The approximate analytical expressions of the apertured broadband beams in the far field with Gaussian and Laguerre-Gaussian spatial modes are presented. For the radially polarized Laguerre-Gaussian beam, the result r...The approximate analytical expressions of the apertured broadband beams in the far field with Gaussian and Laguerre-Gaussian spatial modes are presented. For the radially polarized Laguerre-Gaussian beam, the result reveals that the electromagnetic field in the far field is transverse magnetic. The influences of bandwidth (Г) and truncation parameter (Co) on the transverse intensity distribution of the Gaussian beam and on the energy flux distribution of radially polarized Laguerre-Gaussian beam are analysed.展开更多
Based on the generalized truncated second-order moments,an approximate analytical formula of the beam propagation factor M^2 of high-power laser beams passing through the optical system with multiple hard-edged apertu...Based on the generalized truncated second-order moments,an approximate analytical formula of the beam propagation factor M^2 of high-power laser beams passing through the optical system with multiple hard-edged apertures is deduced.Numerical examples of the beams passing through an aperture-spatial filter are enclosed,and the influences of amplitude modulations(AMs)and phase fluctuations(PFs)on the beam propagation quality of high-power laser beams passing through the multi-apertured ABCD optical system are considered and discussed.It is shown that PFs are able to degrade the beam propagation quality of laser beams more than AMs when the high-power laser beams passing through the aperture-spatial filter,furthermore,one or two aperture-lens optical systems configured appropriate aperture parameters are both able to upgrade the beam propagation quality of high-power laser beams.The M2 factor of Gaussian beam passing through the multi-aperture optical system is a special case in this paper.展开更多
Based on the vectorial Ftayleigh-Sommerfeld integral formula and the complex Gaussian expansion of the hardedge aperture function, an analytical propagation expression for a nonparaxial vectorial off-axis Lorentz beam...Based on the vectorial Ftayleigh-Sommerfeld integral formula and the complex Gaussian expansion of the hardedge aperture function, an analytical propagation expression for a nonparaxial vectorial off-axis Lorentz beam passing through a rectangular aperture is derived. The unapertured case, the far field expression and the scalar paraxial result are also presented as special cases of the general formulae, respectively. Some numerical examples are also given to show the propagation characteristics of a nonparaxial vectorial off-axis Lorentz beam through a rectangular aperture. It is indicated that the f parameter, the off-axis displacement and the truncation parameter all play an important role in determining nonparaxial propagation behaviour.展开更多
Active landslides pose a significant threat globally,endangering lives and property.Effective monitoring and forecasting of displacements are essential for the timely warnings and mitigation of these events.Interferom...Active landslides pose a significant threat globally,endangering lives and property.Effective monitoring and forecasting of displacements are essential for the timely warnings and mitigation of these events.Interferometric synthetic aperture radar(InSAR)stands out as an efficient and prevalent tool for monitoring landslide deformation and offers new prospects for displacement prediction.However,challenges such as inherent limitation of satellite viewing geometry,long revisit cycles,and limited data volume hinder its application in displacement forecasting,notably for landslides with near-north-south deformation less detectable by InSAR.To address these issues,we propose a novel strategy for predicting three-dimensional(3D)landslide displacement,integrating InSAR and global navigation satellite system(GNSS)measurements with machine learning(ML).This framework first synergizes InSAR line-of-sight(LOS)results with GNSS horizontal data to reconstruct 3D displacement time series.It then employs ML models to capture complex nonlinear relationships between external triggers,landslide evolutionary states,and 3D displacements,thus enabling accurate future deformation predictions.Utilizing four advanced ML algorithms,i.e.random forest(RF),support vector machine(SVM),long short-term memory(LSTM),and gated recurrent unit(GRU),with Bayesian optimization(BO)for hyperparameter tuning,we applied this innovative approach to the north-facing,slow-moving Xinpu landslide in the Three Gorges Reservoir Area(TGRA)of China.Leveraging over 6.5 years of Sentinel-1 satellite data and GNSS measurements,our framework demonstrates satisfactory and robust prediction performance,with an average root mean square deviation(RMSD)of 9.62 mm and a correlation coefficient(CC)of 0.996.This study presents a promising strategy for 3D displacement prediction,illustrating the efficacy of integrating InSAR monitoring with ML forecasting in enhancing landslide early warning capabilities.展开更多
The next generation of synchrotron radiation light sources features extremely low emittance,enabling the generation of synchrotron radiation with significantly higher brilliance,which facilitates the exploration of ma...The next generation of synchrotron radiation light sources features extremely low emittance,enabling the generation of synchrotron radiation with significantly higher brilliance,which facilitates the exploration of matter at smaller scales.However,the extremely low emittance results in stronger sextupole magnet strengths,leading to high natural chromaticity.This necessitates the use of sextupole magnets to correct the natural chromaticity.For the Shanghai Synchrotron Radiation Facility Upgrade(SSRF-U),a lattice was designed for the storage ring that can achieve an ultra-low natural emittance of 72.2 pm·rad at the beam energy of 3.5 GeV.However,the significant detuning effects,driven by high second-order resonant driving terms due to strong sextupoles,will degrade the performance of the facility.To resolve this issue,installation of octupoles in the SSRF-U storage ring has been planned.This paper presents the study results on configuration selection and optimization method for the octupoles.An optimal solution for the SSRF-U storage ring was obtained to effectively mitigate the amplitude-dependent tune shift and the second-order chromaticity,consequently leading to an increased dynamic aperture(DA),momentum acceptance(MA),and reduced sensitivity to magnetic field errors.展开更多
In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal...In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal is to reduce computational and storage requirements while ensuring detection accuracy and reliability,making it an ideal choice for achieving rapid response and efficient processing.In this regard,a lightweight SAR ship target detection algorithm based on YOLOv8 was proposed in this study.Firstly,the C2f-Sc module was designed by fusing the C2f in the backbone network with the ScConv to reduce spatial redundancy and channel redundancy between features in convolutional neural networks.At the same time,the Ghost module was introduced into the neck network to effectively reduce model parameters and computational complexity.A relatively lightweight EMA attention mechanism was added to the neck network to promote the effective fusion of features at different levels.Experimental results showed that the Parameters and GFLOPs of the improved model are reduced by 8.5%and 7.0%when mAP@0.5 and mAP@0.5:0.95 are increased by 0.7%and 1.8%,respectively.It makes the model lightweight and improves the detection accuracy,which has certain application value.展开更多
