针对金刚石滚轮是一种回转体零件以及其加工制造过程中信息化集成程度低等特点,对金刚石滚轮的特征信息提取、特征加工方案决策、数控程序后置处理等关键技术进行了研究,采用了产品模型数据交换标准STEP AP 242,实现对金刚石滚轮的制造...针对金刚石滚轮是一种回转体零件以及其加工制造过程中信息化集成程度低等特点,对金刚石滚轮的特征信息提取、特征加工方案决策、数控程序后置处理等关键技术进行了研究,采用了产品模型数据交换标准STEP AP 242,实现对金刚石滚轮的制造特征信息提取,使用STEP AP 242和PDM相结合的集成方式,将金刚石滚轮三维模型作为制造加工信息的载体,并选择SolidWorks作为CAD和CAM软件,以及选择Aras Innovator作为PDM平台,使用C#编程语言和数据库技术开发了金刚石滚轮CAD/CAPP/CAM/PDM集成系统,并进行了实例验证。展开更多
基于RSSI(Received Signal Strength Indication)位置指纹的Wi-Fi室内定位现已被大量应用于各类基于位置信息的服务中。但指纹定位的精度受到RSSI信号的剧烈波动影响,难以满足高精度位置信息服务的需求。为克服该困难,提出一种结合虚拟A...基于RSSI(Received Signal Strength Indication)位置指纹的Wi-Fi室内定位现已被大量应用于各类基于位置信息的服务中。但指纹定位的精度受到RSSI信号的剧烈波动影响,难以满足高精度位置信息服务的需求。为克服该困难,提出一种结合虚拟AP技术与高精度CNN(Convolutional Neural Network)判别模型的定位方法。该方法通过距离比定位得到虚拟AP的位置,并将该信息与RSSI融合作为数据增强CNN模型的输入,确定样本的位置。设计实验方案采集实际的用户终端RSSI数据,构建指纹定位的数据集,验证所提出的指纹定位方案的有效性。实验结果表明,在该数据集上,所提出的方法在确定区域时的准确度达到91%,并将95%的定位误差控制在2 m以内。对比现有的定位方案,所提出的方案在定位精度上有显著提升。展开更多
The transcriptional cascade and regulatory loop play crucial roles in regulating plant-specialized metabolite biosynthesis.Capsaicinoids are unique to the genus Capsicum and confer a pungent flavor to its fruits.Howev...The transcriptional cascade and regulatory loop play crucial roles in regulating plant-specialized metabolite biosynthesis.Capsaicinoids are unique to the genus Capsicum and confer a pungent flavor to its fruits.However,the transcriptional regulation of capsaicinoid biosynthesis remains largely unknown.In this study,two AP2/ERF transcription factors(TFs),CaERF102 and CaERF111,were characterized for their role in the capsaicinoid biosynthesis process.Expression analysis of two ERFs and capsaicinoid biosynthetic genes(CBGs)suggested that they were associated with capsaicinoid biosynthesis.Both ERFs encode nuclear-localized proteins and function as transcriptional activators through their C-terminal activation motifs.The two ERF TFs participated in capsaicinoid biosynthesis by directly activating the promoters of key CBGs,and this activation was significantly enhanced when CaMYC2 was co-expressed.Moreover,CaERF102 and CaERF111 were found to interact with CaMYC2.This study helps elucidate the AP2/ERF TF regulatory network that governs capsaicinoid biosynthesis in Capsicum species.展开更多
Cell-free networks can effectively reduce interference due to diversity gain.Two key technologies,access point(AP)clustering and transceiver design,play key roles in cell-free networks,and they are implemented at diff...Cell-free networks can effectively reduce interference due to diversity gain.Two key technologies,access point(AP)clustering and transceiver design,play key roles in cell-free networks,and they are implemented at different layers of the air interface.To address the issues and obtain global optimal results,this paper proposes an uplink joint AP clustering and receiver optimization algorithm,where a cross-layer optimization model is built based on graph neural networks(GNNs)with low computational complexity.Experimental results show that the proposed algorithm can activate fewer APs for each user with a small performance loss compared with conventional algorithms.展开更多
AP2/EREBP(APETALA2/ethylene-responsive element binding proteins)是一个起源古老的转录因子超家族,它含有1个或2个由约60-70个氨基酸残基组成的非常保守的DNA结合域(DNA-bindingdomain),即AP2/ERF结构域。根据AP2/ERF结构域的数目,A...AP2/EREBP(APETALA2/ethylene-responsive element binding proteins)是一个起源古老的转录因子超家族,它含有1个或2个由约60-70个氨基酸残基组成的非常保守的DNA结合域(DNA-bindingdomain),即AP2/ERF结构域。根据AP2/ERF结构域的数目,AP2/EREBP转录因子可以分为2个亚族:EREBP亚族(具有1个AP2/ERF结构域)和AP2亚族(具有2个AP2/ERF结构域)。AP2亚族转录因子有调控花、胚珠和种子发育的功能,而EREBP亚族转录因子(包括DREB类和ERF类)的主要功能是调节植物对激素(乙烯和ABA等)、病原和胁迫(低温、干旱及高盐)等的应答反应。本文讨论了AP2/EREBP转录因子在植物发育和胁迫应答中的研究进展。展开更多
