars Program of Shandong University,China
文摘Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.
文摘Colonoscopy is usually perceived as an invasive and potentially painful procedure, being also affected by a small, but definite, risk of major complications (cardiopulmonary complications, perforation, hemorrhage) and even mortality. To improve both acceptability and safety, PillCam Colon Capsule Endoscopy (CCE) (Given Imaging Ltd, Yoqneam, Israel) has been developed. CCE represents a non-invasive technique that is able to explore the colon without sedation and air insufflation. The Second Generation of Colon Capsule Endoscopy (PillCam Colon 2) (CCE-2) was proven to be an accurate tool to detect colonic neoplastic lesions when used in average risk individuals. To date, the evidence supports the use of CCE-2 in case of colonoscopy failure, in patients unwilling to perform colonoscopy and when colonoscopy is contraindicated. Other potential applications, such as colorectal cancer screening or diagnostic surveillance of inflammatory bowel disease need to be clarified. In this paper, the current “state of the art”, potential application of CCE and future needs are evaluated.
基金funded by the National Natural Science Foundation of China (Grant Nos. 52021005 and 51739007)the Key Research and Development Plan of Shandong Province (Grant No. 2020ZLYS01)。
文摘Seismic forward-prospecting in tunnels is an important step to ensure excavation safety. Nowadays, most advanced imaging techniques in seismic exploration involve calculating the solution of elastic wave equation in a certain coordinate system. However, considering the cylindrical geometry of common tunnel body, Cartesian coordinate system seemingly has limited applicability in tunnel seismic forwardprospecting. To accurately simulate the seismic signal received in tunnels, previous imaging method using decoupled non-conversion elastic wave equation is extended from Cartesian coordinates to cylindrical coordinates. The proposed method preserves the general finite-difference time-domain(FDTD)scheme in Cartesian coordinates, except for a novel wavefield calculation strategy addressing the singularity issue inherited at the cylindrical axis. Moreover, the procedure of cylindrical elastic reverse time migration(CERTM) in tunnels is introduced based on the decoupled non-conversion elastic wavefield. Its imaging effect is further validated via numerical experiments on typical tunnel models. As indicated in the synthetic examples, both the PP-and SS-images could clearly show the geological structure in front of the tunnel face without obvious crosstalk artifacts. Migration imaging using PP-waves can present satisfactory results with higher resolution information supplemented by the SS-images. The potential of applying the proposed method in real-world cases is demonstrated in a water diversion tunnel. In the end, we share our insights regarding the singularity treatment and further improvement of the proposed method.
基金National Natural Science Foundation of China(41931076)National Natural Science Foundation of China(41721003)。
文摘The geodesy discipline has been evolving and constantly intersecting and merging with other disciplines in the last 50 years,due to the continuous progress of geodetic observation techniques and expansion of application fields.This paper first introduces the development and roles of geodesy and its formation.Secondly,the development status of geodesy discipline is analyzed from the progress of observation techniques and cross-discipline formation is analyzed from the expansion of application fields.Furthermore,the development trend of geodesy is stated from the perspective of national requirements and scientific developments.Finally,the sub-disciplines for geodesy are suggested at the present stage,based on the requirements of the National Natural Science Foundation of China and development status of geodesy itself,which can provide references for topic selection and fund application of geodetic scientific research.
文摘The magnetohydrodynamics laws govern the motion of a conducting fluid, such as blood, in an externally applied static magnetic field B0. When an artery is exposed to a magnetic field, the blood charged particles are deviated by the Lorentz force thus inducing electrical currents and voltages along the vessel walls and in the neighboring tissues. Such a situation may occur in several biomedical applications: magnetic resonance imaging (MRI), magnetic drug transport and targeting, tissue engineering… In this paper, we consider the steady unidirectional blood flow in a straight circular rigid vessel with non-conducting walls, in the presence of an exterior static magnetic field. The exact solution of Gold (1962) (with the induced fields not neglected) is revisited. It is shown that the integration over a cross section of the vessel of the longitudinal projection of the Lorentz force is zero, and that this result is related to the existence of current return paths, whose contributions compensate each other over the section. It is also demonstrated that the classical definition of the shear stresses cannot apply in this situation of magnetohydrodynamic flow, because, due to the existence of the Lorentz force, the axisymmetry is broken.
文摘A simple three-dimensional tidal model is used to examine the M2 tidal current distribution in a northeastern part of the East China Sea, especially the vertical variation of the current in the region. Computed M2 current is compared with observations available and found to be in good agreement.Main features of the calculating method in this study are: (1) Vertical variation of the tidal current is taken as a funetion of the depth-mean velocity: (2) the method is applicable to a variety of the vertical eddy viscosities; (3) it has a fine vertical resolution, especially near the sea bootom. So, this method not only enables us to get a steady state solution easily but also depicts effects of the friction on the vertical variation of the current much better.