To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths ...To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.展开更多
For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchma...For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchmark construction.This paper proposes an architecture for detecting detector flatness based on channel spectral dispersion.By measuring the dispersion fringes for coplanar adjustment,the final adjustment residual is improved to better than 300 nm.This result validates the feasibility of the proposed technology and provides significant technical support for the development of next-generation large-aperture sky survey equipment.展开更多
As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness dis...As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness distribution functions of the Bakhtiary dam site and Oskarshamn/Forsmark mountain were fitted using statistical methods.The COMSOL Multiphysics finite element software was utilized to analyze the effects of fracture roughness distribution types and empirical formulas for fracture hydraulic aperture on the seepage field and temperature field of rock masses.The results show that:(1)The fracture roughness at the Bakhtiary dam site and Oskarshamn/Forsmark mountain follows lognormal and normal distributions,respectively;(2)For rock masses with the same expected value and standard deviation of fracture roughness,the outflow from rock masses with lognormal distribution of fracture roughness is significantly larger than that of rock masses with normal distribution of fracture roughness;(3)The fracture hydraulic aperture,outflow,and cold front distance of the Li and Jiang model are significantly larger than those of the Barton model;(4)The outflow,hydraulic pressure distribution,and temperature distribution of the Barton model are more sensitive to the fracture roughness distribution type than those of the Li and Jiang model.展开更多
During gas extraction from deep coal,the rock endures high effective stress,with both the time-dependent deformation and anisotropic structure of the rock controlling the permeability evolution.To reveal this phenomen...During gas extraction from deep coal,the rock endures high effective stress,with both the time-dependent deformation and anisotropic structure of the rock controlling the permeability evolution.To reveal this phenomenon,a numerical simulation framework of the finite volume method and transient embedded discrete fracture model is proposed to establish a new constitutive model that links poroelastoplastic deformation,adsorption-induced swelling,and aperture compression.From this model,anisotropic permeability tensors were derived to further achieve the simulation of coevolution.Meanwhile,our permeability model was verified against the measured permeability data,and the history match of the numerical model showed better results where the mismatch was less than 5%.The results indicate that(1)the long-term permeability evolution clearly showed the competitive effects of multiple deformation mechanisms,which involves three stages:compaction-dominated decline,adsorption-dominated rebound,and creep-controlled loss.(2)The increased number of compressible cleats/fractures accelerated the initial permeability decline,while the increased desorption-induced strain promoted faster rebound and enhancement and higher viscosity coefficients enhanced the creep effect,which led to significant long-term permeability loss.(3)Massive hydraulic fracturing created a larger drainage area,accelerating methane desorption and causing sharp permeability rebound with reduced residual gas,which shows that the permeability remained higher than the initial values even after the extensive extraction via the fractured horizontal wells.The permeability evolution mechanisms displayed varying properties,such as coal rank and burial depth,and distinct characteristics.A precise understanding of multiple competitive stress effects is crucial for optimizing coalbed methane extraction techniques and improving recovery efficiency.展开更多
Inverse Synthetic Aperture Radar(ISAR)images of complex targets have a low Signal-to-Noise Ratio(SNR)and contain fuzzy edges and large differences in scattering intensity,which limits the recognition performance of IS...Inverse Synthetic Aperture Radar(ISAR)images of complex targets have a low Signal-to-Noise Ratio(SNR)and contain fuzzy edges and large differences in scattering intensity,which limits the recognition performance of ISAR systems.Also,data scarcity poses a greater challenge to the accurate recognition of components.To address the issues of component recognition in complex ISAR targets,this paper adopts semantic segmentation and proposes a few-shot semantic segmentation framework fusing multimodal features.The scarcity of available data is mitigated by using a two-branch scattering feature encoding structure.Then,the high-resolution features are obtained by fusing the ISAR image texture features and scattering quantization information of complex-valued echoes,thereby achieving significantly higher structural adaptability.Meanwhile,the scattering trait enhancement module and the statistical quantification module are designed.The edge texture is enhanced based on the scatter quantization property,which alleviates the segmentation challenge of edge blurring under low SNR conditions.The coupling of query/support samples is enhanced through four-dimensional convolution.Additionally,to overcome fusion challenges caused by information differences,multimodal feature fusion is guided by equilibrium comprehension loss.In this way,the performance potential of the fusion framework is fully unleashed,and the decision risk is effectively reduced.Experiments demonstrate the great advantages of the proposed framework in multimodal feature fusion,and it still exhibits great component segmentation capability under low SNR/edge blurring conditions.展开更多
Spaceborne microwave instruments possess the capability of day-and-night and all-weather measurements that can penetrate clouds and fog,and directly measure tropical cyclone(TC)ocean surface winds.In this study,we est...Spaceborne microwave instruments possess the capability of day-and-night and all-weather measurements that can penetrate clouds and fog,and directly measure tropical cyclone(TC)ocean surface winds.In this study,we establish an effective methodology to estimate TC dynamic characteristic parameters(DCP),including the storm center location,intensity,radius of maximum wind(RMW)and wind structure,purely from TC ocean winds measured by multi-platform spaceborne microwave instruments.Combining measurements from active and passive sensors can provide long time series data for monitoring changes in storm DCP.Here,the evolution of the DCP for TC Freddy(2023),from its genesis to its landfall,is evaluated using data from synthetic aperture radars(SARs),as well as radiometer(RAD)and scatterometer(SCA)observations.Comparing the results to the best-track datasets for the longitudes and latitudes of the storm centers,we show that the root-mean-square errors(RMSEs)are 0.22°and 0.31°,respectively,both with a correlation of 0.99.For the detected intensity,the RMSEs are 6.8 m s^(−1) for SARs and 7.3 m s^(−1) for RADs.However,TC intensities measured by C-band SCAs are significantly underestimated,especially for wind speeds less than 50 m s^(−1).In terms of RMW and wind radii,the SARs,RADs and SCAs demonstrate good accuracy and applicability.Our investigation emphasizes the crucial role played by spaceborne microwave instruments in the study of TCs.This is helpful in monitoring,and in the future,will help improve the forecasting of TC intensities and their characteristic structures.展开更多