Mosquito-borne flaviviruses,such as Zika virus(ZIKV)and dengue virus(DENV),cause diverse severe clinical manifestations including fever,rash,hepatitis,arthralgia,and congenital anomalies.Here,we identified a host fact...Mosquito-borne flaviviruses,such as Zika virus(ZIKV)and dengue virus(DENV),cause diverse severe clinical manifestations including fever,rash,hepatitis,arthralgia,and congenital anomalies.Here,we identified a host factor,the adaptor protein complex 1 gamma 1 subunit(AP1G1),which plays an important role in both ZIKV and dengue virus 2(DENV2)infections.We explored the role of AP1G1 in ZIKV and DENV2 infections using CRISPR/Cas9 gene editing technology and RNA interference(RNAi)techniques.Knockout or silencing of AP1G1 decreases the replication of ZIKV and DENV2 in multiple human cell lines.Intriguingly,depletion of AP1G1 results in a significant reduction in ZIKV at an early stage,but decreases DENV2 replication levels during the late stage,suggesting that AP1G1 plays distinct roles in the infection by ZIKV and DENV2.Furthermore,we determined that AP1G1 mediates ZIKV-endosomal membrane fusion through inhibitor experiments and fluorescence labeling assays.Mechanistically,we found that AP1G1 exerts its pro-viral effect through binding to the ZIKV envelope glycoprotein(E protein).This interaction promotes the fusion of viral and endosomal membranes,during which the ZIKV genomic RNAs are released from the endosome into the cytoplasm,a process that facilitates viral replication.However,for DENV2 infection,AP1G1 primarily affects its viral RNA replication stage,rather than the fusion of virus-endosomal membrane.Taken together,our work demonstrates that AP1G1 plays a pro-viral role in both ZIKV and DENV2 infections via distinct mechanisms,highlighting its potential as a therapeutic target for antiviral strategies.展开更多
文摘针对金刚石滚轮是一种回转体零件以及其加工制造过程中信息化集成程度低等特点,对金刚石滚轮的特征信息提取、特征加工方案决策、数控程序后置处理等关键技术进行了研究,采用了产品模型数据交换标准STEP AP 242,实现对金刚石滚轮的制造特征信息提取,使用STEP AP 242和PDM相结合的集成方式,将金刚石滚轮三维模型作为制造加工信息的载体,并选择SolidWorks作为CAD和CAM软件,以及选择Aras Innovator作为PDM平台,使用C#编程语言和数据库技术开发了金刚石滚轮CAD/CAPP/CAM/PDM集成系统,并进行了实例验证。
基金funded by the National Natural Science Foundation of China(Grant Nos.32202502,U21A20230,32070331,32102380 and 32072580)National Key Research and Development Program(Grant No.2018YFD1000800)+3 种基金the Key-Area Research and Development Program of Guangdong Province(Grant No.2022B0202080001)the Special Fund for Seed Industry of Guangdong Province Rural Revitalization Strategy(Grant No.2022-NPY00-024)Tibet Autonomous Region of Lhasa City Science and Technology Project(Grant No.LSKJ202310)the Science and Technology Project of Bijie City(Grant No.BKK2022-3)。
文摘The transcriptional cascade and regulatory loop play crucial roles in regulating plant-specialized metabolite biosynthesis.Capsaicinoids are unique to the genus Capsicum and confer a pungent flavor to its fruits.However,the transcriptional regulation of capsaicinoid biosynthesis remains largely unknown.In this study,two AP2/ERF transcription factors(TFs),CaERF102 and CaERF111,were characterized for their role in the capsaicinoid biosynthesis process.Expression analysis of two ERFs and capsaicinoid biosynthetic genes(CBGs)suggested that they were associated with capsaicinoid biosynthesis.Both ERFs encode nuclear-localized proteins and function as transcriptional activators through their C-terminal activation motifs.The two ERF TFs participated in capsaicinoid biosynthesis by directly activating the promoters of key CBGs,and this activation was significantly enhanced when CaMYC2 was co-expressed.Moreover,CaERF102 and CaERF111 were found to interact with CaMYC2.This study helps elucidate the AP2/ERF TF regulatory network that governs capsaicinoid biosynthesis in Capsicum species.