Modern industrial equipment is increasingly characterized by miniaturization,integration,and high performance,necessitating the production of complex structural parts with exceptionally high internal surface quality.D...Modern industrial equipment is increasingly characterized by miniaturization,integration,and high performance,necessitating the production of complex structural parts with exceptionally high internal surface quality.Direct manufacturing often leads to high internal surface roughness,which traditional finishing and measuring methods cannot adequately address due to the decreasing size and increasing complexity of internal structures.This is especially true for components like pipes with large aspect ratios,extremely small deep holes,multi-stage bends,cross pipes,and array holes.To meet the high-performance manufacturing demands of these parts,advanced internal surface finishing and roughness measurement technologies have gained significant attention.This review focuses on the challenges and solutions related to internal surface parts with various apertures and complex structures.Internal surface finishing methods are categorized into mechanical finishing,fluid-based finishing,and energy-field-based finishing based on their characteristics.Roughness measurement technologies are divided into tool-probing and non-probing methods.The principles,required equipment,and key parameters of each finishing and measurement approach are discussed in detail.Additionally,the advantages and limitations of these methods are summarized,and future trends are forecasted.This paper serves as a comprehensive guide for researchers and engineers aiming to enhance the internal surface quality of complex structure parts.展开更多
Synthetic aperture radar(SAR)aboard SEASAT was first launched in 1978.At the beginning of the 21st century,the Chinese remote sensing community recognized the urgent need to develop domestic SAR capabilities.Unlike sc...Synthetic aperture radar(SAR)aboard SEASAT was first launched in 1978.At the beginning of the 21st century,the Chinese remote sensing community recognized the urgent need to develop domestic SAR capabilities.Unlike scatterometers and al-timeters,space-borne SAR offers high-resolution images of the ocean,regardless of weather conditions or time of day.SAR imagery provides rich information about the sea surface,capturing complicated dynamic processes in the upper layers of the ocean,particular-ly in relation to tropical cyclones.Over the past four decades,the advantages of SAR have been increasingly recognized,leading to notable marine applications,especially in the development of algorithms for retrieving wind and wave data from SAR images.This study reviews the history,progress,and future outlook of SAR-based monitoring of sea surface wind and waves.In particular,the ap-plicability of various SAR wind and wave algorithms is systematically investigated,with a particular focus on their performance un-der extreme sea conditions.展开更多
Amplitude stripes imposed by ionospheric scintillation have been frequently observed in many of the equatorial nighttime acquisitions of the Advanced Land Observing Satellite(ALOS)Phased Array-type L-band Synthetic Ap...Amplitude stripes imposed by ionospheric scintillation have been frequently observed in many of the equatorial nighttime acquisitions of the Advanced Land Observing Satellite(ALOS)Phased Array-type L-band Synthetic Aperture Radar(PALSAR).This type of ionospheric artifact impedes PALSAR interferometric and polarimetric applications,and its formation cause,morphology,and negative influence have been deeply investigated.However,this artifact can provide an alternative opportunity in a positive way for probing and measuring ionosphere scintillation.In this paper,a methodology for measuring ionospheric scintillation parameters from PALSAR images with amplitude stripes is proposed.Firstly,sublook processing is beneficial for recovering the scattered stripes from a single-look complex image;the amplitude stripe pattern is extracted via band-rejection filtering in the frequency domain of the sublook image.Secondly,the amplitude spectrum density function(SDF)is estimated from the amplitude stripe pattern.Thirdly,a fitting scheme for measuring the scintillation strength and spectrum index is conducted between the estimated and theoretical long-wavelength SDFs.In addition,another key parameter,the scintillation index,can be directly measured from the amplitude stripe pattern or indirectly derived from the scintillation strength and spectrum index.The proposed methodology is fully demonstrated on two groups of PALSAR acquisitions in the presence of amplitude stripes.Self-validation is conducted by comparing the measured and derived scintillation index and by comparing the measurements of range lines and azimuth lines.Cross-validation is performed by comparing the PALSAR measurements with in situ Global Position System(GPS)measurements.The processing results demonstrate a powerful capability to robustly measure ionospheric scintillation parameters from space with high spatial resolution.展开更多
Methane in-situ explosive fracturing technology produces shale debris particles within fracture channels,enabling a self-propping effect that enhances the fracture network conductivity and long-term stability.This stu...Methane in-situ explosive fracturing technology produces shale debris particles within fracture channels,enabling a self-propping effect that enhances the fracture network conductivity and long-term stability.This study employs X-ray computed tomography(CT)and digital volume correlation(DVC)to investigate the microstructural evolution and hydromechanical responses of shale self-propped fracture under varying confining pressures,highlighting the critical role of shale particles in maintaining fracture conductivity.Results indicate that the fracture aperture in the self-propped sample is significantly larger than in the unpropped sample throughout the loading process,with shale particles tending to crush rather than embedded into the matrix,thus maintaining flow pathways.As confining pressure increases,contact areas between fracture surfaces and particles expand,enhancing the system's stability and compressive resistance.Geometric analyses show flow paths becoming increasingly concentrated and branched under high stress.This resulted in a significant reduction in connectivity,restricting fracture permeability and amplifying the nonlinear gas flow behavior.This study introduces a permeability-strain recovery zone and a novel sensitivity parameter m,delineating stress sensitivity boundaries for permeability and normal strain,with m-value increasing with stress,revealing four characteristic regions.These findings offer theoretical support for optimizing fracturing techniques to enhance resource extraction efficiency.展开更多
Dome A,in Antarctica,offers an exceptional site for ground-based infrared astronomy,with its extremely low atmospheric infrared background noise and excellent seeing conditions.However,deploying near-infrared telescop...Dome A,in Antarctica,offers an exceptional site for ground-based infrared astronomy,with its extremely low atmospheric infrared background noise and excellent seeing conditions.However,deploying near-infrared telescopes in the harsh environment of Antarctica faces the critical challenge of frost accumulation on optical mirrors.While indium tin oxide heating films effectively defrost visible-band Antarctic astronomical telescopes,their thermal radiation at infrared wavelengths introduces significant stray light,severely degrading the signal-to-noise ratio for infrared observations.To address this limitation,we have designed a mechanical snow-removal system capable of efficiently clearing frost from sealing window surfaces at temperatures as low as–80°C.Aperture photometry of target sources,Canopus and HD 2151,revealed that after six days without intervention,floating snow extinction reduced target brightness by up to 3 magnitudes.Following mechanical defrosting,the source flux recovered to stable levels,with measured magnitudes showing rapid initial improvement followed by stabilization.Data analysis indicates that a frost removal strategy operating every 48 h,with each operation consisting of 4–6 cycles,enables efficient removal of frost and snow without introducing additional thermal noise.Future work will focus on optimizing the adaptive control algorithm and exploring novel low-temperature defrosting materials to extend the periods during which Antarctic infrared telescopes can operate unattended.展开更多
Lost circulation critically jeopardizes drilling safety and efficiency,and remains an unresolved challenge in oil and gas engineering.In this paper,by utilizing the self-developed dynamic plugging apparatus and synthe...Lost circulation critically jeopardizes drilling safety and efficiency,and remains an unresolved challenge in oil and gas engineering.In this paper,by utilizing the self-developed dynamic plugging apparatus and synthetic cores containing large-scale fractures,experimental research on the circulation plugging of different materials was conducted.Based on the D90 rule and fracture mechanical aperture model,we analyze the location of plugging layer under dynamic plugging mechanism.By setting different parameters of fracture width and injection pressure,the laws of cyclic plugging time,pressure bearing capacity and plugging layers formation were investigated.The results show that the comprehensive analysis of particle size and fracture aperture provides an accurate judgment of the entrance-plugging phenomenon.The bridging of solid materials in the leakage channel is a gradual process,and the formation of a stable plug requires 2–3 plug-leakage cycles.The first and second cyclic plugging time was positively correlated with the fracture width.Different scales of fractures were successfully plugged with the bearing pressure greater than 6 MPa,but there were significant differences in the composition of the plugging layer.The experimental results can effectively prove that the utilized plugging agent is effective and provides an effective reference for dynamic plugging operation.展开更多
To address the installation challenges of a 2-m ring Gregorian telescope system,and similar optical systems with a small width-to-radius ratio,we propose a detection method combining local interferometry with a compar...To address the installation challenges of a 2-m ring Gregorian telescope system,and similar optical systems with a small width-to-radius ratio,we propose a detection method combining local interferometry with a comparison model.This method enhances the precision of system calibration by establishing a dataset that delineates the relationship between secondary mirror misalignment and wavefront aberration,subsequently inferring the misalignment from interferometric detection results during the calibration process.For the 2-m ring telescope,we develop a detection model using five local sub-apertures,enabling a root-mean-square detection accuracy of 0:0225λ(λ=632:8 nm)for full-aperture wavefront aberration.The calibration results for the 2-m Ring Solar Telescope system indicate that the root-mean-square value of sub-aperture wavefront aberration reaches 0.104λ,and the root-mean-square value of spliced full-aperture measurement yields reaches 0.112λ.This method offers a novel approach for calibrating small width-toradius ratio telescope systems and can be applied to the calibration of other irregular-aperture optical systems.展开更多
The flow field characteristics of the conduit-matrix system(CMS)have consistently been a primary area of interest to researchers.However,under the long-term influence of water flow,the hydraulic conductivity of the ma...The flow field characteristics of the conduit-matrix system(CMS)have consistently been a primary area of interest to researchers.However,under the long-term influence of water flow,the hydraulic conductivity of the matrix surrounding the conduit often deforms differentially along the conduit axis,resulting in the development of a conduit-multilayer matrix system(CMMS).This renders conventional models inadequate in accurately describing the flow field characteristics of CMMS.In this study,a semi-analytical model with second-order accuracy is developed to investigate the velocity profile characteristics of CMMS by coupling the Navier-Stokes(N–S)equations in the conduit and the Darcy-Brinkman(D-B)equation in the multilayer matrices.In this model,the interface between the conduit and the matrix satisfies the velocity continuity and stress jumping condition.In contrast,different matrix interfaces require both velocity and stress to be equal.The model's validity is verified through Lattice Boltzmann Method(LBM)simulation,COMSOL simulation,and experimental data under different conduit apertures,matrix region numbers,and matrix permeability characteristics.Moreover,the current model predicts discharges with higher accuracy than the Hagen-Poiseuille law and Darcy's law(the maximum error between the present model and the test is 7.24%).Furthermore,the existing Poiseuille's law,conduit-matrix model,and conduit-matrix1-matrix2 model are all special cases of the current semi-analytical model,thereby indicating its broader applicability.Sensitivity results reveal that the flow velocities in the surrounding matrix and the conduit regions also increase when the permeability of the matrix in proximity to the conduit increases.Additionally,as the stress jumping coefficient at the interface approaches zero,the transition from free flow to seepage becomes smoother.展开更多
基金supported by the Doctorial Start-up Fund of Hengyang Normal University,China (Grant No. 09B06)the Natural Science Foundation of Hunan Province,China (Grant No. 08jj3001)
文摘The approximate analytical expressions of the apertured broadband beams in the far field with Gaussian and Laguerre-Gaussian spatial modes are presented. For the radially polarized Laguerre-Gaussian beam, the result reveals that the electromagnetic field in the far field is transverse magnetic. The influences of bandwidth (Г) and truncation parameter (Co) on the transverse intensity distribution of the Gaussian beam and on the energy flux distribution of radially polarized Laguerre-Gaussian beam are analysed.