基金supported in part by National Natural Science Foundation of China under Grant No.62171474。
文摘Cell-free networks can effectively reduce interference due to diversity gain.Two key technologies,access point(AP)clustering and transceiver design,play key roles in cell-free networks,and they are implemented at different layers of the air interface.To address the issues and obtain global optimal results,this paper proposes an uplink joint AP clustering and receiver optimization algorithm,where a cross-layer optimization model is built based on graph neural networks(GNNs)with low computational complexity.Experimental results show that the proposed algorithm can activate fewer APs for each user with a small performance loss compared with conventional algorithms.
文摘AP2/EREBP(APETALA2/ethylene-responsive element binding proteins)是一个起源古老的转录因子超家族,它含有1个或2个由约60-70个氨基酸残基组成的非常保守的DNA结合域(DNA-bindingdomain),即AP2/ERF结构域。根据AP2/ERF结构域的数目,AP2/EREBP转录因子可以分为2个亚族:EREBP亚族(具有1个AP2/ERF结构域)和AP2亚族(具有2个AP2/ERF结构域)。AP2亚族转录因子有调控花、胚珠和种子发育的功能,而EREBP亚族转录因子(包括DREB类和ERF类)的主要功能是调节植物对激素(乙烯和ABA等)、病原和胁迫(低温、干旱及高盐)等的应答反应。本文讨论了AP2/EREBP转录因子在植物发育和胁迫应答中的研究进展。
基金supported by the National Natural Science Foundation of China(No.82471389,No.32470986,No.82271385)Natural Science Foundation of Guangdong Province(No.2024A1515010471).
文摘Mosquito-borne flaviviruses,such as Zika virus(ZIKV)and dengue virus(DENV),cause diverse severe clinical manifestations including fever,rash,hepatitis,arthralgia,and congenital anomalies.Here,we identified a host factor,the adaptor protein complex 1 gamma 1 subunit(AP1G1),which plays an important role in both ZIKV and dengue virus 2(DENV2)infections.We explored the role of AP1G1 in ZIKV and DENV2 infections using CRISPR/Cas9 gene editing technology and RNA interference(RNAi)techniques.Knockout or silencing of AP1G1 decreases the replication of ZIKV and DENV2 in multiple human cell lines.Intriguingly,depletion of AP1G1 results in a significant reduction in ZIKV at an early stage,but decreases DENV2 replication levels during the late stage,suggesting that AP1G1 plays distinct roles in the infection by ZIKV and DENV2.Furthermore,we determined that AP1G1 mediates ZIKV-endosomal membrane fusion through inhibitor experiments and fluorescence labeling assays.Mechanistically,we found that AP1G1 exerts its pro-viral effect through binding to the ZIKV envelope glycoprotein(E protein).This interaction promotes the fusion of viral and endosomal membranes,during which the ZIKV genomic RNAs are released from the endosome into the cytoplasm,a process that facilitates viral replication.However,for DENV2 infection,AP1G1 primarily affects its viral RNA replication stage,rather than the fusion of virus-endosomal membrane.Taken together,our work demonstrates that AP1G1 plays a pro-viral role in both ZIKV and DENV2 infections via distinct mechanisms,highlighting its potential as a therapeutic target for antiviral strategies.