基金Science Fund from the Shaanxi Provincial Education Department,China(Grant No.18JK0723).
文摘Based on the generalized truncated second-order moments,an approximate analytical formula of the beam propagation factor M^2 of high-power laser beams passing through the optical system with multiple hard-edged apertures is deduced.Numerical examples of the beams passing through an aperture-spatial filter are enclosed,and the influences of amplitude modulations(AMs)and phase fluctuations(PFs)on the beam propagation quality of high-power laser beams passing through the multi-apertured ABCD optical system are considered and discussed.It is shown that PFs are able to degrade the beam propagation quality of laser beams more than AMs when the high-power laser beams passing through the aperture-spatial filter,furthermore,one or two aperture-lens optical systems configured appropriate aperture parameters are both able to upgrade the beam propagation quality of high-power laser beams.The M2 factor of Gaussian beam passing through the multi-aperture optical system is a special case in this paper.
基金supported by the Scientific Research Fund of Zhejiang Provincial Education Department,China(Grant No 20060677)
文摘Based on the vectorial Ftayleigh-Sommerfeld integral formula and the complex Gaussian expansion of the hardedge aperture function, an analytical propagation expression for a nonparaxial vectorial off-axis Lorentz beam passing through a rectangular aperture is derived. The unapertured case, the far field expression and the scalar paraxial result are also presented as special cases of the general formulae, respectively. Some numerical examples are also given to show the propagation characteristics of a nonparaxial vectorial off-axis Lorentz beam through a rectangular aperture. It is indicated that the f parameter, the off-axis displacement and the truncation parameter all play an important role in determining nonparaxial propagation behaviour.
基金jointly supported by the International Research Center of Big Data for Sustainable Development Goals(Grant No.CBAS2022GSP02)the National Natural Science Foundation of China(Grant Nos.42072320 and 42372264).
文摘Active landslides pose a significant threat globally,endangering lives and property.Effective monitoring and forecasting of displacements are essential for the timely warnings and mitigation of these events.Interferometric synthetic aperture radar(InSAR)stands out as an efficient and prevalent tool for monitoring landslide deformation and offers new prospects for displacement prediction.However,challenges such as inherent limitation of satellite viewing geometry,long revisit cycles,and limited data volume hinder its application in displacement forecasting,notably for landslides with near-north-south deformation less detectable by InSAR.To address these issues,we propose a novel strategy for predicting three-dimensional(3D)landslide displacement,integrating InSAR and global navigation satellite system(GNSS)measurements with machine learning(ML).This framework first synergizes InSAR line-of-sight(LOS)results with GNSS horizontal data to reconstruct 3D displacement time series.It then employs ML models to capture complex nonlinear relationships between external triggers,landslide evolutionary states,and 3D displacements,thus enabling accurate future deformation predictions.Utilizing four advanced ML algorithms,i.e.random forest(RF),support vector machine(SVM),long short-term memory(LSTM),and gated recurrent unit(GRU),with Bayesian optimization(BO)for hyperparameter tuning,we applied this innovative approach to the north-facing,slow-moving Xinpu landslide in the Three Gorges Reservoir Area(TGRA)of China.Leveraging over 6.5 years of Sentinel-1 satellite data and GNSS measurements,our framework demonstrates satisfactory and robust prediction performance,with an average root mean square deviation(RMSD)of 9.62 mm and a correlation coefficient(CC)of 0.996.This study presents a promising strategy for 3D displacement prediction,illustrating the efficacy of integrating InSAR monitoring with ML forecasting in enhancing landslide early warning capabilities.
文摘The next generation of synchrotron radiation light sources features extremely low emittance,enabling the generation of synchrotron radiation with significantly higher brilliance,which facilitates the exploration of matter at smaller scales.However,the extremely low emittance results in stronger sextupole magnet strengths,leading to high natural chromaticity.This necessitates the use of sextupole magnets to correct the natural chromaticity.For the Shanghai Synchrotron Radiation Facility Upgrade(SSRF-U),a lattice was designed for the storage ring that can achieve an ultra-low natural emittance of 72.2 pm·rad at the beam energy of 3.5 GeV.However,the significant detuning effects,driven by high second-order resonant driving terms due to strong sextupoles,will degrade the performance of the facility.To resolve this issue,installation of octupoles in the SSRF-U storage ring has been planned.This paper presents the study results on configuration selection and optimization method for the octupoles.An optimal solution for the SSRF-U storage ring was obtained to effectively mitigate the amplitude-dependent tune shift and the second-order chromaticity,consequently leading to an increased dynamic aperture(DA),momentum acceptance(MA),and reduced sensitivity to magnetic field errors.
文摘In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal is to reduce computational and storage requirements while ensuring detection accuracy and reliability,making it an ideal choice for achieving rapid response and efficient processing.In this regard,a lightweight SAR ship target detection algorithm based on YOLOv8 was proposed in this study.Firstly,the C2f-Sc module was designed by fusing the C2f in the backbone network with the ScConv to reduce spatial redundancy and channel redundancy between features in convolutional neural networks.At the same time,the Ghost module was introduced into the neck network to effectively reduce model parameters and computational complexity.A relatively lightweight EMA attention mechanism was added to the neck network to promote the effective fusion of features at different levels.Experimental results showed that the Parameters and GFLOPs of the improved model are reduced by 8.5%and 7.0%when mAP@0.5 and mAP@0.5:0.95 are increased by 0.7%and 1.8%,respectively.It makes the model lightweight and improves the detection accuracy,which has certain application value.
文摘To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.
文摘For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchmark construction.This paper proposes an architecture for detecting detector flatness based on channel spectral dispersion.By measuring the dispersion fringes for coplanar adjustment,the final adjustment residual is improved to better than 300 nm.This result validates the feasibility of the proposed technology and provides significant technical support for the development of next-generation large-aperture sky survey equipment.
基金College Students Innovation and Entrepreneurship Project of Guangzhou Railway Polytechnic(2025CXCY015)。
文摘As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness distribution functions of the Bakhtiary dam site and Oskarshamn/Forsmark mountain were fitted using statistical methods.The COMSOL Multiphysics finite element software was utilized to analyze the effects of fracture roughness distribution types and empirical formulas for fracture hydraulic aperture on the seepage field and temperature field of rock masses.The results show that:(1)The fracture roughness at the Bakhtiary dam site and Oskarshamn/Forsmark mountain follows lognormal and normal distributions,respectively;(2)For rock masses with the same expected value and standard deviation of fracture roughness,the outflow from rock masses with lognormal distribution of fracture roughness is significantly larger than that of rock masses with normal distribution of fracture roughness;(3)The fracture hydraulic aperture,outflow,and cold front distance of the Li and Jiang model are significantly larger than those of the Barton model;(4)The outflow,hydraulic pressure distribution,and temperature distribution of the Barton model are more sensitive to the fracture roughness distribution type than those of the Li and Jiang model.
基金support of the National Natural Science Foundation of China(U23B6004 and 52404045)the CAST Young Talent Support Program,Doctoral Student Special Project.
文摘During gas extraction from deep coal,the rock endures high effective stress,with both the time-dependent deformation and anisotropic structure of the rock controlling the permeability evolution.To reveal this phenomenon,a numerical simulation framework of the finite volume method and transient embedded discrete fracture model is proposed to establish a new constitutive model that links poroelastoplastic deformation,adsorption-induced swelling,and aperture compression.From this model,anisotropic permeability tensors were derived to further achieve the simulation of coevolution.Meanwhile,our permeability model was verified against the measured permeability data,and the history match of the numerical model showed better results where the mismatch was less than 5%.The results indicate that(1)the long-term permeability evolution clearly showed the competitive effects of multiple deformation mechanisms,which involves three stages:compaction-dominated decline,adsorption-dominated rebound,and creep-controlled loss.(2)The increased number of compressible cleats/fractures accelerated the initial permeability decline,while the increased desorption-induced strain promoted faster rebound and enhancement and higher viscosity coefficients enhanced the creep effect,which led to significant long-term permeability loss.(3)Massive hydraulic fracturing created a larger drainage area,accelerating methane desorption and causing sharp permeability rebound with reduced residual gas,which shows that the permeability remained higher than the initial values even after the extensive extraction via the fractured horizontal wells.The permeability evolution mechanisms displayed varying properties,such as coal rank and burial depth,and distinct characteristics.A precise understanding of multiple competitive stress effects is crucial for optimizing coalbed methane extraction techniques and improving recovery efficiency.
文摘Inverse Synthetic Aperture Radar(ISAR)images of complex targets have a low Signal-to-Noise Ratio(SNR)and contain fuzzy edges and large differences in scattering intensity,which limits the recognition performance of ISAR systems.Also,data scarcity poses a greater challenge to the accurate recognition of components.To address the issues of component recognition in complex ISAR targets,this paper adopts semantic segmentation and proposes a few-shot semantic segmentation framework fusing multimodal features.The scarcity of available data is mitigated by using a two-branch scattering feature encoding structure.Then,the high-resolution features are obtained by fusing the ISAR image texture features and scattering quantization information of complex-valued echoes,thereby achieving significantly higher structural adaptability.Meanwhile,the scattering trait enhancement module and the statistical quantification module are designed.The edge texture is enhanced based on the scatter quantization property,which alleviates the segmentation challenge of edge blurring under low SNR conditions.The coupling of query/support samples is enhanced through four-dimensional convolution.Additionally,to overcome fusion challenges caused by information differences,multimodal feature fusion is guided by equilibrium comprehension loss.In this way,the performance potential of the fusion framework is fully unleashed,and the decision risk is effectively reduced.Experiments demonstrate the great advantages of the proposed framework in multimodal feature fusion,and it still exhibits great component segmentation capability under low SNR/edge blurring conditions.
基金supported by the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LZJMZ25D050008 and LQ21D060001)the National Natural Science Foundation of China (Grant No. 42305153)+4 种基金the East China Meteorological Science and Technology Collaborative Innovation Foundation Cooperation Project (Grant No. QYHZ202307)the Zhejiang Meteorological Science and Technology Plan Project (Grant Nos. 2021YB07, 2022ZD06 and 2023YB06)the Youth Innovation Team Fund of the China Meteorological Administration (Grant No.CMA2023QN12)support of the Canadian program “Transforming Climate Action” led by Dalhousie University in Canadathe Canadian Space Agency (CSA) projects “Ocean surface features related to aggregation of North Atlantic Right Whales (NARWs)” and “Fine resolution classification of sea ice from the RADARSAT Constellation Mission (RCM)”
文摘Spaceborne microwave instruments possess the capability of day-and-night and all-weather measurements that can penetrate clouds and fog,and directly measure tropical cyclone(TC)ocean surface winds.In this study,we establish an effective methodology to estimate TC dynamic characteristic parameters(DCP),including the storm center location,intensity,radius of maximum wind(RMW)and wind structure,purely from TC ocean winds measured by multi-platform spaceborne microwave instruments.Combining measurements from active and passive sensors can provide long time series data for monitoring changes in storm DCP.Here,the evolution of the DCP for TC Freddy(2023),from its genesis to its landfall,is evaluated using data from synthetic aperture radars(SARs),as well as radiometer(RAD)and scatterometer(SCA)observations.Comparing the results to the best-track datasets for the longitudes and latitudes of the storm centers,we show that the root-mean-square errors(RMSEs)are 0.22°and 0.31°,respectively,both with a correlation of 0.99.For the detected intensity,the RMSEs are 6.8 m s^(−1) for SARs and 7.3 m s^(−1) for RADs.However,TC intensities measured by C-band SCAs are significantly underestimated,especially for wind speeds less than 50 m s^(−1).In terms of RMW and wind radii,the SARs,RADs and SCAs demonstrate good accuracy and applicability.Our investigation emphasizes the crucial role played by spaceborne microwave instruments in the study of TCs.This is helpful in monitoring,and in the future,will help improve the forecasting of TC intensities and their characteristic structures.
基金the financial supports from National Key R&D Program of China(No.2022YFB3403301)the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China(No.52311530080)。
文摘Modern industrial equipment is increasingly characterized by miniaturization,integration,and high performance,necessitating the production of complex structural parts with exceptionally high internal surface quality.Direct manufacturing often leads to high internal surface roughness,which traditional finishing and measuring methods cannot adequately address due to the decreasing size and increasing complexity of internal structures.This is especially true for components like pipes with large aspect ratios,extremely small deep holes,multi-stage bends,cross pipes,and array holes.To meet the high-performance manufacturing demands of these parts,advanced internal surface finishing and roughness measurement technologies have gained significant attention.This review focuses on the challenges and solutions related to internal surface parts with various apertures and complex structures.Internal surface finishing methods are categorized into mechanical finishing,fluid-based finishing,and energy-field-based finishing based on their characteristics.Roughness measurement technologies are divided into tool-probing and non-probing methods.The principles,required equipment,and key parameters of each finishing and measurement approach are discussed in detail.Additionally,the advantages and limitations of these methods are summarized,and future trends are forecasted.This paper serves as a comprehensive guide for researchers and engineers aiming to enhance the internal surface quality of complex structure parts.
基金supported by the National Nat-ural Science Foundation of China(No.42376174)the Natural Science Foundation of Shanghai(No.23ZR 1426900).
文摘Synthetic aperture radar(SAR)aboard SEASAT was first launched in 1978.At the beginning of the 21st century,the Chinese remote sensing community recognized the urgent need to develop domestic SAR capabilities.Unlike scatterometers and al-timeters,space-borne SAR offers high-resolution images of the ocean,regardless of weather conditions or time of day.SAR imagery provides rich information about the sea surface,capturing complicated dynamic processes in the upper layers of the ocean,particular-ly in relation to tropical cyclones.Over the past four decades,the advantages of SAR have been increasingly recognized,leading to notable marine applications,especially in the development of algorithms for retrieving wind and wave data from SAR images.This study reviews the history,progress,and future outlook of SAR-based monitoring of sea surface wind and waves.In particular,the ap-plicability of various SAR wind and wave algorithms is systematically investigated,with a particular focus on their performance un-der extreme sea conditions.
基金supported partly by the National Natural Science Foundation of China(NSFC)(62101568 and 62371460)the Scientific Research Program of the National University of Defense Technology(ZK21-06)the Taishan Scholars of Shandong Province(ts20190968)。
文摘Amplitude stripes imposed by ionospheric scintillation have been frequently observed in many of the equatorial nighttime acquisitions of the Advanced Land Observing Satellite(ALOS)Phased Array-type L-band Synthetic Aperture Radar(PALSAR).This type of ionospheric artifact impedes PALSAR interferometric and polarimetric applications,and its formation cause,morphology,and negative influence have been deeply investigated.However,this artifact can provide an alternative opportunity in a positive way for probing and measuring ionosphere scintillation.In this paper,a methodology for measuring ionospheric scintillation parameters from PALSAR images with amplitude stripes is proposed.Firstly,sublook processing is beneficial for recovering the scattered stripes from a single-look complex image;the amplitude stripe pattern is extracted via band-rejection filtering in the frequency domain of the sublook image.Secondly,the amplitude spectrum density function(SDF)is estimated from the amplitude stripe pattern.Thirdly,a fitting scheme for measuring the scintillation strength and spectrum index is conducted between the estimated and theoretical long-wavelength SDFs.In addition,another key parameter,the scintillation index,can be directly measured from the amplitude stripe pattern or indirectly derived from the scintillation strength and spectrum index.The proposed methodology is fully demonstrated on two groups of PALSAR acquisitions in the presence of amplitude stripes.Self-validation is conducted by comparing the measured and derived scintillation index and by comparing the measurements of range lines and azimuth lines.Cross-validation is performed by comparing the PALSAR measurements with in situ Global Position System(GPS)measurements.The processing results demonstrate a powerful capability to robustly measure ionospheric scintillation parameters from space with high spatial resolution.
基金financially supported by the National Key Research and Development Program of China (No.2020YFA0711800)the National Science Fund for Distinguished Young Scholars (No.51925404)+2 种基金the Graduate Innovation Program of China University of Mining and Technology (No.2023WLKXJ149)the Fundamental Research Funds for the Central Universities (No.2023XSCX040)the Postgraduate Research Practice Innovation Program of Jiangsu Province (No.KYCX23_2864)。
文摘Methane in-situ explosive fracturing technology produces shale debris particles within fracture channels,enabling a self-propping effect that enhances the fracture network conductivity and long-term stability.This study employs X-ray computed tomography(CT)and digital volume correlation(DVC)to investigate the microstructural evolution and hydromechanical responses of shale self-propped fracture under varying confining pressures,highlighting the critical role of shale particles in maintaining fracture conductivity.Results indicate that the fracture aperture in the self-propped sample is significantly larger than in the unpropped sample throughout the loading process,with shale particles tending to crush rather than embedded into the matrix,thus maintaining flow pathways.As confining pressure increases,contact areas between fracture surfaces and particles expand,enhancing the system's stability and compressive resistance.Geometric analyses show flow paths becoming increasingly concentrated and branched under high stress.This resulted in a significant reduction in connectivity,restricting fracture permeability and amplifying the nonlinear gas flow behavior.This study introduces a permeability-strain recovery zone and a novel sensitivity parameter m,delineating stress sensitivity boundaries for permeability and normal strain,with m-value increasing with stress,revealing four characteristic regions.These findings offer theoretical support for optimizing fracturing techniques to enhance resource extraction efficiency.
基金supported by the Space Debris Research Project,China(KJSP2020010102)the National Key R&D Program of China(2022YFC2807300)the National Natural Science Foundation of China(12573081)。
文摘Dome A,in Antarctica,offers an exceptional site for ground-based infrared astronomy,with its extremely low atmospheric infrared background noise and excellent seeing conditions.However,deploying near-infrared telescopes in the harsh environment of Antarctica faces the critical challenge of frost accumulation on optical mirrors.While indium tin oxide heating films effectively defrost visible-band Antarctic astronomical telescopes,their thermal radiation at infrared wavelengths introduces significant stray light,severely degrading the signal-to-noise ratio for infrared observations.To address this limitation,we have designed a mechanical snow-removal system capable of efficiently clearing frost from sealing window surfaces at temperatures as low as–80°C.Aperture photometry of target sources,Canopus and HD 2151,revealed that after six days without intervention,floating snow extinction reduced target brightness by up to 3 magnitudes.Following mechanical defrosting,the source flux recovered to stable levels,with measured magnitudes showing rapid initial improvement followed by stabilization.Data analysis indicates that a frost removal strategy operating every 48 h,with each operation consisting of 4–6 cycles,enables efficient removal of frost and snow without introducing additional thermal noise.Future work will focus on optimizing the adaptive control algorithm and exploring novel low-temperature defrosting materials to extend the periods during which Antarctic infrared telescopes can operate unattended.
基金financially supported by National Natural Science Foundation of China(No.52422402)。
文摘Lost circulation critically jeopardizes drilling safety and efficiency,and remains an unresolved challenge in oil and gas engineering.In this paper,by utilizing the self-developed dynamic plugging apparatus and synthetic cores containing large-scale fractures,experimental research on the circulation plugging of different materials was conducted.Based on the D90 rule and fracture mechanical aperture model,we analyze the location of plugging layer under dynamic plugging mechanism.By setting different parameters of fracture width and injection pressure,the laws of cyclic plugging time,pressure bearing capacity and plugging layers formation were investigated.The results show that the comprehensive analysis of particle size and fracture aperture provides an accurate judgment of the entrance-plugging phenomenon.The bridging of solid materials in the leakage channel is a gradual process,and the formation of a stable plug requires 2–3 plug-leakage cycles.The first and second cyclic plugging time was positively correlated with the fracture width.Different scales of fractures were successfully plugged with the bearing pressure greater than 6 MPa,but there were significant differences in the composition of the plugging layer.The experimental results can effectively prove that the utilized plugging agent is effective and provides an effective reference for dynamic plugging operation.
基金supported by the Jiangsu Provincial Key Research and Development Program(BE2022072)the National Natural Science Foundation of China(12141304)the Natural Science Foundation of Jiangsu Province(BK20231134).
文摘To address the installation challenges of a 2-m ring Gregorian telescope system,and similar optical systems with a small width-to-radius ratio,we propose a detection method combining local interferometry with a comparison model.This method enhances the precision of system calibration by establishing a dataset that delineates the relationship between secondary mirror misalignment and wavefront aberration,subsequently inferring the misalignment from interferometric detection results during the calibration process.For the 2-m ring telescope,we develop a detection model using five local sub-apertures,enabling a root-mean-square detection accuracy of 0:0225λ(λ=632:8 nm)for full-aperture wavefront aberration.The calibration results for the 2-m Ring Solar Telescope system indicate that the root-mean-square value of sub-aperture wavefront aberration reaches 0.104λ,and the root-mean-square value of spliced full-aperture measurement yields reaches 0.112λ.This method offers a novel approach for calibrating small width-toradius ratio telescope systems and can be applied to the calibration of other irregular-aperture optical systems.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52079068,52090081)the State Key Laboratory of Hydroscience and Engineering(Grant No.2021-KY-04).
文摘The flow field characteristics of the conduit-matrix system(CMS)have consistently been a primary area of interest to researchers.However,under the long-term influence of water flow,the hydraulic conductivity of the matrix surrounding the conduit often deforms differentially along the conduit axis,resulting in the development of a conduit-multilayer matrix system(CMMS).This renders conventional models inadequate in accurately describing the flow field characteristics of CMMS.In this study,a semi-analytical model with second-order accuracy is developed to investigate the velocity profile characteristics of CMMS by coupling the Navier-Stokes(N–S)equations in the conduit and the Darcy-Brinkman(D-B)equation in the multilayer matrices.In this model,the interface between the conduit and the matrix satisfies the velocity continuity and stress jumping condition.In contrast,different matrix interfaces require both velocity and stress to be equal.The model's validity is verified through Lattice Boltzmann Method(LBM)simulation,COMSOL simulation,and experimental data under different conduit apertures,matrix region numbers,and matrix permeability characteristics.Moreover,the current model predicts discharges with higher accuracy than the Hagen-Poiseuille law and Darcy's law(the maximum error between the present model and the test is 7.24%).Furthermore,the existing Poiseuille's law,conduit-matrix model,and conduit-matrix1-matrix2 model are all special cases of the current semi-analytical model,thereby indicating its broader applicability.Sensitivity results reveal that the flow velocities in the surrounding matrix and the conduit regions also increase when the permeability of the matrix in proximity to the conduit increases.Additionally,as the stress jumping coefficient at the interface approaches zero,the transition from free flow to seepage becomes smoother.